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1. Checking the operational interpretation of trace distance.

(a)

(b)

Warmup. Show that for two pure states |1) , |2), their trace distance 7" and
their fidelity F' satisfy
F?+T%=1.

In lecture we proved a result relating the probability of success at distin-
guishing two states by a single measurement to their trace distance. Might
it be possible to evade this theorem by considering POVMs which are not
projective measurements?

Consider two non-orthogonal pure states |1),]2). with overlap ¢ = | (1]2) |?
and consider the POVM made of :

Ey=x[1) (1], B2 = a[2) (2], s =1— Ey — E».

For which values of x, « is this a POVM?

Find the probability of success of the strategy: if outcome is 1 guess 1, if
outcome is 2 guess 2, if outcome is 3 do a little dance then guess randomly.
Show that the bound we proved is not violated.

Nevertheless, POVMs (which are not projective measurements) are indeed
useful for state discrimination. Find a POVM with the property that distin-
guishes between two non-orthogonal pure states |1,2) in such a way that for
one outcome we are certain that the state is |1) and for another we are cer-
tain that the state is |2). (There is a third outcome where we learn nothing
from the measurement.)

2. Entanglement negativity for pure states. Show that when pap = [¥)¥)| is

pure, the logarithmic negativity

En(pap) =log | p™ |

is the Renyi entropy of index 1/2, S1/2(pa), with S,(p) = 1= logtrp®. Use the

Schmidt decomposition.



3. Direct application of Lieb’s theorem.

We only used a very special case of Lieb’s theorem to prove monotonicity of the

relative entropy. Surely there is more to learn from it.

Consider an ensemble of states p = > .p;p;, and a unitary operator U (for

example, it may be closed-system time evolution).

Show that the relative entropy between p(t) = UpUT and p is convex in p:

D(p(t)llp) < sz-D(pi(t)Hm)-

Open ended bonus problem: see if you can find a better result by directly applying

Lieb’s joint concavity theorem to a problem in many body physics.

4. Bekenstein bound.

In this problem, h = c = kg = 1.

(a)

A black hole has a temperature Tgy = and (in Einstein gravity) an

1
8GN M
entropy Spg = ﬁ, where A = 47 R? is the area of the event horizon, and
R = 2GyM is the Schwarzchild radius. Check that this is consistent with

the first law of thermodynamics dE = T'dS, where F = M.

The generalized second law then says that Siota = Sy + Sstug 1S nON-
decreasing. Suppose we have an object of linear size R (say it fits in a

sphere of radius R) whose energy E and entropy S satisfy S ; 2rER.
Then we can cram some extra stuff in there until the object undergoes
gravitational collapse and forms a black hole. Convince yourself that this
would violate the generalized second law. Thus we arrive at the Bekenstein
bound, S < 2nrER. Notice that G has dropped out of this relation. Indeed
a version of it follows simply from positivity of the relative entropy (see
below).

[optional bonus part which requires some general relativity] To understand
why a black hole has a temperature, notice that near the horizon at r =
2G' Ny M, the Schwarzchild metric

d'f’2 _ QGNM

ds®> = —f(r)dt* + o) + 7% (d6” + sin® 0dp?) , f(r) =1

r

looks like
dstinaier = —Kp7d? + dp* + R (d6” + sin® fdp?) (1)
where p = 2,/r(r —2GyM) for a constant k. Determine k.
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Show that regularity of this geometry in euclidean time 7 = it requires
periodic euclidean time 7 ~ 7 + (k). Find (k) and interpret it as an
inverse temperature.

Moreover, show that in the coordinates T' = kpsinhn, Z = pcoshn (with
n = kt), the near-horizon metric (1) is

dsPinaier = —dT° + dZ° + R? (d0? + sin® 0dp?)

namely RY! x S2. However, only the region Z > 0 describes the region
outside the horizon. This means that the system outside the horizon must
be described by a density matrix which traces out the region Z < 0.

Now recall from lecture the Bisognano-Wichmann theorem: in the ground
state of a relativistic quantum field theory, the entanglement Hamiltonian
for a half-space cut is the boost generator

K= 27’(‘/ d(L’JTTQ().
x>0

That is, the reduced density matrix py = e % /tre™® is a thermal state
with Hamiltonian K. Moreover, the Rindler rapidity n is proportional to
the asymptotic Minkowski time coordinate . Check that the temperature
obtained this way agrees with the euclidean periodicity argument.

(d) Show that a version of the Bekenstein bound can be obtained from positivity

of the relative entropy. More precisely, consider some region of space, and

-K
——%. Show

write the reduced density matrix of the vacuum state as py =
that 0 < D(pl||po) can be written as

S(p) = S(po) < trpK — trpo K.

Interpret the left hand side as the entropy above the vacuum, and the RHS
as (£ — Ey)R where Ej is the vacuum energy.

5. Additivity of squashed entanglement. [from Preskill]

(a) Use the chain rule for mutual information and the non-negativity of the
conditional mutual information to show that

I(AA": BB'|C) > I(A: B|C)+ I(A": B'|AC). (2)
Conclude that the squashed entanglement is superadditive, i.e.
E.(AA": BB') > Eq(A: B)+ Ey (A" : B').
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(b) Show that for the special case of product states of the form paipap =
paB @ papr, the inequality (2) is saturated:

B (AA : BB) "ML B (A B)+ E, (A : B).

6. Literature quest. [optional] In lecture I mentioned some sufficient conditions
(something like additivity, convexity) for an entanglement monotone Ex(p) to
satisfy

Ep(p) < Ex(p) < Er(p)

where Ep, Er are the entanglement of distillation and formation respectively.
Find the right conditions and a proof that they are sufficient in the literature (or,
more ambitiously, find them yourself).

7. Random singlets.

Consider gbits arranged on a chain. Suppose that the groundstate is made of
random singlets, in the following sense: for a given site ¢, with probability f(|i —
jla) (a is the lattice spacing), the spins at 4 and j are in the state (|1)—|11))/v/2.
Every spin is paired with some other spin. Consider in turn the case of short-

range singlets where f(z) oc e=*/¢, and long-range singlets where f(z) o ZEQ—}MW,.

(a) Consider a region A which is an interval [—£=¢ £=<] (¢ < R) and B is what

we called A~ (nearly the complement), more precisely: B = [—o0, —g] U
[%,00]. Let I.(R) = I(A : B) = S(A) + S(B) — S(AB) be their mutual

information.

Find (S; - §j (where S = 3(0%,0%,0%)) and I.(R). In both cases assume
the regions are big enough that you can average over regions and use a
continuum approximation (£, > lattice spacing).

Check that the answer is consistent with the mutual information bound on
correlations.

(b) Consider instead the case where B = [—o00, —% — LJU[£ + L, oc], so that A
and B are separated by a distance L. Show that: for short-range singlets,
(i) all (averaged) correlation functions decay exponentially in L (ii) I(A :
B) ~ e~1/¢ for large L (and hence the mutual information satisfies an area
law). For long-range singlets (i) (averaged) correlation functions have power

law decay (ii) I(A: B) ~log(2R — L) for large L, and there is no area law.



