
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 239/139 Fall 2019
Assignment 10 (“Final Exam”)

Due 12:30pm Wednesday, December 11, 2019

1. Checking the operational interpretation of trace distance.

(a) Warmup. Show that for two pure states |1〉 , |2〉, their trace distance T and

their fidelity F satisfy

F 2 + T 2 = 1.

(b) In lecture we proved a result relating the probability of success at distin-

guishing two states by a single measurement to their trace distance. Might

it be possible to evade this theorem by considering POVMs which are not

projective measurements?

Consider two non-orthogonal pure states |1〉 , |2〉. with overlap δ = | 〈1|2〉 |2
and consider the POVM made of :

E1 = χ |1〉 〈1| , E2 = α |2〉 〈2| , E3 = 1− E1 − E2.

For which values of χ, α is this a POVM?

Find the probability of success of the strategy: if outcome is 1 guess 1, if

outcome is 2 guess 2, if outcome is 3 do a little dance then guess randomly.

Show that the bound we proved is not violated.

(c) Nevertheless, POVMs (which are not projective measurements) are indeed

useful for state discrimination. Find a POVM with the property that distin-

guishes between two non-orthogonal pure states |1, 2〉 in such a way that for

one outcome we are certain that the state is |1〉 and for another we are cer-

tain that the state is |2〉. (There is a third outcome where we learn nothing

from the measurement.)

2. Entanglement negativity for pure states. Show that when ρAB = |ψ〉〈ψ| is

pure, the logarithmic negativity

EN(ρAB) ≡ log ||ρTA ||1

is the Renyi entropy of index 1/2, S1/2(ρA), with Sα(ρ) ≡ 1
1−α log trρα. Use the

Schmidt decomposition.
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3. Direct application of Lieb’s theorem.

We only used a very special case of Lieb’s theorem to prove monotonicity of the

relative entropy. Surely there is more to learn from it.

Consider an ensemble of states ρ =
∑

i piρi, and a unitary operator U (for

example, it may be closed-system time evolution).

Show that the relative entropy between ρ(t) ≡ UρU† and ρ is convex in ρ:

D(ρ(t)||ρ) ≤
∑
i

piD(ρi(t)||ρi).

Open ended bonus problem: see if you can find a better result by directly applying

Lieb’s joint concavity theorem to a problem in many body physics.

4. Bekenstein bound.

In this problem, ~ = c = kB = 1.

(a) A black hole has a temperature TBH = 1
8πGNM

and (in Einstein gravity) an

entropy SBH = A
4GN

, where A = 4πR2 is the area of the event horizon, and

R = 2GNM is the Schwarzchild radius. Check that this is consistent with

the first law of thermodynamics dE = TdS, where E = M .

(b) The generalized second law then says that Stotal = SBH + Sstuff is non-

decreasing. Suppose we have an object of linear size R (say it fits in a

sphere of radius R) whose energy E and entropy S satisfy S
?
> 2πER.

Then we can cram some extra stuff in there until the object undergoes

gravitational collapse and forms a black hole. Convince yourself that this

would violate the generalized second law. Thus we arrive at the Bekenstein

bound, S ≤ 2πER. Notice that GN has dropped out of this relation. Indeed

a version of it follows simply from positivity of the relative entropy (see

below).

(c) [optional bonus part which requires some general relativity] To understand

why a black hole has a temperature, notice that near the horizon at r =

2GNM , the Schwarzchild metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, f(r) = 1− 2GNM

r

looks like

ds2
Rindler = −κ2ρ2dt2 + dρ2 +R2

(
dθ2 + sin2 θdϕ2

)
(1)

where ρ = 2
√
r(r − 2GNM) for a constant κ. Determine κ.
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Show that regularity of this geometry in euclidean time τ ≡ it requires

periodic euclidean time τ ' τ + β(κ). Find β(κ) and interpret it as an

inverse temperature.

Moreover, show that in the coordinates T = κρ sinh η, Z = ρ cosh η (with

η ≡ κt), the near-horizon metric (1) is

ds2
Rindler = −dT 2 + dZ2 +R2

(
dθ2 + sin2 θdϕ2

)
namely R1,1 × S2. However, only the region Z > 0 describes the region

outside the horizon. This means that the system outside the horizon must

be described by a density matrix which traces out the region Z < 0.

Now recall from lecture the Bisognano-Wichmann theorem: in the ground

state of a relativistic quantum field theory, the entanglement Hamiltonian

for a half-space cut is the boost generator

K = 2π

∫
x>0

dxxT00.

That is, the reduced density matrix ρ0 = e−K/tre−K is a thermal state

with Hamiltonian K. Moreover, the Rindler rapidity η is proportional to

the asymptotic Minkowski time coordinate t. Check that the temperature

obtained this way agrees with the euclidean periodicity argument.

(d) Show that a version of the Bekenstein bound can be obtained from positivity

of the relative entropy. More precisely, consider some region of space, and

write the reduced density matrix of the vacuum state as ρ0 = e−K

tre−K . Show

that 0 ≤ D(ρ||ρ0) can be written as

S(ρ)− S(ρ0) ≤ trρK − trρ0K.

Interpret the left hand side as the entropy above the vacuum, and the RHS

as (E − E0)R where E0 is the vacuum energy.

5. Additivity of squashed entanglement. [from Preskill]

(a) Use the chain rule for mutual information and the non-negativity of the

conditional mutual information to show that

I(AA′ : BB′|C) ≥ I(A : B|C) + I(A′ : B′|AC). (2)

Conclude that the squashed entanglement is superadditive, i.e.

Esq(AA
′ : BB′) ≥ Esq(A : B) + Esq(A

′ : B′).
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(b) Show that for the special case of product states of the form ρABA′B′ =

ρAB ⊗ ρA′B′ , the inequality (2) is saturated:

Esq(AA
′ : BB′)

product states
= Esq(A : B) + Esq(A

′ : B′).

6. Literature quest. [optional] In lecture I mentioned some sufficient conditions

(something like additivity, convexity) for an entanglement monotone EX(ρ) to

satisfy

ED(ρ) ≤ EX(ρ) ≤ EF (ρ)

where ED, EF are the entanglement of distillation and formation respectively.

Find the right conditions and a proof that they are sufficient in the literature (or,

more ambitiously, find them yourself).

7. Random singlets.

Consider qbits arranged on a chain. Suppose that the groundstate is made of

random singlets, in the following sense: for a given site i, with probability f(|i−
j|a) (a is the lattice spacing), the spins at i and j are in the state (|↑↓〉−|↓↑〉)/

√
2.

Every spin is paired with some other spin. Consider in turn the case of short-

range singlets where f(x) ∝ e−x/ξ, and long-range singlets where f(x) ∝ 1
x2+δ2

.

(a) Consider a region A which is an interval
[
−R−ε

2
, R−ε

2

]
(ε� R) and B is what

we called Ā− (nearly the complement), more precisely: B ≡ [−∞,−R
2

] ∪
[R

2
,∞]. Let Iε(R) ≡ I(A : B) = S(A) + S(B) − S(AB) be their mutual

information.

Find
〈
~Si · ~Sj

〉
(where ~S = 1

2
(σx, σy, σz)) and Iε(R). In both cases assume

the regions are big enough that you can average over regions and use a

continuum approximation (ξ, δ � lattice spacing).

Check that the answer is consistent with the mutual information bound on

correlations.

(b) Consider instead the case where B = [−∞,−R
2
−L]∪ [R

2
+L,∞], so that A

and B are separated by a distance L. Show that: for short-range singlets,

(i) all (averaged) correlation functions decay exponentially in L (ii) I(A :

B) ∼ e−L/ξ for large L (and hence the mutual information satisfies an area

law). For long-range singlets (i) (averaged) correlation functions have power

law decay (ii) I(A : B) ∼ log(2R− L) for large L, and there is no area law.
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