University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 220 Symmetries Fall 2020 Assignment 1

Due 12:30pm Monday, October 12, 2020

- Homework will be handed in electronically. Please do not hand in photographs of hand-written work. The preferred option is to typeset your homework. It is easy to do and you need to do it anyway as a practicing scientist. A LaTeX template file with some relevant examples is provided here. If you need help getting set up or have any other questions please email me.
- To hand in your homework, please submit a pdf file through the course's Canvas website, under the assignment labelled hw01. Please put the filename in the format:

```
220-hw01-YourLastName-YourFirstName.pdf
```

Thanks in advance for following these guidelines. Please ask me by email if you have any trouble.

1. Brain-warmer. Consider the group made from the set $\{2,4,6,8\}$ under multiplication modulo 10.
(a) Write the multiplication table and check the sudoku rule. What is the identity?
(b) Is it equivalent to $\{1,2,3,4\}$ under multiplication modulo 5 ? If not, why not?
2. A more economical definition of group. Show that we can weaken two of the conditions defining a group without changing the outcome, as follows:
(2') A left identity $\mathbb{1}$ exists, such that for any element $g, \mathbb{1} g=g$.
(3') For any element g, a left inverse f exists: $f g=1$.
Show that these two conditions imply that the left identity is also the right identity and the left inverse is also the right inverse.
3. The group with three elements. Write down the multiplication table for the group with three elements; show that it is uniquely fixed by the definition. Is it abelian?
4. Groups with four elements. Write down the multiplication table for all groups with four elements. Are they all abelian?
5. Conjugacy classes of S_{n}.
(a) Write the following elements of S_{n} in cycle notation:

$$
\pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 4 & 5
\end{array}\right), \quad \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & 4 & 5
\end{array}\right), \quad \rho=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 1 & 5
\end{array}\right)
$$

(b) Check that the cycle structure is preserved by conjugation, e.g. for $\pi^{-1} \sigma \pi$, $\pi^{-1} \rho \pi$.
(c) Bonus problem: give a proof that this always works.
6. Quaternions. [I'm belatedly punting this problem to hw 2.] Decompose the quaternion group Q_{8} into conjugacy classes.

