
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 220 Symmetries Fall 2020
Assignment 2

Due 12:30pm Monday, October 19, 2020

Thanks in advance for following the submission guidelines from hw 01. Please ask

me by email if you have any trouble.

1. Brain-warmer. What is the cycle structure of the permutation (235)(245)?

2. Brain-warmer.

(a) What group is this: G = 〈a, b|aba−1b−1 = e〉?
(b) [Bonus problem] Find a space X so that π1(X) = G above.

3. Quaternions. [refugee from hw 1]

Decompose the quaternion group Q8 into conjugacy classes.

4. Brain-warmer. Check the relation |G| = |Z(g)||C(g)| for g = (12) in G = Sn.

Here Z(g) is the centralizer of g (the set of elements of G that commute with g)

and C(g) is the conjugacy class of g (by |C(g)| I mean the number of elements

in the conjugacy class).

5. A presentation of A4. Prove that the group 〈a, b|a2 = e, b3 = e, (ab)3 = e〉 is

isomorphic to A4, the group of even permutations of 4 objects,

A4 = {e, (12)(34), (14)(23), (13)(24), (123), (132), (243), (234), (341), (314), (421), (412)}.

6. Free groups are weird. [Bonus problem] Show that the free group on two

elements 〈a, b|〉 contains subgroups isomorphic to the free group on any number

of elements.

7. Counting elements of conjugacy classes of Sk. Here is a cool trick, related

to Polya enumeration, for counting the number of elements in the conjugacy class

of Sk associated to a given Young diagram (cycle structure), λ.

(a) [bonus problem]. Fill in the missing details of the following argument.

First, recall the object z(σ) ≡ z
c1(σ)
1 z

c2(σ)
2 · · · , where ci(σ) is the number

of cycles of length i in the permutation σ. This is a conjugation-invariant

weight over which we can sum:

ZG(z1, z2, · · · ) ≡
∑
σ∈Sk

z(σ).
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This is (proportional to) the object we called the cycle index in our discussion

of Polya enumeration (for the case with G = Sk).

Now consider the case where |X| = k and G = Sk, the whole permutation

group on the k objects, and we’ll take n colors (i.e. an n-state Potts model

on X). Weight a coloring with li objects of color i with a factor of W =

ul11 u
l2
2 · · · . Polya’s enumeration theorem says that the partition sum is then∑
orbits O

W (O) = ZSk
(
z1 = u1 + u2 + · · · , z2 = u2

1 + u2
2 + · · · , · · ·

)
(1)

=
∑

l1,l2,···ln

(# of orbits with l1 1s, l2 2s...)ul11 u
l2
2 · · · (2)

What is this number of orbits? Because we are modding out by the whole

permutation group, an orbit is entirely determined by specifying the number

of each color. So this number is only ever 1 or 0.

To avoid the cases where it’s zero, here’s the final trick, familiar from sta-

tistical mechanics as the grand canonical ensemble: sum over k (!). Let

P (t, u1, u2, · · · ) ≡
∞∑
k=1

tk
∑

orbits O of Sk

W (O).

On the one hand, this is

P (t, u1, u2, · · · ) =
∑
k

tkZSk
(
z1 = u1 + u2 + · · · , z2 = u2

1 + u2
2 + · · · , · · ·

)
.

On the other hand, this is

P (t, u1, u2, · · · ) =
∑
k

tk
∑

l1,l2,···ln

(# of orbits with l1 1s, l2 2s...)ul11 u
l2
2 · · ·

(3)

=
∞∑
l1=0

(tu1)l1
∞∑
l2=0

(tu2)l2 · · · (4)

= exp
(
z1t+ z2t

2/2 + z3t
3/3 + · · ·

)
(5)

where zi ≡ ui1 + ui2 + · · · .

So for example, to compute the sizes of the conjugacy classes of S7, let T =

z1t+ z2t
2/2 + z3t

3/3 + · · · (you can stop at some number bigger than 7), and just

find the coefficient of t7 in eT . The result is a polynomial in the zi where the sum

of the subscripts of each term adds up to 7. Each term is then associated with a

Young diagram λ and hence a conjugacy class.
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(b) What should you get if you set zi = 1 for all i and why?

(c) Find the size of each conjugacy class of S4 and S5. (I recommend Mathe-

matica’s Series and Coefficient commands and the method described in the

previous part of the problem.) Check that your polynomial satisfies the

check of the previous part.

(d) Actually, there is a better way to learn the sizes of conjugacy classes of

Sn. The order of the centralizer of g, |Zg|, depends only on its conjugacy

class. The size of the conjugacy class is then |Cg| = |G|/|Zg| (by Lagrange’s

theorem). Show that the centralizer of an element g of Sn with cj cycles of

length j is

|Zg| =
∏
j

(cj)!j
cj . (6)

[Hint: Think about what elements that commute with a permutation of

a given cycle structure can do, then count them.] Write a formula for the

number of elements of the conjugacy class Cg and compare with your results

from the previous part.

8. Counting non-isomorphic graphs. A graph with k vertices can be regarded

as a choice of {0, 1} for each of the

(
k

2

)
= k(k−1)

2
pairs of vertices (’1’ means no

edge and ’1’ means yes edge). Two graphs are isomorphic if they are related by

a relabelling of the vertices. How many non-isomorphic graphs on 4 vertices are

there? (The result of the previous problem will be useful.)

Construct the partition function which weights a graph by the number of edges,

Z(t) =
∑

graphs, Γ t
# of edges of Γ for k = 4.

Bonus problem: answer the above questions for 5 vertices.

9. Quotients of the spherical model. [This is a bonus problem, since (a) it

uses some perhaps-unfamiliar notions from statistical mechanics and (b) I just

made it up from scratch, so it has not yet been road-tested.] I mentioned that one

application of the counting theorems we proved might be to statistical mechanics.

So far all the examples I’ve shown involve a finite number N of degrees of freedom.

But statistical mechanics is most interesting in the thermodynamic limit, N →
∞, where there can be phase transitions, symmetry-breaking and well-defined

phases.

(a) A simple, solvable model with a phase transition at finite temperature is

the following. Place two-valued spins at each of N sites (think of them
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as arranged in a circle) and couple them by all-to-all ferromagnetic Ising

interactions, so the hamiltonian is

H = −J
N∑

i,j=1

sisj

where each sum is over all N spins. (The price of the solvability is that the

model has no notion of locality. This will be an advantage for the purposes

of this problem.) We will set J = 1
N

so that there is a nice thermodynamic

limit. The model has a Z2 symmetry which takes si → −si.
The canonical partition function is

Z0(β) =
∑
{si=±1}

e−βH(s) =
∑
{si=±1}

eβ
1
N

∑
i si

∑
j sj .

Using the formula
∫∞
−∞ dxe

−Nx
2

4β
+xNM =

√
4πβ
N
e−βNM

2
rewrite Z0(β) in a

way so that the sum over spins factorizes. Then argue that at large N you

can do the integral over x by saddle point, and do so. Find the two phases

(distinguished by whether or not the Z2 symmetry is spontaneously broken)

by a graphical analysis of the saddle point equation.

(b) In the model of the previous part, the phase transition arises by a competi-

tion between energy and entropy: it is energetically favorable for the spins

to line up, but there are more configurations where the spins are not lined

up, so (minimizing F = E − TS) disorder wins at high temperature.

Suppose we declare two spin configurations equivalent if they are related by

a cyclic permutation of the spins (around the circle). Such transformations

form the group ZN . (This process is called gauging this ZN symmetry.) You

might think this would favor the ordered phase, since the configurations

where all spins point the same way is fixed by this transformation, while the

shift relates several disordered configurations, and therefore reduces their

number.

Using the not-Burnside lemma and its consequences, compute the partition

function for the model with the same H as above, but where configurations

are orbits under ZN . This is easiest when N is a prime number, so restrict to

this case. Explain what property of ZN for N prime makes this case easier.

(c) [A harder but really fun question, even more optional, since I had not entirely

solved it yet at the time of posting] Does the conclusion of the previous part

change if instead of gauging ZN , we gauge the whole SN interchanging all

the spins?
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