University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 220 Symmetries Fall 2020 Assignment 3

Due 12:30pm Monday, October 26, 2020
Thanks for following the submission guidelines on hw 01. Please ask me by email if you have any trouble.

1. Brain-warmer. Consider the action of a group G on itself by left multiplication. What kinds of terms are allowed in the cycle indicator for this group action? Compute the cycle indicators for the action by left multiplication of Q_{8}, of D_{4} and of \mathbb{Z}_{n} (do the case of n prime first, and do general n as a bonus problem). What do you get if you set all the $z_{i}=1$?
2. Brain-warmer. Given a group homomorphism $\phi: G \rightarrow K$, show that its kernel $H \equiv \operatorname{ker} \phi \subset G$ is always a subgroup. Further, show that it is a normal subgroup.
3. Representation on cosets. Given a group G and a subgroup H, we can construct a representation of G by its action on the cosets $x \in G / H$. The action is

$$
\begin{array}{ccc}
G / H & \rightarrow & G / H \\
x=\left\{g_{1}, g_{2} \cdots\right\} & \mapsto\left\{g g_{1}, g g_{2} \cdots\right\}
\end{array} .
$$

To see more explicitly what this does, choose a representative x_{i} of each distinct coset. Then $G=\cup_{i} x_{i} H$, and for each $g \in G, g x_{i} H$ is again a coset and therefore equal to one of the $x_{i} H$. So left multiplication by g permutes the cosets. ${ }^{1}$

Consider the case where $H=\langle(123)\rangle$ is the subgroup of S_{3} generated by the order-3 element (123). First decompose S_{3} into cosets by H. Write out the matrices in a basis. What representation of S_{3} do you get by the construction above? (If it is reducible, decompose it into irreps, for example by computing its character.)

What about the case where $H^{\prime}=\langle(12)\rangle$? In each case, decompose it into irreps. This construction plays an important role in the idea of induced representations. We will learn to call it the representation of G induced by the trivial representation of H.

[^0]4. The class of inverses. Given a conjugacy class c, define the class \bar{c} to consist of the inverses of each of the elements in c. Convince yourself that this is welldefined. Show that for a unitary representation R,
$$
\chi_{R}(\bar{c})=\chi_{R}(c)^{\star}
$$
5. Character exercise. Recall the definition of the regular representation of a finite group G:
$$
\mathcal{H}_{\mathrm{G}} \equiv \operatorname{span}\{|g\rangle, g \in \mathrm{G}\} .
$$

This space also carries a representation of $G \times G$ by

$$
\Gamma(m, n)|h\rangle=\left|m h n^{-1}\right\rangle, \quad(m, n) \in \mathrm{G} \times \mathrm{G} .
$$

\mathcal{H}_{G} is also reducible as a representation of $\mathrm{G} \times \mathrm{G}$. Show that

$$
\mathcal{H}_{\mathrm{G}}=\oplus_{R, \text { irreps of } \mathrm{G}} R \otimes \bar{R}
$$

where \bar{R} is the conjugate representation to R, with $\Gamma_{\bar{R}}(g)=\Gamma_{R}(g)^{\star}$.
Hint: Find the characters of \mathcal{H}_{G} as a representation of $\mathrm{G} \times \mathrm{G}$, and compute $\left\langle\chi_{\mathcal{H}_{G}} \mid \chi_{R_{i} \otimes R_{j}}\right\rangle$, where R_{i} are all the irreps of G .
6. Using the character table, make unitary representation matrices for the 2-dimensional representation of $D_{3}=S_{3}$ in which $D(123)$ and $D(132)$ are diagonal. Note that $1+\omega+\omega^{2}=0$ where $\omega \equiv e^{2 \pi \mathbf{i} / 3}$.

[^0]: ${ }^{1}$ A word of clarification here: an action of a group G on a set (recall that for a set $X=\left\{x_{1}, \ldots x_{k}\right\}$ of order k, this is a homomorphism from $G \rightarrow S_{k}$) is also a representation in the following sense: define the carrier space $V=\operatorname{span}\left\{\left|x_{i}\right\rangle, i=1 . . k\right\}$, and define the linear operators to act on the basis vectors by $D(g)|x\rangle=|g x\rangle$. This is a special kind of representation called a permutation representation, since the linear operators take basis vectors to basis vectors, rather than making linear combinations - the matrix elements in this basis are a single 1 in each row and column and zeros in all the other entries.

