University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 220 Symmetries Fall 2020 Assignment 4

Due 12:30pm Monday, November 2, 2020
Thanks for following the submission guidelines on hw 01. Please ask me by email if you have any trouble.

1. Brain-warmer. If I tell you that $\left\langle\chi_{R}, \chi_{R}\right\rangle \equiv \frac{1}{|G|} \sum_{g \in G} \chi_{R}^{\star}(g) \chi_{R}(g)=2$ for some representation R of G, do you know whether R is irreducible? Explain.
2. Brain-warmer. Given two representations A, B of a group G (with carrier spaces U and V respectively) and an intertwiner between them

$$
\Lambda: U \rightarrow V, \quad \Lambda A(g)=B(g) \Lambda \forall g \in G
$$

show that ker $\Lambda \subset U$ and $\operatorname{Im} \Lambda \subset V$ are invariant subspaces.
3. Character table for the quaternions. Figure out the character table for the quaternion group Q_{8} (on page 11 of the lecture notes) by whatever means necessary (don't look it up).
4. Irreps and conjugacy classes.

Consider the object

$$
S_{\alpha}^{a} \equiv \frac{1}{n_{\alpha}} \sum_{g \in C_{\alpha}} D^{a}(g)
$$

a linear operator on V_{a}, the carrier space for an irrep of $G . C_{\alpha}$ is a conjugacy class of G.
(a) Show that S_{α}^{a} commutes with all the $D^{a}(g)$.
(b) Use Schur's lemma to conclude that $S_{\alpha}^{a}=\lambda_{\alpha}^{a} \mathbb{1}_{a}$ and find λ_{α}^{a} in terms of familiar objects.
(c) [Bonus problem] Conclude that $\mathbf{C}_{\alpha} \mathbf{P}^{a}=\lambda_{\alpha}^{a} \mathbf{P}^{a}$ where $\mathbf{P}^{a}=\frac{d_{a}}{|G|} \sum_{g \in G}\left(\chi^{a}(g)\right)^{\star} \mathbf{g}$ is the projector in the group algebra associated with the irrep a and $\mathbf{C}_{\alpha} \equiv$ $\frac{1}{n_{\alpha}} \sum_{g \in C_{\alpha}} \mathbf{g}$ are elements of the center of the group algebra.
(d) [This part is a bonus problem because I am not sure if it is possible.] Show directly from the definitions that $\mathbf{C}_{\alpha} \mathbf{P}^{a}=\lambda_{\alpha}^{a} \mathbf{P}^{a}$ for some eigenvalues λ_{α}^{a}.
5. Diffusion on the vertices of the cube.
(a) The group $\mathrm{O}=S_{4}$ of rotational symmetries of the cube acts on functions on vertices of the cube. Decompose this representation into irreps of S_{4}.
(b) Assign a temperature to each vertex of the cube T_{i}. Suppose the temperature evolves according to $T_{i}(t+1)=\frac{1}{3} \sum_{\text {neighbors, } j \text { of } i} T_{j}(t)$. Find the rate at which the temperature function approaches its final distribution. (Do it without explicitly diagonalizing any matrices.)
(c) [bonus problem] Construct explicit projectors onto the eigenmodes using the character table of S_{4}.
6. Diffusion on the edges of the tetrahedron. [bonus problem]
(a) Show that the group of rotations which are symmetries of a regular tetrahedron is isomorphic to A_{4}.
(b) Construct the character table for A_{4}.
(c) A_{4} acts on the edges of the tetrahedron in a 6 -dimensional representation. Decompose this into irreps.
(d) Suppose we have a tight-binding model on the edges of the tetrahedron, $H=-t \sum_{\left\langle e_{1} e_{2}\right\rangle}\left|e_{1}\right\rangle\left\langle e_{2}\right|+h . c$. where two edges are regarded as neighbors if they both lie in the boundary of the same face. Find the spectrum.
7. Projection operators. [bonus problem] Write a program to make the pictures of the normal modes of the 'triatomic molecule'. Write it in such a way that it is easy to redo it for the generalization to n particles arranged in a regular n-sided polygon.
8. Using the algebra of classes to construct the character table for S_{3}. [bonus problem] I'm postponing this problem until next week, since we didn't get to it in lecture.
(a) Write explicit expressions for the \mathbf{C}_{α} operators for the case $G=S_{3}$, and find the structure constants $c_{\alpha \beta}^{\gamma}$ of the algebra of classes.
(b) Construct the matrices $\left(\mathbf{C}_{\alpha}\right)^{\gamma}{ }_{\beta}$, check that they commute, and find their eigenvalues, λ_{α}^{a}
(c) Check that you reproduce the character table for S_{3} using the fact that the eigenvalues should be $\lambda_{\alpha}^{a}=\chi_{\alpha}^{a} / \chi_{e}^{a}$.

