University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 220 Symmetries Fall 2020 Assignment 7

Due 12:30pm Monday, November 23, 2020

Thanks for following the submission guidelines on hw 01. Please ask me by email if you have any trouble.

1. Brain-warmers.

(a) Show that the adjoint representation matrices

$$
\left(T^{A}\right)_{B C} \equiv-\mathbf{i} f_{A B C}
$$

furnish a dim G-dimensional representation of the Lie algebra

$$
\left[T^{A}, T^{B}\right]=\mathbf{i} f_{A B C} T^{C}
$$

Hint: commutators satisfy the Jacobi identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

(b) Show that if $\left(T_{A}\right)_{i j}$ are generators of a Lie algebra in some unitary representation R, then so are $-\left(T_{A}\right)_{i j}^{\star}$. Convince yourselves that these are the generators of the complex conjugate representation \bar{R}.
2. so(4).

Show that so $(4)=\mathrm{so}(3) \times \mathrm{so}(3)$.
3. The rest of the Lie algebra in Cartan-Weyl form.
(a) Use the Jacobi identity to show that $\left|\left[E_{\alpha}, E_{\beta}\right]\right\rangle$ has weight $\alpha+\beta$, and hence $\left[E_{\alpha}, E_{\beta}\right] \propto E_{\alpha+\beta}$ for some constant N.
(b) Can you conclude from this that if α is a root, 2α is not a root?

