Physics 220 Symmetries Fall 2020 Assignment 9

Due 12:30pm Monday, December 7, 2020
Thanks for following the submission guidelines on hw 01. Please ask me by email if you have any trouble.

1. Brain-warmer. Consider the adjoint of $\operatorname{SU}(3)$ with highest weight state $\left|\mu^{1}+\mu^{2}\right\rangle=$ $|(1,1)\rangle$. Check that the two states with weight zero $|A\rangle \equiv E_{-\alpha^{1}} E_{-\alpha^{2}}|(1,1)\rangle$ and $|B\rangle \equiv E_{-\alpha^{2}} E_{-\alpha^{1}}|(1,1)\rangle$ are linearly independent (in agreement with the fact that there are two Cartan generators).

Hint: show that two states $|A\rangle$ and $|B\rangle$ are linearly dependent only if $\langle A \mid A\rangle\langle B \mid B\rangle=$ $\langle A \mid B\rangle\langle B \mid A\rangle$.

2. Representations of G_{2}.

In this problem we'll build representations of G_{2} from scratch (i.e. from the Dynkin diagram). With enough effort we can see that G_{2} is a subgroup of $\mathrm{SO}(7)$ and that it has an antisymmetric cubic invariant.
(a) Check that the simple roots

$$
\alpha^{1}=(0,1), \alpha^{2}=(\sqrt{3},-3) / 2
$$

reproduce the Dynkin diagram of G_{2}.
(b) Find the fundamental weights μ^{a} of G_{2}. Show that they are also roots! In particular you should find that $\mu^{1}=2 \alpha^{1}+\alpha^{2}, \mu^{2}=3 \alpha^{1}+2 \alpha^{2}$. This means that the root lattice and the weight lattice are the same in this case.
(c) Find the orbit of μ^{1} under Weyl reflections, and thereby draw the weight diagram for the representation with highest weight $\mu^{1}, R_{(1,0)}$ (I recommend some symbolic software). Starting from the highest weight state, find a path connecting all these weights, where each step moves by (minus) a simple root. Conclude that $(0,0)$ must also be a weight vector. You should find that $R_{(1,0)}=7$ is 7 dimensional. This is the fundamental representation of G_{2} in the sense that all other reps appear in its tensor products.
Bonus: label the weights by their $p^{a}-q^{a}$ vectors and check that the decompositions into $\mathrm{SU}(2)_{\alpha^{a}}$ multiplets makes sense.
(d) Find the orbit of μ^{2} under Weyl reflections and draw the weight diagram for the representation with highest weight $\mu^{2}, R_{(0,1)}$. Conclude that $R_{(0,1)}=\mathbf{1 4}$ is the adjoint rep of G_{2}.
(e) When we take tensor products, what happens to the weights? That is, given two reps \mathbf{a} and \mathbf{b} with highest weight vectors $\mu_{\mathbf{a}}$ and $\mu_{\mathbf{b}}$ respectively, what is the highest weight vector of $\mathbf{a} \otimes \mathbf{b}$?
(f) What is the highest weight vector of $\Lambda^{2} \boldsymbol{7}$? (Hint: the highest weight vector of $V \otimes V$ is symmetric under interchange of the two factors).
(g) [Bonus problem] Draw the weight diagram for $\Lambda^{2} \mathbf{7}$. Conclude that $\Lambda^{2} \mathbf{7}=$ $7 \oplus 14$.
(h) [Bonus problem] Draw the weight diagram for $\mathrm{Sym}^{2} \mathbf{7}$. Conclude that $\mathrm{Sym}^{2} \mathbf{7}$ contains a copy of $R_{(2,0)}$, whose dimension we don't know yet. By counting the multiplicity of the $(0,0)$ weight vector, show that $\operatorname{Sym}^{2} \mathbf{7}=R_{(2,0)} \oplus \mathbf{1}$. Conclude that $G_{2} \subset \mathrm{SO}(7)$.
(i) [Bonus problem] Draw the weight diagram for $\Lambda^{3} \mathbf{7}$. Show that $\Lambda^{3} \mathbf{7}=R_{(2,0)} \oplus$ $7 \oplus$ 1. Conclude that G_{2} has an antisymmetric cubic invariant. In fact G_{2} can be defined as the subgroup of $\mathrm{SO}(7)$ which preserves an antisymmetric 3 -index tensor.
[Cultural remark: this also means that it preserves a spinor of $\mathrm{SO}(7)$. For this reason, 7 -manifolds with G_{2} holonomy admit a covariantly-constant spinor (the generic orientable 7 -manifold has holonomy $\mathrm{SO}(7)$). Compactification of supersymmetric field theories (such as 11-dimensional supergravity) on such manifolds therefore preserves some supersymmetry.]
(j) [Bonus problem] Show that the irrep with highest weight $a \mu_{1}+b \mu^{2}$ with arbitrary $a, b \in \mathbb{Z}_{\geq 0}$ (i.e. the most general possible representation) is contained in the tensor product $\mathbf{7}^{\otimes n}$ for some n.
3. Geometry problem. [Bonus problem] Show that the sum of the three angles between three linearly independent vectors in \mathbb{R}^{3} is less than 2π.
4. $\mathbf{S O}(5)$ and $\mathrm{Sp}(4)$.
(a) The simple roots of so $(2 n+1)$ are $e^{i}-e^{i+1}, i=1 . . n-1, e^{n}$. Find the fundamental weights of so(5), μ^{1} and μ^{2}. Build the weight diagrams for the two representations $R_{\mu^{1}}$ and $R_{\mu^{2}}$.
(b) The simple roots of $\operatorname{sp}(2 n)$ are $e^{i}-e^{i+1}, i=1 . . n-1,2 e^{n}$. Find the fundamental weights of $\operatorname{sp}(4), \mu^{1}$ and μ^{2} Build the weight diagrams for the two representations $R_{\mu^{1}}$ and $R_{\mu^{2}}$.
(c) Compare.
(d) Argue that the anti-symmetric square of the spinor rep of so(4), $\Lambda^{2} 4$ contains a singlet.

5. Spinor reps.

(a) Find the constant $C(n)$ such that

$$
\gamma_{F} \equiv C(n) \gamma_{1} \cdots \gamma_{2 n}
$$

satisfies

$$
\gamma_{F}=\gamma_{F}^{\dagger} \quad \text { and } \quad \gamma_{F}^{2}=1
$$

(Here γ_{i} are hermitian Majorana operators, satisfying $\left\{\gamma_{i}, \gamma_{j}\right\}=2 \delta_{i j}$.)
(b) Check that $T_{a, 2 n+1}=-S T_{a, 2 n+1}^{\star} S^{-1}$ Conclude that the spinor rep of $\mathrm{SO}(2 n+$ 1) is not complex (where S is given in the lecture notes).

The following problems I'll postpone until the next problem set. I leave them here too in case you started working on them and can't stop.
6. Ramond-Ramond sectors. [Bonus problem]
(a) The Ramond sector of the superstring worldsheet contains a Hilbert space on which 8 majorana operators γ_{i} act. The $\mathbf{S O}(8)$ acting on the index i in the fundamental is part of the spacetime symmetry. Physical states of the superstring are those which have definite eigenvalue of $\gamma_{F}=C \prod_{i=1}^{8} \gamma_{i}$ (where C is chosen so that $\gamma_{F}^{\dagger}=\gamma_{F}$ and $\gamma_{F}^{2}=1$).
The Ramond-Ramond sector of the closed superstring Hilbert space is the tensor product two Ramond sectors (one from right-moving modes and one from the left-moving modes on the closed string worldsheet). In type IIB, both copies have the same eigenvalue of γ_{F} and in type IIA, the two copies have opposite γ_{F} eigenvalue.
How do the physical states of each type of closed superstring transform under SO(8)?
Removing the string theory jargon, the question is: how do $\mathbf{8}_{+} \otimes \mathbf{8}_{+}$and $\mathbf{8}_{+} \otimes \mathbf{8}_{-}$decompose into irreps of $\mathrm{SO}(8) ?$
One way to do it is to consider the transformation law for objects of the form $\left\langle s_{1} s_{2} s_{3} s_{4}\right| \gamma^{i_{1}} \gamma^{i_{2}} \cdots \gamma^{i_{k}}\left|s_{1} s_{2} s_{3} s_{4}\right\rangle$.
(b) [Super-bonus problem - requires some field theory] Consider the action

$$
S\left[X^{i}, \psi^{i}\right]=\int d^{2} x\left((\partial X)^{2}+\psi \not \partial \psi\right)
$$

where $i=1$..n. Take space to be periodic $x \equiv x+L$ and take periodic (Ramond) boundary conditions on the fermions fields (and the scalars). Show that its groundstates form a tensor product of two spinor representations of SO(n).

7. Schwinger bosons.

What happens if in our construction of spinor reps, we replace the fermions $\left\{c_{a}, c_{b}^{\dagger}\right\}=\delta_{a b}$ with bosons $\left\{b_{a}, b_{b}^{\dagger}\right\}=\delta_{a b}$?
(a) First consider what representations this produces of the $\operatorname{SU}(n)$ subalgebra

$$
H_{a}=b_{a}^{\dagger} b_{a}-\frac{1}{2}, \quad E_{a b}=b_{a}^{\dagger} b_{b}, a \neq b .
$$

Hint: consider states of fixed particle number $\sum_{a} H_{a}=k$.
I recommend starting with the case of $n=2$.
(b) Can you make representations in this way of the full $\mathrm{SO}(n)$ algebra which includes

$$
E_{a b}^{\prime}=b_{a}^{\dagger} b_{b}^{\dagger}, a \neq b
$$

What about $b_{a}^{\dagger} b_{b}^{\dagger}$ with $a=b$?

