
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 220 Symmetries Fall 2020
Assignment 9

Due 12:30pm Monday, December 7, 2020

Thanks for following the submission guidelines on hw 01. Please ask me by email

if you have any trouble.

1. Brain-warmer. Consider the adjoint of SU(3) with highest weight state |µ1 + µ2〉 =

|(1, 1)〉. Check that the two states with weight zero |A〉 ≡ E−α1E−α2 |(1, 1)〉 and

|B〉 ≡ E−α2E−α1 |(1, 1)〉 are linearly independent (in agreement with the fact that

there are two Cartan generators).

Hint: show that two states |A〉 and |B〉 are linearly dependent only if 〈A|A〉 〈B|B〉 =

〈A|B〉 〈B|A〉.

2. Representations of G2.

In this problem we’ll build representations of G2 from scratch (i.e. from the

Dynkin diagram). With enough effort we can see that G2 is a subgroup of SO(7)

and that it has an antisymmetric cubic invariant.

(a) Check that the simple roots

α1 = (0, 1), α2 = (
√

3,−3)/2

reproduce the Dynkin diagram of G2.

(b) Find the fundamental weights µa of G2. Show that they are also roots! In

particular you should find that µ1 = 2α1 + α2, µ2 = 3α1 + 2α2. This means

that the root lattice and the weight lattice are the same in this case.

(c) Find the orbit of µ1 under Weyl reflections, and thereby draw the weight

diagram for the representation with highest weight µ1, R(1,0) (I recommend

some symbolic software). Starting from the highest weight state, find a path

connecting all these weights, where each step moves by (minus) a simple

root. Conclude that (0, 0) must also be a weight vector. You should find

that R(1,0) = 7 is 7 dimensional. This is the fundamental representation of

G2 in the sense that all other reps appear in its tensor products.

Bonus: label the weights by their pa− qa vectors and check that the decom-

positions into SU(2)αa multiplets makes sense.

1



(d) Find the orbit of µ2 under Weyl reflections and draw the weight diagram for

the representation with highest weight µ2, R(0,1). Conclude that R(0,1) = 14

is the adjoint rep of G2.

(e) When we take tensor products, what happens to the weights? That is, given

two reps a and b with highest weight vectors µa and µb respectively, what

is the highest weight vector of a⊗ b?

(f) What is the highest weight vector of Λ27? (Hint: the highest weight vector

of V ⊗ V is symmetric under interchange of the two factors).

(g) [Bonus problem] Draw the weight diagram for Λ27. Conclude that Λ27 =

7⊕ 14.

(h) [Bonus problem] Draw the weight diagram for Sym27. Conclude that Sym27

contains a copy of R(2,0), whose dimension we don’t know yet. By counting

the multiplicity of the (0, 0) weight vector, show that Sym27 = R(2,0) ⊕ 1.

Conclude that G2 ⊂ SO(7).

(i) [Bonus problem] Draw the weight diagram for Λ37. Show that Λ37 = R(2,0)⊕
7 ⊕ 1. Conclude that G2 has an antisymmetric cubic invariant. In fact G2

can be defined as the subgroup of SO(7) which preserves an antisymmetric

3-index tensor.

[Cultural remark: this also means that it preserves a spinor of SO(7). For

this reason, 7-manifolds with G2 holonomy admit a covariantly-constant

spinor (the generic orientable 7-manifold has holonomy SO(7)). Compacti-

fication of supersymmetric field theories (such as 11-dimensional supergrav-

ity) on such manifolds therefore preserves some supersymmetry.]

(j) [Bonus problem] Show that the irrep with highest weight aµ1+bµ2 with arbi-

trary a, b ∈ Z≥0 (i.e. the most general possible representation) is contained

in the tensor product 7⊗n for some n.

3. Geometry problem. [Bonus problem] Show that the sum of the three angles

between three linearly independent vectors in R3 is less than 2π.

4. SO(5) and Sp(4).

(a) The simple roots of so(2n + 1) are ei − ei+1, i = 1..n − 1, en. Find the

fundamental weights of so(5), µ1 and µ2. Build the weight diagrams for the

two representations Rµ1 and Rµ2 .

(b) The simple roots of sp(2n) are ei − ei+1, i = 1..n − 1, 2en. Find the funda-

mental weights of sp(4), µ1 and µ2 Build the weight diagrams for the two

representations Rµ1 and Rµ2 .
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(c) Compare.

(d) Argue that the anti-symmetric square of the spinor rep of so(4), Λ24 contains

a singlet.

5. Spinor reps.

(a) Find the constant C(n) such that

γF ≡ C(n)γ1 · · · γ2n

satisfies

γF = γ†F and γ2F = 1.

(Here γi are hermitian Majorana operators, satisfying {γi, γj} = 2δij.)

(b) Check that Ta,2n+1 = −ST ?a,2n+1S
−1 Conclude that the spinor rep of SO(2n+

1) is not complex (where S is given in the lecture notes).

The following problems I’ll postpone until the next problem set. I leave

them here too in case you started working on them and can’t stop.

6. Ramond-Ramond sectors. [Bonus problem]

(a) The Ramond sector of the superstring worldsheet contains a Hilbert space

on which 8 majorana operators γi act. The SO(8) acting on the index i

in the fundamental is part of the spacetime symmetry. Physical states of

the superstring are those which have definite eigenvalue of γF = C
∏8

i=1 γi
(where C is chosen so that γ†F = γF and γ2F = 1).

The Ramond-Ramond sector of the closed superstring Hilbert space is the

tensor product two Ramond sectors (one from right-moving modes and one

from the left-moving modes on the closed string worldsheet). In type IIB,

both copies have the same eigenvalue of γF and in type IIA, the two copies

have opposite γF eigenvalue.

How do the physical states of each type of closed superstring transform

under SO(8)?

Removing the string theory jargon, the question is: how do 8+ ⊗ 8+ and

8+ ⊗ 8− decompose into irreps of SO(8)?

One way to do it is to consider the transformation law for objects of the

form 〈s1s2s3s4| γi1γi2 · · · γik |s1s2s3s4〉.
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(b) [Super-bonus problem – requires some field theory] Consider the action

S[X i, ψi] =

∫
d2x((∂X)2 + ψ/∂ψ),

where i = 1..n. Take space to be periodic x ≡ x+L and take periodic (Ra-

mond) boundary conditions on the fermions fields (and the scalars). Show

that its groundstates form a tensor product of two spinor representations of

SO(n).

7. Schwinger bosons.

What happens if in our construction of spinor reps, we replace the fermions

{ca, c
†
b} = δab with bosons {ba, b

†
b} = δab?

(a) First consider what representations this produces of the SU(n) subalgebra

Ha = b†aba −
1

2
, Eab = b†abb, a 6= b.

Hint: consider states of fixed particle number
∑

aHa = k.

I recommend starting with the case of n = 2.

(b) Can you make representations in this way of the full SO(n) algebra which

includes

E ′ab = b†ab
†
b, a 6= b.

What about b†ab
†
b with a = b?
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