
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 220 Symmetries Fall 2020
Assignment 10

Due 12:30pm Monday, December 14, 2020

Thanks for following the submission guidelines on hw 01. Please ask me by email

if you have any trouble.

1. Brain-warmer. Verify the identity

(with n = 3) in SO(3) using birdtracks.

2. Ramond-Ramond sectors. [Bonus problem]

(a) The Ramond sector of the superstring worldsheet contains a Hilbert space

on which 8 majorana operators γi act. The SO(8) acting on the index i

in the fundamental is part of the spacetime symmetry. Physical states of

the superstring are those which have definite eigenvalue of γF = C
∏8

i=1 γi
(where C is chosen so that γ†F = γF and γ2

F = 1).

The Ramond-Ramond sector of the closed superstring Hilbert space is the

tensor product two Ramond sectors (one from right-moving modes and one

from the left-moving modes on the closed string worldsheet). In type IIB,

both copies have the same eigenvalue of γF and in type IIA, the two copies

have opposite γF eigenvalue.

How do the physical states of each type of closed superstring transform

under SO(8)?

Removing the string theory jargon, the question is: how do 8+ ⊗ 8+ and

8+ ⊗ 8− decompose into irreps of SO(8)?

One way to do it is to consider the transformation law for objects of the

form 〈s1s2s3s4| γi1γi2 · · · γik |s1s2s3s4〉.

(b) [Super-bonus problem – requires some field theory] Consider the action

S[X i, ψi] =

∫
d2x((∂X)2 + ψ/∂ψ),

where i = 1..n. Take space to be periodic x ≡ x+L and take periodic (Ra-

mond) boundary conditions on the fermions fields (and the scalars). Show
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that its groundstates form a tensor product of two spinor representations of

SO(n).

Here is a hint: we can decompose the fields X(x, t) and ψ(x, t) into left-

movers and right-movers:

X(x, t) = XL(x− t) +XR(x+ t), ψ(x, t) = ψL(x− t) + ψR(x+ t).

If we impose periodic boundary conditions on both ψL and ψR we get the

RR sector described above.

If we impose periodic boundary conditions on ψL and antiperiodic boundary

conditions on ψR we get the R-NS sector. Show that these states transform

as a spinor representation of SO(n) (and, consistent with the spin-statistics

theorem, they are fermions).

3. Schwinger bosons.

What happens if in our construction of spinor reps, we replace the fermions

{ca, c
†
b} = δab with bosons [ba, b

†
b] = δab?

(a) Consider what representations this produces of the SU(n) subalgebra

Ha = b†aba −
1

2
, Eab = b†abb, a 6= b.

Hint: consider states of fixed particle number
∑

aHa = k.

First check that these operators actually do satisfy the SU(n) algebra.

I recommend starting with the case of n = 2.

(b) Can you make representations in this way of the full SO(n) algebra which

includes

E ′ab = b†ab
†
b, a 6= b.

What about b†ab
†
b with a = b?

4. Swap operator on qudits. Let Hn = span{|i〉 , i = 1..n} be an n-dimensional

Hilbert space. In terms of the generators of SU(n) in the fundamental represen-

tation (TA)ij, write a formula for the swap operator S on Hn ⊗ Hn. The swap

operator is defined by its action on the basis states:

S |ij〉 = |ji〉 .

Check that your answer makes sense for n = 2.
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5. [Bonus problem] Compute the second Casimir for the adjoint rep of SU(n) using

birdtracks.

[Cultural remark: Notice that this quantity will appear in the vacuum polariza-

tion amplitude for the gluon, and hence the running of the QCD gauge coupling.]

6. Projector onto the antisymmetric tensor rep.

For a positive integer k, consider the object (in the Brauer algebra)

PAk ≡
1

k!

∑
σ∈Sk

(−1)σ .

(a) Show that it is a projector.

(b) Show that its trace is

trPAk =

(
n

k

)
≡ n(n− 1) · · · (n− k + 1)

k!
. (1)

Hint: find a recursion relation between trPAk and trPAk−1 .

Elaboration of hint: First show that

Then by doing this: show that

(c) Show that this vanishes if n is any integer less than k.

(d) [Bonus problem] Show that the expression (1) can be used as a generating

function for the number of Young diagrams with n boxes and k columns.

7. Schur-Weyl duality test. [Bonus problem]

(a) Compute the character of the representation of S3 on n⊗3 where n is the

fundamental representation of SU(n).

(b) Decompose this representation into irreps of S3. Check that the dimensions

match the expected dimensions of the associated irreps of SU(n).
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8. Checking the reality of spinors. [Bonus problem]

(a) Compute the characters of the spinor representations of SO(2n + 1) and

SO(2n) evaluated on an element of the Cartan subgroup eiθaHa .

(b) Verify the reality properties of the spinor reps from the behavior of the

characters, by computing their Frobenius-Schur indicators or otherwise. In

particular: what property of their character shows that the spinor irreps of

SO(2n) with n odd are complex?

To do the integrals over the group, use the Weyl integration formula: for a

class function F (g), ∫
G

dgF (g) =

∫
T

dθF (θ)∆(θ)∆̄(θ)

where T is the Cartan subgroup with coordinates θa, a = 1..r, and

∆(θ) ≡
∏

positive roots,α

(
e

iθ·α
2 − e−

iθ·α
2

)
.

9. [Bonus problem]

(a) Show (using birdtracks or otherwise) that the character of the adjoint rep-

resentation of SU(n) is

χadj(U) = trUtrU † − 1.

(b) Conclude that the number of singlets in adj⊗k can be written as∫
SU(n)

dµ(U)
(
trUtrU † − 1

)k
where dµ(U) is the Haar measure, with

∫
SU(n)

dµ(U) = 1.

(c) Using the large-n identity∫
SU(n)

dµ(U)
∏
`

(
trU `

)m` (trU †`)m̄` n�1
=
∏
`

δm`m̄``
m` (m`)! , (2)

conclude that the number of singlets in adj⊗k is ≤ k!.

(d) Understand what the identity (10) is true. Actually, at least for the case

where m` = δ`,1, this is possible using only information from the lecture

notes! (No large-n assumption is required for this case.) Hint: use Schur-

Weyl duality.

4


