University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 220 Symmetries Fall 2020
 Assignment 10

Due 12:30pm Monday, December 14, 2020
Thanks for following the submission guidelines on hw 01. Please ask me by email if you have any trouble.

1. Brain-warmer. Verify the identity

$$
\Pi=\square+(n-2))(
$$

(with $n=3$) in $\mathrm{SO}(3)$ using birdtracks.
2. Ramond-Ramond sectors. [Bonus problem]
(a) The Ramond sector of the superstring worldsheet contains a Hilbert space on which 8 majorana operators γ_{i} act. The $\mathrm{SO}(8)$ acting on the index i in the fundamental is part of the spacetime symmetry. Physical states of the superstring are those which have definite eigenvalue of $\gamma_{F}=C \prod_{i=1}^{8} \gamma_{i}$ (where C is chosen so that $\gamma_{F}^{\dagger}=\gamma_{F}$ and $\gamma_{F}^{2}=1$).
The Ramond-Ramond sector of the closed superstring Hilbert space is the tensor product two Ramond sectors (one from right-moving modes and one from the left-moving modes on the closed string worldsheet). In type IIB, both copies have the same eigenvalue of γ_{F} and in type IIA, the two copies have opposite γ_{F} eigenvalue.
How do the physical states of each type of closed superstring transform under $\mathrm{SO}(8)$?
Removing the string theory jargon, the question is: how do $\mathbf{8}_{+} \otimes \mathbf{8}_{+}$and $\mathbf{8}_{+} \otimes \mathbf{8}_{-}$decompose into irreps of $\mathrm{SO}(8)$?
One way to do it is to consider the transformation law for objects of the form $\left\langle s_{1} s_{2} s_{3} s_{4}\right| \gamma^{i_{1}} \gamma^{i_{2}} \cdots \gamma^{i_{k}}\left|s_{1} s_{2} s_{3} s_{4}\right\rangle$.
(b) [Super-bonus problem - requires some field theory] Consider the action

$$
S\left[X^{i}, \psi^{i}\right]=\int d^{2} x\left((\partial X)^{2}+\psi \not \partial \psi\right)
$$

where $i=1$..n. Take space to be periodic $x \equiv x+L$ and take periodic (Ramond) boundary conditions on the fermions fields (and the scalars). Show
that its groundstates form a tensor product of two spinor representations of $\mathrm{SO}(n)$.
Here is a hint: we can decompose the fields $X(x, t)$ and $\psi(x, t)$ into leftmovers and right-movers:

$$
X(x, t)=X_{L}(x-t)+X_{R}(x+t), \quad \psi(x, t)=\psi_{L}(x-t)+\psi_{R}(x+t) .
$$

If we impose periodic boundary conditions on both ψ_{L} and ψ_{R} we get the RR sector described above.
If we impose periodic boundary conditions on ψ_{L} and antiperiodic boundary conditions on ψ_{R} we get the R-NS sector. Show that these states transform as a spinor representation of $\mathrm{SO}(n)$ (and, consistent with the spin-statistics theorem, they are fermions).

3. Schwinger bosons.

What happens if in our construction of spinor reps, we replace the fermions $\left\{c_{a}, c_{b}^{\dagger}\right\}=\delta_{a b}$ with bosons $\left[b_{a}, b_{b}^{\dagger}\right]=\delta_{a b}$?
(a) Consider what representations this produces of the $\operatorname{SU}(n)$ subalgebra

$$
H_{a}=b_{a}^{\dagger} b_{a}-\frac{1}{2}, \quad E_{a b}=b_{a}^{\dagger} b_{b}, a \neq b
$$

Hint: consider states of fixed particle number $\sum_{a} H_{a}=k$.
First check that these operators actually do satisfy the $\operatorname{SU}(n)$ algebra.
I recommend starting with the case of $n=2$.
(b) Can you make representations in this way of the full $\mathrm{SO}(n)$ algebra which includes

$$
E_{a b}^{\prime}=b_{a}^{\dagger} b_{b}^{\dagger}, a \neq b
$$

What about $b_{a}^{\dagger} b_{b}^{\dagger}$ with $a=b$?
4. Swap operator on qudits. Let $\mathcal{H}_{n}=\operatorname{span}\{|i\rangle, i=1 . . n\}$ be an n-dimensional Hilbert space. In terms of the generators of $\operatorname{SU}(n)$ in the fundamental representation $\left(T_{A}\right)_{i j}$, write a formula for the swap operator S on $\mathcal{H}_{n} \otimes \mathcal{H}_{n}$. The swap operator is defined by its action on the basis states:

$$
\mathrm{S}|i j\rangle=|j i\rangle
$$

Check that your answer makes sense for $n=2$.
5. [Bonus problem] Compute the second Casimir for the adjoint rep of $\operatorname{SU}(n)$ using birdtracks.
[Cultural remark: Notice that this quantity will appear in the vacuum polarization amplitude for the gluon, and hence the running of the QCD gauge coupling.]
6. Projector onto the antisymmetric tensor rep.

For a positive integer k, consider the object (in the Brauer algebra)

$$
P_{A^{k}} \equiv \frac{1}{k!} \sum_{\sigma \in S_{k}}(-1)^{\sigma} \overbrace{\|!\cdots 川 \mid} .
$$

(a) Show that it is a projector.
(b) Show that its trace is

$$
\begin{equation*}
\operatorname{tr} P_{A^{k}}=\binom{n}{k} \equiv \frac{n(n-1) \cdots(n-k+1)}{k!} . \tag{1}
\end{equation*}
$$

Hint: find a recursion relation between $\operatorname{tr} P_{A^{k}}$ and $\operatorname{tr} P_{A^{k-1}}$. Elaboration of hint: First show that

$$
\exists E=\frac{1}{k}(\exists E=-\exists E+\ldots+E E)
$$

Then by doing this: $(B H S) \cdot \exists E$ show that

$$
\exists E=\frac{1}{k}(\exists \sqrt{E}-(k-1)=\sqrt{E} E
$$

(c) Show that this vanishes if n is any integer less than k.
(d) [Bonus problem] Show that the expression (1) can be used as a generating function for the number of Young diagrams with n boxes and k columns.
7. Schur-Weyl duality test. [Bonus problem]
(a) Compute the character of the representation of S_{3} on $\mathbf{n}^{\otimes 3}$ where \mathbf{n} is the fundamental representation of $\operatorname{SU}(n)$.
(b) Decompose this representation into irreps of S_{3}. Check that the dimensions match the expected dimensions of the associated irreps of $\operatorname{SU}(n)$.
8. Checking the reality of spinors. [Bonus problem]
(a) Compute the characters of the spinor representations of $\mathrm{SO}(2 n+1)$ and $\mathrm{SO}(2 n)$ evaluated on an element of the Cartan subgroup $e^{\mathbf{i} \theta_{a} H_{a}}$.
(b) Verify the reality properties of the spinor reps from the behavior of the characters, by computing their Frobenius-Schur indicators or otherwise. In particular: what property of their character shows that the spinor irreps of SO($2 n$) with n odd are complex?
To do the integrals over the group, use the Weyl integration formula: for a class function $F(g)$,

$$
\int_{G} d g F(g)=\int_{T} d \theta F(\theta) \Delta(\theta) \bar{\Delta}(\theta)
$$

where T is the Cartan subgroup with coordinates $\theta_{a}, a=1 . . r$, and

$$
\Delta(\theta) \equiv \prod_{\text {positive roots }, \alpha}\left(e^{\frac{\mathrm{i} \theta \cdot \alpha}{2}}-e^{-\frac{\mathrm{i} \cdot \cdot \alpha}{2}}\right) .
$$

9. [Bonus problem]
(a) Show (using birdtracks or otherwise) that the character of the adjoint representation of $\mathrm{SU}(n)$ is

$$
\chi_{\mathbf{a d j}}(U)=\operatorname{tr} U \operatorname{tr} U^{\dagger}-1
$$

(b) Conclude that the number of singlets in $\mathbf{a d j}{ }^{\otimes k}$ can be written as

$$
\int_{\mathrm{SU}(n)} d \mu(U)\left(\operatorname{tr} U \operatorname{tr} U^{\dagger}-1\right)^{k}
$$

where $d \mu(U)$ is the Haar measure, with $\int_{\operatorname{SU}(n)} d \mu(U)=1$.
(c) Using the large- n identity

$$
\begin{equation*}
\int_{\mathrm{SU}(n)} d \mu(U) \prod_{\ell}\left(\operatorname{tr} U^{\ell}\right)^{m_{\ell}}\left(\operatorname{tr} U^{\dagger \ell}\right)^{\bar{m}_{\ell}} \stackrel{n \gg 1}{=} \prod_{\ell} \delta_{m_{\ell} \bar{m}_{\ell}} \ell^{m_{\ell}}\left(m_{\ell}\right)!, \tag{2}
\end{equation*}
$$

conclude that the number of singlets in $\mathbf{a d j}{ }^{\otimes k}$ is $\leq k!$.
(d) Understand what the identity (10) is true. Actually, at least for the case where $m_{\ell}=\delta_{\ell, 1}$, this is possible using only information from the lecture notes! (No large-n assumption is required for this case.) Hint: use SchurWeyl duality.

