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In a paper on the little group representations of massless one-particle states in dimensions d ≥ 4,
Weinberg (2010) explores some examples of tensor and spinor fields that describe such states, and
makes a conjecture using the language of Young tableaux that summarizes the findings from these
examples. A proof of the conjecture is given by Distler (2010). We go through the general ideas
and implications of the conjecture and its proof in this brief summary.

INTRODUCTION

We generally assume that the laws of nature are invari-
ant under transformations of the Lorentz group SO(3, 1)
in a d = 4 spacetime. A particular subgroup of SO(3, 1),
called the little group, consists of elements that leave the
spatial momentum k invariant, and its representations de-
scribe one-particle states of a field that transform under
the Lorentz group [1–3]. This result may be generalized
for SO(d − 1, 1). Given a field with known transforma-
tion properties under SO(d−1, 1), the question of how its
particles transform under the little group boils down to
the group theory question: how do the SO(d−1, 1) irreps
decompose under the little group?

For massive particles, we can work in the rest frame
where k = 0. It becomes clear the little group is the
rotation group SO(d − 1), and the particles can furnish
any representation of this group that is contained in the
SO(d− 1, 1) representation of the field. For massless par-
ticles, the little group is the Euclidean group E(d − 2),
which contains an invariant (d − 2)-dimensional abelian
group T, such that SO(d − 2) ∼= E(d − 2)/T [2, 4]. In
this case, the conserved (d− 1)-momentum cannot be set
to zero. Since this is the only conserved quantity given,
T must in general be represented trivially by the parti-
cle to avoid introducing new conserved quantities. This
requirement places a restriction on which SO(d− 2) rep-
resentations that are contained in the representation of
the field can be furnished by the particle [2].

Instead of giving a general statement on the allowed
SO(d − 2) representions of massless particles for a field
that furnishes a given representation of the Lorentz
group, Weinberg [2] examines the transformation prop-
erties of particles for several types of fields, and makes a
conjecture on obtaining these representations from arbi-
trary representations of the fields using Young tableaux.
A proof of the conjecture is given by Distler [5].

DECAPITATION CONJECTURE

As mentioned above, not all representations of SO(d−
2) that are contained in a representation of SO(d − 1, 1)
furnished by the field are associated with a trivial rep-
resentation of T. To approach this problem, consider a
local field operator ψn(x) that transforms in the represen-
tation R of SO(d − 1, 1). The superscript n = µν · · · is

the set of tensor indices of the field. If a massless particle
described by this field furnishes an irrep R′ of SO(d− 2),
the matrix element of the field should satisfy:

0 6= 〈0|ψn(0) |k, σ〉 ≡ unσ (1)

where σ labels the states inR′. Equation 1 says a massless
particle state in R′ can be created by the field ψn from
vacuum. These unσ can be used to construct the field
[2, 3].

Equation 1 reformulates our quest into one of find-
ing what components of unσ is non-vanishing, but there
is one more requirement for unσ, that any Lorentz trans-
formation W is trivially represented in the T subgroup as
dσ,σ̄(W ) = δσ,σ̄. The SO(d− 1, 1) generators satisfy

i[Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ (2)

where µ, ν, ρ, σ = 0, 1, 2, · · · , d− 1. The generators of the
little group are J ij and Ki ≡ J i d−1 − J i0 with i, j =
1, 2, · · · , d− 2. Because [Ki,Kj ] = 0 and [J ij ,Kk] ∝ K,
Ki form the aforementioned invariant abelian subalgebra
t. Ki must annihilate un, i.e.

∑
σ̄K

i
σσ̄u

n
σ̄ = 0, since t is

trivially represented by the particle. The action of Ki on
u in R′ is summarized below [2]

0 =
∑
σ̄

Kj
σσ̄u

+···
σ̄ = iuj···σ + · · · (3)

0 =
∑
σ̄

Kj
σσ̄u

i···
σ̄ = 2iδiju

−···
σ + · · · (4)

0 =
∑
σ̄

Kj
σσ̄u

−···
σ̄ = 0 + · · · (5)

where u±··· ≡ (u0···±ud−1···)/2, and the remaining terms
on the right-hand side are the action of Ki on the remain-
ing indices of u.

We now have the necessary tools to find the allowed
particles for a given field representation R. Consider the
example where the field is a symmetric traceless rank-N
tensor ψµ1µ2···µN . We denote a component of the matrix
element u with N+ + indices, N− − indices, and M =
N −N+ −N− other indices ui1i2···iM (N+,N−). Equations
3-5 then become

0 = ui1i2···iM j(N+−1,N−)

+ 2

M∑
r=1

δjiru
i1i2···ir−1ir+1···iM (N+,N−+1) (6)
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With a few manipulations and the traceless property of u,
this leads to ui1i2···iM−1(N+,N−+1) = 0, which means any
component of u with at least one index equal to − must
vanish. This also means only the first term in Equation 6
remains. Now that we have N− = 0, the remaining term
implies u also vanishes for any M ≤ N − 1. As a result,
the only non-zero component is u++···, with all indices
equal to +. This component transforms trivially under
SO(d− 2).

Following a similar procedure, a completely antisym-
metric rank-N tensor ψµ1µ2···µN can be shown to have
non-vanishing u components of the form ui1i2···iN−1+,
which transforms as a completely antisymmetric rank-
(N − 1) tensor under SO(d − 2). A few more examples
on the Weyl tensor and spinor fields were also considered,
but I will not cover them here [2].

In a Young tableau of the representation furnished by
a tensor field, each box is associated with a tensor in-
dex. The tensor is antisymmetric under exchange of any
two indices in the same column, and symmetric under
exchange of two columns of the same height.

Weinberg notes that for all examples he considered, the
non-vanishing components of uµν···σ have no− indices, and
have one + in each column, which can be moved to the top
by the antisymmetric property. Since the + component is
unaffected by the SO(d− 2) rotations, he speculates that
by removing the top row, the rest of the Young tableau
describes the representation of so(d− 2) furnished by the
massless particle.

For example, the symmetric traceless rank-N tensor
has a Young tableau with a single row of width N .
Removing this row gives the trivial representation in
SO(d − 2). For the completely antisymmetric rank-N
tensor, the Young tableau is a single column of height
N . Removing the top row leaves a completely antisym-
metric rank-(N − 1) tensor under SO(d− 2).

R :
?−→ R′ :

PROOF

Now consider the algebra of the little group, iso(d−2) =
so(d − 2) n t. As we have previously stated, for a given
field representation R, the allowed massless particle states
require that the invariant abelian subalgebra t be trivially
represented on R′, which is the so(d − 2) representation
furnished by the particle.

We first note that the generator of so(1, 1) is J0 d−1.
We can check that [Kj , J0 d−1] = iKj for all j =
1, 2, · · · , d − 2. This means Ki ∈ t effectively raise the
weight of so(1, 1). Since the latter is a subalgebra of
so(d − 1, 1), Ki must also annihilate the highest weight
state of R. Additionally, J0 d−1 commutes with so(d−2).
We can therefore conclude that the little algebra iso(d−2)

acting on the highest weight state of R gives an irrep R′ of
iso(d− 2), with Ki trivially represented as desired. This
also means the highest weight state of R′ is the highest
weight state of R.

The above statements suggest that R′, as an irrep of
iso(d − 2) by virtue of being an irrep of so(d − 2), must
also be an irrep of so(1, 1) × so(d − 2), since both share
so(d − 2) as a subalgebra. Thus we can focus on finding
irreps of so(1, 1)× so(d− 2) from now on.

The Dynkin diagram of so(d − 2) can be obtained by
omitting the leftmost node in the Dynkin diagram of
so(d − 1, 1), so so(d − 2) has all but one of the simple
roots of the full algebra. Let αi be the simple roots
of so(d − 1, 1) and µi be the corresponding fundamen-
tal weights. We define the Dynkin label associated with
the highest weight µ =

∑
i n

iµi of R to be

ni =
2αi · µ
(αi)2

We can therefore denote R as (n0, n1, n2 · · ·nr), where
r + 1 = d

2 (even d), d−1
2 (odd d) is the number of simple

roots for so(d − 1, 1). We choose α1, · · · , αr to be the
simple roots of so(d− 2).

In general, we can write the decomposition of R under
so(1, 1)× so(d− 2) as

R =
⊕
j

(λj)⊗Rj (7)

where Rj are the irreps of so(d−2) and λj are the weights
of the corresponding 1-dimensional irreps of so(1, 1),
which are unaffected by actions of so(d − 2). We choose
the labels j such that λj are ordered from highest to low-
est.

As we have found earlier, R and R′ have the same high-
est weight state, so following Equation 7 we conclude that
R′ = (λ1)⊗R1, with the so(d− 2) representation being

R1 = (n1, n2 · · ·nr)

where we have removed the first Dynkin label.
For SO(d− 1, 1), the Dynkin labels are the differences

in lengths between adjacent rows, starting from the top.
The r+ 1 Dynkin labels imply a maximum of r+ 1 rows.
Suppose the Young tableau of R has rows with lengths
l0, l1 · · · lr. For odd d, the Dynkin labels are [5]

ni = li − li+1, i = 0, 1 · · · r − 1 (8)

nr = 2lr (9)

For even d, they are

ni = li − li+1, i = 0, 1 · · · r − 2 (10)

nr−1 + nr = 2lr−1 (11)

|nr−1 − nr| = 2lr (12)

With these relations, we can see that removing the first
Dynkin label n0 leads directly to a Young tableau with
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the first row of length l0 removed. Thus we have proven
the “decapitation conjecture.” Additionally, Distler finds
the so(1, 1) weight is λ1 = 2l0, twice the length of the
removed row [5].

CONCLUSIONS

In an attempt to find a general statement for the al-
lowed types of massless particles given a field in arbitrary
representation of SO(d − 1, 1), Weinberg (2010) makes a
conjecture which states that for tensor fields, the Young
tableau of the SO(d−2) representation furnished by mass-
less particles can be obtained by removing the top row of
the Young tableau of the SO(d− 1, 1) representation fur-
nished by the field describing the particles [2].

The proof to the conjecture is given by Distler (2010),
which also generalizes the statement to cover spinor rep-

resentations of the field [5]. These results provide a sys-
tematic way to determine the types of massless particles
allowed for a field that transforms in a given representa-
tion of the Lorentz group SO(d − 1, 1), in arbitrary di-
mensions d.
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