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With the ability to create high-field THz and mid-IR ultrafast pulses, physicists have been able to
directly drive phonons to large enough amplitudes where anharmonicities and nonlinear phonon cou-
plings become highly relevant for the induced dynamics. This new field has been dubbed ”nonlinear
phononics,” and these ideas have been used to drive materials to previously inaccessible structural,
magnetic, and electronic phases. Here the relevance and constraints due to group theory will be
explained for this new field of ultrafast experiments.

INTRODUCTION

The ability to drive solids to new phases with ultra-
short pulses has created a new field of photo-induced
phase transitions in roughly the past two decades. Light
can be used to access the many different degrees of free-
dom of solids: charge, spin, orbital, and lattice. The
high intensity light required of some of these excitations
is easier to generate for visible and NIR wavelengths, and
many early studies used this kind of light as an intense
pump [1, 2]. Access to driving of phonons was mostly
limited to indirect coupling between electronic and lat-
tice degrees of freedom, as most phonons lie in mid-IR or
far-IR wavelength ranges.

However, in recent years the ability to generate more
intense THz and mid-IR pulses gives the ability to drive
lower energy degrees of freedom, like phonons, directly to
large amplitudes. The strong relationship between crys-
tal structure and electronic or magnetic phases means
that driving phonons can and has been shown experimen-
tally to access either new phases of matter for materials,
or phases at very different temperatures than the equilib-
rium phase diagram [3]. A key necessity both for access
and stabilization of these phases is the ability to excite
not only IR-active phonons, which can be directly driven
with light pulses, but also Raman-active phonons. Due
to nonlinear phonon coupling between different phonons,
which become relevant as IR active phonons are driven to
large amplitudes, Raman modes can not only be driven
to oscillate at large amplitudes, but also around new min-
ima at displaced coordinates [4]. In this paper I will first
describe crystal symmetries, their representations, and
phonons. Then I will apply these concepts to nonlinear
phonon couplings, and discuss constraints and qualita-
tively different behaviors for nonlinear phononics that
arise due to group theory and symmetries of different
crystals.

CRYSTAL SYMMETRIES

All crystals (excluding quasicrystals) have symmetry
that is given by their space group. The space group is
made up of combining the point groups with translation

operations, there are 230 in total [5]. Crystallographic
point groups are made up of the symmetry operations
that leave a crystals unit cell unchanged, but with the
restriction that for crystals the demand of translational
symmetry restricts the rotational symmetry to be 1, 2,
3, 4 or 6-fold [5]. The symmetry operations that are
involved in space groups are the following: the idenity,
rotations, reflections, inversions, and improper rotations
(which are a combination of a rotation and a reflection)
[5].

There are many space groups and they have intimidat-
ing names, but since crystal databases use these names
it would be good to understand a bit of what they mean.
In international notation, space groups will have names
of the form Abbb, for example Pmm2. The first upper-
case letter corresponds to the type of Bravais Lattice the
crystal is made up of, in this case the P is for primitive.
The following elements then describe the symmetry op-
erations for the x, y, and z axes, the m corresponds to a
mirror plane, while the 2 corresponds to 2-fold rotational
symmetry. If all axes had 2-fold rotational symmetry the
group would be P222, while if an axis has both a mir-
ror plane and an n-fold rotation axis, these are written
together as a fraction, for example P 4

m
2
m

2
m

[6].

REPRESENTATIONS AND PHONONS

The coordinates of the ions in a lattice live in a dN
representation of the symmetry group for the crystal, d
being the number of spatial dimensions and N the num-
ber of ions [7]. These representations also have their own
dictionary that is good to have some idea of even if the
names feel arbitrary or misplaced. These representations
have names like A1g, B2u, or E2u. The A means the rep-
resentation is symmetric with respect to rotation about
the principle axis, while B or E mean it is antisymmetric
with respect to rotations about the principle axis, B be-
ing for 1d representations and E for 2d representations.
The subscript number represents whether the represen-
tation is symmetric (1) or antisymmetric (2) with respect
to reflection about the plane perpendicular to the princi-
ple axis, while the subscript letter corresponds to being
symmetric (g) or antisymmetric (u) with respect to in-
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version [6].
An important distinction for physics in general and

for nonlinear phononics is the difference between IR and
Raman active phonons. Physically, for a phonon to be
IR active it needs to involve a change in the dipole mo-
ment for a molecule, while for a phonon to be Raman
active it needs to involve a change in the polarizability
of a molecule [6]. From a group theory perspective, the
difference between IR and Raman active has to do with
how the symmetry operations for a given representation
compare with given mathematical functions. The math-
ematical functions for IR and Raman modes are a fairly
common addition to character tables in chemistry, an
example is shown below. For IR-active modes, the rep-
resentation must transform like the linear functions x, y,
or z, while Raman-active modes transform like products,
x2, yz, x2 + y2, etc. [8].

FIG. 1: From [8], showing character table for point group C2v

including columns with mathematical functions that trans-
form with given symmetry

For multiplying representations together, the overall
rules are somewhat as expected, symm ⊗ symm =symm,
anti ⊗ anti=symm, anti ⊗ symm=anti, for both A and B
and the subscripts(i.e. A⊗A = A,A⊗B = B,A⊗B =
B). This really is all there is to it for the 1-d irreps, but
when higher dimensional representations are multiplied
(E and T), the products are obtained by looking for the
breakdown of irreps the new reducible representation is
made up of. This can be accomplished with the character
table, and the number of irreps contained in a reducible
representation is given by the following formula [8]:

nα =
1

|G|
∑
h

χredχαg(h) (1)

Here α is a label of a given irrep., |G| is the order of
the group, χ refers to a character for the reducible or
irreducible representation, and g(h) is the number of ele-
ments for the given conjugacy class h, all of which come
from the character table for a given group. Products of
more than two higher-dimensional irreps can be decom-
posed the same way.

APPLICATIONS TO NONLINEAR PHONONICS

Nonlinear phononics involves looking at the poten-
tial energy of the lattice, including terms beyond the
quadratic harmonic oscillator terms. Here is an exam-
ple for general phonons that are simply labelled as being

IR and Raman active (using the same conventions as [4]:
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As mentioned previously, the idea of nonlinear phonon-

ics is generally to be able to drive Raman-active modes
to large amplitudes, so the important piece of the poten-
tial is the coupling terms, above this is QRQ

2
IR. To know

which terms are allowed, we need to look at the represen-
tations involved in the multiplication of the above term.
The allowed terms must contain (though don’t need to
solely contain) the totally symmetric Ag representation
[4].

Depending on the type of mode one wants to couple
to, qualitatively different behavior can occur. The work
by Subedi et. al. explores some of these calculations
by looking at PrMnO3 (PMO), with space group Pmna,
and La2CuO4 (LCO), with space group Bmab [4]. For
PMO, which has the point group mmm, each of the ir-
reps. square to the Ag representation. The lowest or-
der possible coupling in this material looks like QRQ

2
IR.

For finite amplitudes along the IR coordinate, the min-
imum in the potential for the Raman coordinate shifts,
as can be seen in Fig. 2, taken from [4]. For this case
(which can’t be derived from simply group theory) driv-
ing phonons coupled to these displacements was able to
drive an insulator-to-metal transition in PMO [9].

FIG. 2: From [4], showing change to lattice potential energy
of Raman-active Ag mode in PMO with cubic coupling

LCO on the other hand does have allowed cubic cou-
pling like in PMO, but the coupling of B-phonons to
Ag phonons is small. However, strong coupling does
exist between B1g Raman active and B3u IR active
modes. However, Ag isn’t contained within the prod-
uct B1g ⊗B3u ⊗B3u, so this term doesn’t exist, and the
lowest coupling term is actually a B1g⊗B1g⊗B3u⊗B3u,
in other words Q2

RQ
2
IR. This will lead to a qualitatively

different potential energy surface, shown in Fig. 3, that
involves a double well potential.

Because of the double-well potential, qualitatively dif-
ferent behavior can be acheived for quartic coupling in
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FIG. 3: From [4], showing change to lattice potential energy
of Raman-active B3u mode in LCO with quartic coupling

comparison to cubic coupling. For large enough driv-
ing, not only can rectification occur (oscillating around a
non-zero displacement), but oscillations between the two
wells can occur for even larger drives, without any recti-
fication. These different behaviors are illustrated in Fig.
3.

FIG. 4: From [4], showing difference in dynamics of Raman-
active B3u phonon for different excitation strengths

Some time was spent looking through tables of cal-
culated nonlinear phonon coupling constants, of which
there is still unfortunately a limited number available as
far as what could be found in the literature [3, 4, 10–
12]. No nontrivial correlations between characters and
nonlinear coupling constants could be found, characters
for irreps. are only larger than 1 for higher dimensional
E and T modes. That being said, something interest-
ing to note is that in the nonlinear phononics literature,
of which there is still a limited amount of work, all of
the experiments on crystals that do have E-modes within
their irreps have found the strongest coupling between IR
and Raman active modes involving and IR-active E-mode
[3, 11]. To slighly restate this, the only nonlinear phonon-
ics experiments that involve driving an IR-active B-mode
have been on crystals whose space group representation

does not include any E or T irreps. [3, 4, 10, 12]. Fur-
ther study to find out why this may be the case could be
very interesting. Group theory decides all of the allowed
terms in the full lattice potential, and thus the possible
types of coupling. However, group theory can’t answer
why one B1g mode couples to a given Ag mode more
than another B1g mode, in order to get the quantitative
coupling strengths full DFT calculations need to be done.

CONCLUSION

In this paper I have given a brief introduction to crys-
tal symmetries and their representations for the purpose
of understanding the underlying group theory governing
nonlinear phononics calculations and experiments. Look-
ing into the symmetry and group theory is the first step
that must be taken when designing calculations or exper-
iments, and decides which types of coupling are allowed,
but more rigorous quantitative calculations must be done
next.
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