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I review artificial neural network architectures designed to be equivariant to certain symmetry
group transformations. I’ll discuss two different but complementary approaches: ‘group equivariant
convolutional neural networks’ and Fourier space decomposition, and focus on E(2), E(3), and
SO(1, 3) equivariance for their applications in physics.

I. INTRODUCTION

Artificial neural networks have risen to prominence over
the last decade during the so-called ‘deep learning (DL)
revolution’. They have been applied successfully on a va-
riety of computational tasks in fields such as computer
vision, natural language processing and even the physical
sciences. Particularly in the latter case many datasets,
such as molecules and high energy collisions, have intrin-
sic symmetries like E(3) or SO(1, 3), for which it is desir-
able to develop neural network (NN) architectures which
themselves are intrinsically equivariant to the associated
transformations. These can be more data efficient, more
easily interpretable, and perhaps ultimately, being more
naturally suited to the dataset, more successful [1]. In
this paper I will, after a brief introduction to the broader
field of deep learning, review some proposed NN architec-
tures which are equivariant to various symmetry groups.

II. DEEP LEARNING AND ARTIFICIAL
NEURAL NETWORKS

The fundamental building block of all DL models are
artificial neural networks (Fig. 1). Modelled vaguely af-
ter animal brains, these networks ‘learn’ synaptic con-
nections, or weights, with which they transform input
data into a desired output. Typically in fact the input
data is transformed multiple times to intermediate layers,
which are ideally learning useful features of the inputs.
Networks with large numbers of intermediate layers and
hence learnable parameters (‘deep’ networks) have shown
incredible performance in recent years on a vast range of
classification, regression and generation tasks.

Some common DL models actually have built-in equiv-
ariance to certain transformations. Convolutional neural
networks (CNNs) (Fig. 2), which convolve a set of learned
filters locally across an input image, and are the indus-
try standard in computer vision, are naturally transla-
tion equivariant - translating an input image will com-
mensurately translate the learned feature vectors. An-
other class of networks, graph neural networks (GNNs)
(Fig. 3), act on graphical data and therefore are permu-
tation invariant - permuting input data will not affect
the features or output. These are both examples of net-
works which are consciously designed to respect the sym-
metries of their respective data and consequently have

FIG. 1: Artificial Neural Networks

been extremely successful (especially compared to basic
non-equivariant NN architectures). Recently, in the same
vein, there has been a large push for NNs equivariant to
a broader set of transformations.

FIG. 2: Convolutional Neural Networks
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FIG. 3: Graph Neural Networks
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III. EQUIVARIANCE

This seems a good point to introduce a very impor-
tant definition, adapted from Refs. [2–5]: a feature map
f : X → Y (e.g. a layer of a network) is considered
equivariant to a group of transformations G if ∀g ∈ G
and some representation π there exists a representation
π′ satisfying

π′(g)f(x) = f(π(g)x) (1)

i.e. the group operation commutes with the map f (and
f therefore is an intertwiner). Intuitively this means that
for each transformation on the input there is a well de-
fined transformation by the same group element in the
feature space. Invariance is the particular case where π′

is the trivial representation wherein transformations on x
do not affect features at all. Refs. [3, 4] argue that equiv-
ariance is more desirable in intermediate layers than in-
variance as it allows learning of useful information about
the transformation g itself.

Sec. II mentioned CNNs and GNNs which are equivariant
and invariant respectively to T (N) (translations in N
dimensions) and SN (permutations of N objects). Now
let us extend these to broader groups.

IV. E(2)

Refs. [2, 3] discuss a general procedure for extending the
translational invariance to equivariance to a group G =
T (2) ⋊H. where ⋊ is the semi-direct product and H is
a subgroup of G, using induced representations. (In this
section we will take G = E(2) ⇔ H = O(2).) The trick
is to first find the set of maps F ∋ f which satisfy Eq. 1
for an element h ∈ H:

ρout(h)f = fρin(h) (2)

where ρout and ρin are reps of H. After this, Eq. 1 can
be automatically satisfied using

π′(g)f = IndGH(g)f = ρout(h)f(ρin(h
−1)(x− t)) (3)

where g = th for some t ∈ T (2).

One simple method for finding F 1 is to recognize that
since Eq. 2 is linear in f , all we need is a complete linear
basis. An intuitively obvious guess is to have f be a
typical CNN layer but with the convolutional filters Wm

restricted to circular harmonics [4]:

1 AKA one offensively hand-wavy method I have improvised in or-
der to reach the same conclusion as of the more rigorous analysis
in Refs. [5, 6] without delving into some quite tedious algebra

Wm(r,φ;R,β) = R(r)ei(mφ+β) (4)

where the radial component R and the filter phase β are
learnable parameters. With m ∈ Z these filters clearly
form a complete basis, and it is a simple matter of a
change of integration variables to see that they also sat-
isfy Eq. 2 under convolutions (∗) with an image F (r,φ)
rotated by θ:

Wm ∗ F (r,φ+ θ) = eimθWm ∗ F (r,φ) (5)

Here ρin is the fundamental SO(2) rep acting on the
image and ρout is any one of the infinite complex reps.
After discretising these filters Ref. [4] demonstrates sig-
nificant improvement on classification of rotated images
compared to state-of-the-art CNNs.

V. E(3)

E(3) equivariance can be achieved in much the same way
out of CNNs [6]. Such networks are generally classified
as ‘group equivariant convolutional neural networks’ (G-
CNNs) [2]. Let us do something similar to G-CNNs but
now also try out ‘Fourier decomposition’ of the input, fea-
ture, and output spaces into irreducible representations
(irreps) of the symmetry group.

The most popular such approach for E(3) (Ref. [1]) ap-
plies it to datasets of point clouds, which are sets of points
in R3, each with feature vectors in some space X (so
essentially graphs with nodes embedded in R3). They
provide useful representations of physical data such as
molecules and crystals, both of which are inherently E(3)
invariant.

Each network layer f in such a network must take the
set of coordinates &ra and features &xa and map them to
the same set of coordinates with new learnt features &ya
(f(&ra, &xa) = (&ra, &ya), with an equivariant f again having
to satisfy our famous Eq. 1.)

Translation equivariance in Ref. [1] is achieved directly
by requiring f to only consider distances &ri − &rj between
points i and j (a global translation will not affect these).

For rotation equivariance, first the feature vectors &xa are
decomposed according to how they transform under ir-
reps of SO(3) - scalars, vectors or higher order tensors
(the coordinates are also decomposed the same way but
rather obviously they transform under the fundamental
rep as vectors):

R3 ⊕ X =
!

l

Rml

l (6)

where the sum is over irreps Rl (with dimension 2l + 1)
and ml are the multiplicities. Each point’s features and
coordinates have the corresponding decomposition:
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&ra ⊕ &xa =
!

l

ml!

c=1

V l
ac (7)

where the V l
ac are tensors which transform under the l

irrep. Each of these tensors are then individually acted
upon by generalized convolutional filters with the form
R(r)Y lf (r̂), where R is a learnt radial function, Y l are
the spherical harmonic tensors, and the set lf corre-
sponds to the set of desired irreps in feature space. The
spherical harmonics are directly analagous to using cir-
cular harmonics for E(2) (except they have dimension
2l+1) and by the same argument they satisfy Eq. 1. This
convolution effectively produces a tensor product repre-
sentation of SO(3) Rl⊗Rlf , so it is then decomposed via
the Clebsch-Gordan (CG) coefficients again into irreps,
after which the cycle continues.

A useful pedagogical example is of a network taking as
input a collection of pont masses and outputting the mo-
ment of inertia tensor. The input features are the masses
of each point, which are scalars under SO(3), and the mo-
ment of inertia tensor transforms as the 0⊕ 2 rep so we
define this network to be of the type 0 → 0⊕ 2.

Some more interesting and successful applications in-
clude classifying molecules [7], predicting protein com-
plex structures [8], and predicting the phonon density of
states (DoS) in crystals [9]. A schematic of the archi-
tecture used for the latter is shown in Fig. 4. Different
crystals are represented geometrically as point clouds in
R3, with individual atoms labeled via feature vectors &xa

using mass weighted one-hot encoding. After a series
of convolution layers the features are summed over all
points to predict 51 scalars comprising the phonon DoS.

FIG. 4: Schematic of the E(3)-equivariant neural
network architecture used for predicting phonon DoS.

VI. SO(1, 3)

Recently there has been some success in creating Lorentz
group equivariant networks, which are desirable for DL
applications to high energy data. There has been no

FIG. 5: Schematic of the Lorentz group-invariant
network.

generalization so far of G-CNNs to the Lorentz group2,
but Ref. [10] proposes an alternative, completely Fourier-
based, approach, which shares some similarities with our
E(3)-equivariant network. (Fourier-based here means de-
composing into and acting on irreps of a group.)

The general method is:

1. Decompose the input space into irreps of the group.

2. Apply an equivariant mapping (satisfying Eq. 1) to
the feature space.

3. Take tensor products of the irreps and CG decom-
pose them again into irreps.

4. Repeat steps 2-3 until the output layer.

The crucial difference between this and our earlier net-
works is that the mapping is no longer via convolutional
filters; instead, the mapping is chosen to be linear. Re-
call (Sec. III) that equivariant maps f must be intertwin-
ers between input and output representations, which, ac-
cording to Schur’s Lemma, imposes strong restrictions on
both the form of a linear f and its output f(x). Namely:
the outputs and inputs must have the same irrep decom-
position (although the multiplicities are allowed to vary
akin to increasing/decreasing the ‘channels’ in an image)
and f must be a direct sum of learnt matrices acting indi-
vidually on each irrep. The transformation between f in

and fpre in Fig. 5 illustrates such a mapping.

Since this mapping is now linear, we now need to find an-
other way of injecting group equivariant non-linearities
into the network3. A natural method for doing so is to
take tensor products between each pair of irreps after the

2 As far as I am aware
3 Non-linearity has been shown to be a necessary ingredient for
effective artificial and biological neural networks
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mapping and then perform a CG decomposition4. An-
other freedom we have to inject non-linearities is acting
with arbitrary learnt functions on any scalar irreps that
are produced out of the decomposition since they are, by
definition, Lorentz invariants.

One successful application of this network has been to jet
tagging, which involves classifying a set of output parti-
cles from a particular high energy quark decay (say at the
LHC) per the type of quark. Particle features are typi-
cally the 4-momenta and possibly scalar features such as
particle type. On one such standard dataset, Ref. [10]
demonstrates a high (92.9%) accuracy however were un-
able to match the state-of-the-art using DL (93.8% using
a non-Lorentz-equivariant graph CNN [12]).

Finally, note that overall this is in fact a very general ap-
proach, applicable to any symmetry group. This includes
the aforementioned E(2) and E(3) groups as well as po-
tentially more exotic groups such as E8 or G2 which also
arise in physics. The only group-dependent operations in
such a network are the decompositions into irreps which

can readily be calculated for any group (as opposed to G-
CNNs where you are required to find group equivariant
kernels/convolutional filters).

VII. CONCLUSION

In this paper we reviewed three approaches, involving
group-equivariant convolutions and Fourier decomposi-
tions, to creating neural networks that are equivari-
ant to certain symmetry groups. Physics datasets of-
ten posses intrinsic symmetries so, as demonstrated on
some example problems, these networks are promising
alternatives/improvements to standard deep learning ap-
proaches.
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