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Quasicrystals exhibit long-range order while simultaneously lacking periodicity presenting a para-
doxical material. While the natural algebraic objects for studying crystalline solids in 3 dimensions
are groups and their 3-dimensional representations, quasicystals can be viewed as projections of
3 + k dimensional representations of groups to 3 dimensions. We present this view of quasicrystals
and briefly discuss their implications on the physical properties exhibited by this class of materials.

INTRODUCTION

One of the greatest success of quantum mechanics is
its application to crystalline solids, particularly when ap-
plying Bloch’s theorem to elucidate transport properties.
Bloch’s theorem relies heavily upon the regular periodic-
ity of the lattice and associated potential. Additionally,
crystals exhibit long-range order in their atomic posi-
tions as a result of the periodicity of the lattice. Com-
pared with amorphous solids, which are both aperiodic
and lack long-range order, crystalline solids have natu-
ral symmetries associate with them which give rise to a
group theoretical description of crystalline solids In fact
most modern density functional theory calculations rely
on these group theoretic models of crystals and molecules
to drastically reduce computation time [1]

Compared to crystals, quasicrystals exhibit aperiodic
properties, yet have the paradoxical property of possess-
ing long-range order [2]. The fact that these solids exhibit
long-range means that their diffraction patterns are com-
posed of discrete Bragg-peaks situated at integer multi-
ples of a set of basis vectors. In contrast, the aperiodicity
of the quasicrystal brings about a dense packing of these
Bragg peaks along the basis vector sets [2]. Neverthe-
less, the long-range order that persists in these quasicrys-
tals implies that there exists some finite basis elements
which exist in an aperiodic manner throughout the crys-
tal structure. Mathematically speaking, these quasicrys-
tals lack translational symmetry in at least one of the
dimensions of our crystal.

The question then becomes, what tools do we have to
study these types of materials from a mathematical point
of view if we are lacking translational symmetry in at
least one direction? Groups will not be sufficient to study
the properties of these materials in< 3-dimensional space
as the lack of translational symmetry in one of the dimen-
sional will break the closed nature of the group. How-
ever if we expand our space to one which will allow the
translational symmetries to exist by In this way, we can
use groups to study the larger n-dimensional lattice in
the hopes of elucidating properties about our lower di-
mensional quasicrystal. We investigate this method of
studying quasicrystals and touch on both the strengths
and limitations of viewing these materials from this view-
point. Much of the discussion of this subject has been

shortened from the master’s thesis of Foger Ympa [3]
and the paper by Ian Putnam [4]. References to these
two papers are implied and other resources are directed
as utilized.

MOTIVATING EXAMPLE

To get a grasp on this odd combination of aperiodicity
with a long-range order, let us first investigate the follow-
ing example which we will formalize afterwards. Consider
the one-dimensional Fibonacci quasicrystal which first
arose in the study of rabbit populations. We generate
it as such:

Start with a single mature rabbit and label it L. For
every generation, each mature rabbit produces a smaller

rabbit S to the right of it. Additionally, after each
generation an S rabbit becomes an L rabbit. Performing
this iteration yields an aperiodic crystal with long-range

order.

If we now look at this sequence, we get something that
takes on the form.

LSLLSLSLLSLLSLSLLSLSL . . .

From this, we start to see regular long range orders ap-
pearing such as the LSL and SL terms, however they do
not appear to be in any particular periodic order.

If we look at this space, we see that we are lacking the
necessary dimensions to be able to describe the symme-
tries associated with this quasilattice. However, we can
construct this lattice from a larger 2-dimensional space,
by taking a cut from it and projecting it down to our
1-dimensional line. Let us see this procedure in action.

If we take the space Z × Z, any rationally sloped line
will regularly intersect with lattice points in a periodic
fashion. If however, we take a slice of this space with an
irrationally sloped line, we will never have an intersection
of the line with a lattice site. But if we define ”planes”
(in this case another line) of these lattice points each
corresponding to an x and y direction of that lattice site,
then the intersection of our line with an x ”plane” we
can denote as S and an intersection of our line with a y
”plane” we can denote as L. For our rabbit case above
we can check that this is generated by the cut line with
slope 1

τ = 2
1+
√
5
.
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FIG. 1: The cut-and-project method for the Fibonacci
quasicrystal with D = R‖, H = R⊥ and W = φ [5].

FORMALISM

From our example, what glimpses about the structure
of the quasicrystal can we hope to gleam from this kind
of construction particularly with respect to the types of
Hamiltonians that occur. The rest of this paper will dis-
cuss the means by which we can construct quasicrystals
from our projection method and the implications on the
allowed Hamiltonians. We will start by defining a cut
and project system.

Definition 1 A cut-and-project system is a triple
(R‖,R⊥,L) with ZN = L ⊂ R‖ × R⊥ ∼= RN a lattice
such that,

• The restriction of the projection operator π‖ : R‖×
R⊥ → R‖ to L is injective.

• The image of the projection operator π⊥ of L is
dense in R⊥.

• Additionally, if the restriction of the domain of π⊥

to L is injective then the system is aperiodic.

To start off, we have two mutually orthogonal spaces
R⊥ and R‖ which are subspaces of a larger space R‖×R⊥
and their projectors to their respective spaces, π‖, π⊥.
Embedded in this larger space is a periodic lattice L.
When we ”cut” our system into R‖ and R⊥, we only get
a system which is a cut-and-project system if our R‖ is
an irrational sloped hyperplane in at least one of the di-
mensions. This naturally leads us to our previous notion
about quasicrystals which lack a translational symmetry
in at least one of the spatial dimensions.

The ”project” part of this construction comes when we
consider a window W ⊂ R⊥ which is closed and compact.
When we consider the space R‖ ×W and project all the
points of this space which intersect with the lattice L
down to R‖ we get an aperiodic lattice. Considering our
case of the Fibonacci chain from before, 1 shows both
the R‖ and the window W together with the projection
of the lattice points to R‖.

This method actually lends itself to useful construc-
tions of real quasicrystal. In real quasicrystals, movement
of atoms in the crystal is achieved by means of phasons,
namely a quasilattice phonon [6]. The means by which
this is achieved mathematically is by shifting the win-
dow in R⊥ which has the effect that when a new lattice
point enters into the window, another one leaves some-
where else in the quasilattice. Additionally, by shifting
the window over a certain region in R‖ we can achieve
the imposition of defects into our quasicrystal.

Now that we have established the method by which
we can construct these quasicrystals, we are left with de-
scribing the physical properties of the crystal. To do so,
we need to look at the set observables in the system which
lend themselves to producing the physical properties. As
all observable are self-adjoint, when we consider this set,
we are led to these possessing certain properties with re-
spect to their underlying structure. One such structure
is the C ∗−algebra, which is an algebra, together with an
involution ∗ and which is also a complete normed vector
space. We formalize this with a definition.

Definition 2 A C*-algebra is a Banach algebra to-
gether with an involution ∗.

In the case we are considering, our involution is due to
our self-adjoint operators and our Banach space is the set
of bounded operators on our Hilbert spaceH. Notice here
that we actually can utilize much of the theory of repre-
sentation that we have formulated about groups to these
C ∗−algebras in the sense that all bounded operators on
a Hilbert space B(H) have a natural homomorphism to
GL(n,C) when dimH = n. Moving forward, we intro-
duce one more definition which will allow us to consider
tilings T as they relate to translations of the space.

Definition 3 A hull of a tiling T is the completion of
the metric space (T + RN , d).

While we have not defined the metric here, we will instead
give an intuitive feeling to what this object is. In short,
the hull is all of the translations of tilings T + ~x and
those tilings which are close enough to a translation of
of the tiling (i.e. within some ε ball). While there is a
rich source of information and results from introducing
this object, the main result we will use is that a tiling
T is aperiodic if its hull consists only of non-periodic
tilings. As it turns out, quasicrystal’s hulls contain only
non-periodic tilings.

Our final piece of information we need when consider-
ing the electronic properties of quasicrystals is a Hamilto-
nian. If we consider our system, we have a single Hamil-
tonian describing how an electron will move through the
lattice. This Hamiltonian however possess none of the
symmetries that will allow us to solve for the proper-
ties that we are interested in. To remedy this, we look
at a single electron at the origin which observes an ini-
tial tiling T0. Instead of letting the electron hop from
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lattice sites, we instead translate the lattice so that the
electron remains at the origin and observes a new tiling
T = T0+~x. With each of these ”new” tilings, we have an
associated operator describing the electrons motion, HT ,
where we have the association between two operators as,

T (x)HTT (x)−1 = HT+x (0.1)

Now we can use this aperiodic tiling and its hull, to-
gether with a set of operators {HT }T∈hull associated
with a C ∗ −algebra to discuss the spectrum of the
C ∗ −algebra. One of the main results from the paper is
the following

Theorem 1 Given a certain translationally invariant
probability measure, µ, on our hull, the spectral projection
of HT up to a finite value E is continuous and bounded
on the spectrum of HT if and only if E is not in the
spectrum of HT .

This essentially tells us that for the measure that we de-
fined, our projection onto the spectrum of HT up to a
value of E is well understood and behaved as long as our
value E lives in a gap of the spectrum. Leading from this
then, we have the resolution that the spectrum of almost
any HT is equal to the spectrum of our original Hamil-
tonian H. Without addressing many of the nuances and
details involved in showing these results, the main take-
away from this is that when certain symmetries begin to
fail in our models we must start branching out to other
non-group theoretic methods to explain our results.

CONCLUSION

Quasicrystals were only first observed naturally in the
1980s and since then the mathematical framework to de-
scribe this class of materials has grown significantly [7]
These first observations relied on the fact that no crys-
tal can possess 5-fold rotational symmetry or any n-fold
rotational symmetry when n > 6. Some of the first
methods to bring these materials into mathematical de-
scription was through the cut-and-project method as dis-
cussed before. While this process was great for construct-
ing these lattices, it gave little insight into the properties
of the materials. With that, a further investigation into
the topologies, algebraic structures and representations
of these quasicrystals arose.

The discussion of quasicrystals naturally brings to
light the failings of group theory’s capabilities. While
symmetries exists throughout many facets of nature,
there are still sections which lend themselves to
breaking and avoiding these symmetries. This leads us
to develop new techniques which are more powerful and
able to handle the subtleties that occur when our
symmetries fail. In a further more in depth conversation
of the failings of group theory, especially when

discussing quasicrystals, we might encounter certain
non-commutative topologies, groupoids and K-theory.
All have their merits in discussions surrounding
quasicrystals with groupoids relaxing conditions of
closure and K-theory establishing topological invariants
associated with the space of the C ∗ −algebras. All in
all, while we look deeper into the underlying structures
of nature, we require mathematical tools which are
equally robust and intricate as the instruments we use
to probe.
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