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In this short paper I introduce the basic definition and properties of quantum double group algebra
and demonstrate an application of it using the example of Kitaev’s quantum double model.

INTRODUCTION

Elementary excitation in quantum many-body system
is a hot field and there are numerous research done on
anyons which act as an excitation based on algebraic
structure, such as quantum double algebra In this short
paper, I am going to summarize the construction and
property of quantum double algebra and some relation
between Kitaev’s quantum double model and the quan-
tum double algebra.

Basic definitions

We use the convention introduced in Gould’s article
[1], where we let A be the group algebra of a finite group
G over the complex field C. Then A will become a co-
commutative Hopf algebra (see Appendix) with coprod-
uct, antipode and counit respectively defined by

∆(g) = g ⊗ g, S(g) = g−1, ε(g) = 1, ∀g ∈ G. (0.1)

the 1 we use above identifies the identity element of A ex-
tended from identity of G. Following theorem described
in Appendix, A is a semi-simple algebra and we may de-
compose A as

A =
⊕
λ

Aλ (0.2)

Similar argument may apply to its dual A∗ = A0, under
assumption given in appendix (eq.??). Then quantum
double construction provides a method of imbedding A
and A0 in a quasi-triangular Hopf algebra, D(A), which
is spanned by {ab∗|a ∈ A, b∗ ∈ A∗}. Therefore D(A) will
become a Hopf algebra with properties inherited from A
and A∗ by coproduct ∆̄, counit ε̄ and antipode S̄ to be

∆̄(ab∗) = ∆(a)∆0(b∗)

¯ε(ab∗) = ε(a)ε0(b∗)

S̄(ab∗) = S0(b∗)S(a)

For simplicity we may intoduce basis of A∗ as {a∗s} by

〈a∗s, at〉 = δst

Then

R =
∑
s

as ⊗ a∗s (0.3)

has inverse R−1 = (S̄ ⊗ I)R, then we comes to the defi-
nition of quantum double:

Theorem 1 D(A) with canonical element R constitutes
a qasi-triangular Hopf-algebra called the quantum double
of A

Then following similar argument of simplicity on A,
we may reach a conclusion where A∗ and D(G) are all
semi-simple and we then can decompose D(G) as direct
sum of simple two-sided ideals D(G)Λ:

D(G) =
⊕

Λ

D(G)Λ (0.4)

KITAEV’S QUANTUM DOUBLE MODEL

Let G be a finite group, and H = C[G] the correspond-
ing group algebra. Since by the definition of group alge-
bra, we may also treat H as a Hilbert space spanned by
orthonormal basis {|g〉 |g ∈ G}. Therefore the dimension
of H as Hilbert space is dimH = |G|. We may start the
model from introducing 4 types of linear operators, Lg±
and Th± acting on H, where

Lg+ |z〉 = |gz〉 (0.5)

Lg− |z〉 =
∣∣zg−1

〉
(0.6)

Th+ |z〉 = δh,z |z〉 (0.7)

Th− |z〉 = δh−1,z |z〉 (0.8)

So commutation relation reads

Lg+T
h
+ = T gh+ Lg+ (0.9)

Lg−T
h
+ = Thg

−1

+ Lg− (0.10)

Lg+T
h
− = Thg

−1

+ Lg+ (0.11)

Lg−T
h
− = T gh− Lg− (0.12)

Then we may relate these operator to a orientable 2-D
surface. In his paper, Kitaev used the example as follows
[2]: In the graph there are three basic elements: face
p, arrow j and one of endpoints (vertices) s. Then we
may define operator Lg(j, s) = Lg±(j) by the orientation
of arrow j: if s is the origin of arrow j then Lg(j, s) =
Lg−(j), otherwise Lg(j, s) = Lg+(j). Similarly, we may
let Th(j, p) = Th−(j) if p is on the left adjacent face,
otherwise Th(j, p) = Th+(j). Then similar to Toric code,
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FIG. 1: Lattice and orientation rules for operator Lg
± and Th

±

we may define local gauge transformation and magnetic
charge operator as follows:

Ag(s, p) = Ag(s) =
∏

j∈stars(s)

Lg(j, s) (0.13)

Bg(s, p) =
∑

h1···hk=h

k∏
m=1

Thm(jm, p) (0.14)

with {jm} are boundary arrows of p in counterclockwise
order starting from vertex s (so ending at s also). More-
over, the sum is taking over all possible {hi} ⊂ G, whose
product is h. The group is not necessarily abelian so
the order here matters. We may also define symmetric
combinations of Ag and Bh by

A(s) = |G|−1
∑
g∈G

Ag(s, p) (0.15)

B(p) = B1(s, p) (0.16)

Note that A(s) and B(p) are projection operators that
commute with each other. Then we can define the sys-
tem’s Hamiltonian,

H0 =
∑
s

(1−A(s)) +
∑
p

(1−B(p)) (0.17)

which is extremely similar to Toric code’s Hamiltonian.
Without surprise, we can classify elementary excitation
by which term the excitation fails to keep its minimum
value.

Elementary Excitations

Similar to Toric code, which is a Z2 version of our
definition, we may expect excitations come with pairs.
Therefore we may need to project to space of two-particle
excitations, L(a, b), where a = (s, p) and b = (s′, p′) are
described by site and face occupied by the particles. Note
that operator Ag(a) and Bh(a) commute with A(r) and
B(l) for all r 6= s and l 6= p, which constitute the pro-
jector operator which project states into L(a, b) so Ag(a)
and Bh(a) also commute with projector onto subspace
L(a, b). Moreover, the relation between Ag ≡ Ag(a) and

Bh ≡ Bh(a) is

AfAg = Afg,

BhBi = δh,iBh, (0.18)

AgBh = Bghg−1Ag.

Therefore these element can generate an algebra
D(a) ∈ L(N ), where N is the Hilbert space consists of
all possible states and D(h,g) = BhAg form a linear basis
of D(a).

Relation to Quantum Double Algebra

Although we have defined a new algebra D(a) in last
section, the algebra does not depend on a. Meanwhile
it is the embedding D(a) ≡ D → L(N ) that depends
on a, which is the position of one elementary excitation.
The algebra is the quantum double of group G, which we
briefly discussed in first section, and denoted by D(G).
Using relation in equation 0.18, we may obtain the mul-
tiplication rules

DmDn = Ωk
mnDk (0.19)

with Ω
(h,g)
(h1,g1)(h2,g2) = δh1,g1h2g

−1
1
δh,h1δg,g1g2 , which deter-

mins the structure of quantum double algebra. By the
property of quantum double algebra (0.4), we may de-
compose the representation as

D =
⊕
d

L(Kd)

where d runs over all representations of D and can be
interpreted as particle type.
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APPENDIX

Some useful fact of Hopf Algebra

In order to introduce the construction of quantum dou-
ble group algebra, we need to start from some basic def-
initions. We use the convention introduced in Gould’s
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article [1], where we let A be a Hopf algebra with iden-
tity 1 ∈ A, co-unit ε : A→ C, coproduct ∆ : A→ A⊗A
and bijective antipode S : A → A. We will write the
coproduct

∆(a) =
∑
a

a(1) ⊗ a(2), a ∈ A. (0.20)

We also need to mention the dual of Hopf algebra A,
denoted by A∗ and bilinear form 〈, 〉 defined by 〈a∗, a〉 :=
a∗(a), ∀a∗ ∈ A∗ and a ∈ A. Then we assume A0 :=
{a∗ ∈ A∗|ker a∗ contains a cofinite two sided ideal of A} ⊂
A∗ is dense in A∗, in other words

(A0)⊥ ≡
{
a ∈ A|〈b∗, a〉 = 0,∀b∗ ∈ A0

}
= {0}

Then we may begin a definition:

Definition 1 A Hopf algebra A is called quasi-triangular
if there exists an invertible element

R =
∑
i

ai ⊗ bi ∈ A⊗A

satisfying ∆T (a)R = R∆(a), ∀a ∈ A, and (∆ ⊗ I)R =
R12R23, (I ⊗∆)R = R13R12 with R12 =

∑
i ai ⊗ bi ⊗ 1

and R13 =
∑
i ai ⊗ 1⊗ bi, etc.

Then we have

Theorem 2 A0 becomes a Hopf algebra with multiplica-
tion m0, unit u0, coproduct ∆0, antipode S0 and counit
ε0 defined by

m0 = ∆∗
∣∣∣∣
A0⊗A0

,

u0 = ε∗
∣∣∣∣
A0

∆0 = m∗
∣∣∣∣
A0

S0 = S∗
∣∣∣∣
A0

ε0(a∗) = 〈a∗, 1〉

with m : A⊗A→ A is the multiplication map on A and
m∗,∆∗, ε∗, S∗ are the natual dual maps of m,∆, ε and S.

Moreover,

Theorem 3 A finite dimensional Hopf algebra A is
semi-simple if and only if there exists x ∈ A, such that

ax = ε(a)x, ∀a ∈ A

and such x ∈ A is called a left integral.


