Symmetry Breaking and Superfluid Phases of Liquid *He from Laudau-Ginzburg
Theory

Xiang Lit
IDepartment of Physics, University of California at San Diego, La Jolla, CA 92093

In this paper, we will briefly introduce the application of Landau-Ginzburg (L-G) theory and
symmetry breaking in superfluid phases of liquid *He. From the solutions of L-G equation for B and
A phase, we can identify the symmetry breaking in these two phases. Then we will briefly introduce
the physical consequence of the broken relative symmetries in these two phases.

INTRODUCTION
Superfluidity of *He

A superfluid is a state of matter in which the matter
behaves as a fluid with vanishing viscosity. The most
famous example is “He, an isotope of He. Due to large
zero-point motion of the atoms in “He, it still in a phase
of liquid at absolute zero temperature. Since “He has
zero nucleus spin, at a temperature of few K, the en-
semble of the *He atoms forms a quantum Bose liquid.
When T < T, = 2.2 K, *He Bose-condenses and the cor-
related motion of the Bose condensate has no dissipation,
therefore, it exhibits properties of superfluidity.

3He also doesn’t solidify at absolute zero temperature.
It also can become a superfluid. However, 3He has 1/2
nucleus spin, therefore, it becomes a quantum Fermi lig-
uid at few K. In order to behave as a superfluid, >He
atoms must first pair up and form Cooper pairs, which
have integer spin. Then the ensemble of such bosonic
Cooper pairs will Bose-condenses and results in superflu-
idity at low temperature.

Not only the complicity in the formation of Cooper
pair, there is a more important and interesting conse-
quence of the non-zero nucleus spin, namely, non-trivial
internal structure, followed by additional degrees of free-
dom on low energy scale £ <« T,.. The Cooper pair has
non-zero spin S = 1 and non-zero angular momentum of
the orbital motion of the Cooper pair L = 1. The strong
correlation of the spin and angular momenta of the Bose
condensate results in magnetic and liquid-crystal-like or-
dering, which means not only the gauge symmetry, the
SO(3)g for spin and SO(3), for orbital rotation symme-
tries are also spontaneously broken in He.

Superfluid Phase of *He

Since S = 1 and L = 1 are both three dimensional
representation of SO(3)s and SO(3), group respectively.
Therefore the parameter space is 3 ® 3, which is nine
dimensional. Such large degrees of freedom enrich the
classification of the superfluid phases of *He. Three of
them are under extensive investigation[1]:

32

30

28
Ta-8
26 378Gauss

24 —
22 5 =
3 20 -1
a
18- —
16 NORMAL -
FERM/I
4l LIQUID ]

8 1 1 1 1 ! )
19 20 24 22 23 24 25 26
T-mK

FIG. 1: Phase diagram for 3He at the lowest magnetic field[2].

e The quasi-isotropic phase *He-B. The total angular
momentum of the Cooper pair is zero, .J = 0, where
J=L+S.

e The anisotropic phase *He-A. In this phase, the
Cooper pair in this state has non-zero projection of
the orbital angular momentum m; = 1 on some axis
I , where [ is not only an axis of spontaneous orbital
anisotropy of this liquid, but also represents the
direction of its spontaneous ferromagnetic moment.
The projection of spin angular momentum is zero
mg = 0.

e There is another phase, namely, the *He-A; phase,
which only exists if a magnetic field is present. Be-
ing different from the 3He-A phase, it has m; = 1
and also non-vanishing projection of spin angular
momentum my; = 1. The quantization axes for spin
and orbital angular momentum are not necessarily
parallel.

In this next section, we will mostly focus on B and A
phase.



SYMMETRY BREAKING IN *HE SUPERFLUID

If we only consider the interactions involved in the for-
mation of condensed states, then the free energy is in-
variant under the following transformation

G = SO(3)L X 50(3)5 X U(l)(;s, (0.1)

where the two SO(3) groups describe rotations in spin
space and orbital space respectively, and U(1), describes
gauge transformation.

Symmetry breaking will result in different phases [3]:

e G D SOB)L x SOB)s — SO(3)r+s, where
SO(3)p+s describes some linear combinations of
transformations from SO(3)r and SO(3)s groups.
This symmetry breaking results in B phase.

e G D SOB)LxU1)gy = U(1)r,+¢, which results
in A phase.

In this section, we will first briefly review the Landau-
Ginzburg theory and then introduce these two phases in
details.

Laudau-Ginzburg Theory for Liquid *He

The wave function of Cooper pair is

qu]: Z Ams,mlwmsymm (02)
me,my
where mg,m; = +,0,—1 corresponds to the magnetic

quantum number for spin and orbital angular momentum
Mg, My, = 1,0, —1 respectively.

We can write the L-G functional in terms of a 3 x 3 ma-
trix Aqq, defined as A,; = mem Ay my AL A where
A = 24, A5 = (Za445.)/V2. Then The behavior near
the critical temperature T, is described by the quadratic
term in the L-G functional Frg D (T — T,)A%; A, and
the equilibrium order parameter A%, can be found by
solving G-L equations
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et =0, (0.3)

where FbcfﬂLk C Fp¢ is the bulk condensation energy term
in the L-G free energy functional[4].

By this method, we can find the order parameter for
B and A phase:

e When the pressure below the so called policritical
point, the solution of the L-G equation is

A, = Ag(T, P)jui- (0.4)
In terms of the amplitude, we have
.AJD, = .A,’Jr = Ao,o = AB(T7 P) (05)

Therefore, the projection of the total angular mo-
mentum m; = ms; + m; = 0, and the state is
isotropic, which indicates J = 0.

e When the pressure above the policritical point, we
obtain the A phase solution [1]:
AD, = A (T, P)2o(8; + i6)). (0.6)
In term of the amplitude, we have only one non-
zero order parameter:

Ao+ = V2A4(T, P), (0.7)

from which we can tell the state has ms = 0 and
m; = 1. The quantization axes for spin and orbital
angular momentum are both along the same axis.

Manifold of the Degenerate State and Residue
Symmetry

The transformation of the total group g € G can be
described explicitly as

(9A”)ai = €'P R 3 Ag; RY;, (0.8)

where RS, RV are the matrices of rotations
S0O(3)s,S0O(3)r in the orbital and spin spaces re-
spectively, ¢ is the parameter of the global gauge
transformation U(1). Applying this to different state
Eq.(0.4) and Eq.(0.6), we obtain[1]

A%, = Ap(T, P)e'” Ry,
A%, = AA(T, P)3a (6™ + &),

B phase: (0.9)

A phase: (0.10)

where §, is the spin axis and é®) xé®) = [ is the deribein.
[ is the orbital axis.

From these two general forms, we can obtain the man-
ifolds and residue symmetries for the degenerate states:

e B phase: B phase is described by 1) ¢ parameter,
and 2) the orthogonal real matrix R,;. The space
corresponding to U(1) is just S*. As for R, no-
tice it’s from R,; = Rgﬁéﬁj(RL)i_jl and dg; is from
the initial solution Eq.(0.4), R,; describes the rel-
ative rotation of spin and orbital frames. When
this apply to the initial state with J = 0, the total
angular momentum of resulting state is no longer
zero. Therefore, the manifold of the equilibrium
degenerate states Rp is [1]

Rp = S' x SO(3)e1, dim(Rp) = 4. (0.11)

where S is described by the phase ¢ and SO(3)..;
is for the relative spin-to-orbit rotations R;.

Because R, = R°(RY)™!, it’s invariant under a
spin rotation R® accompanied by an equal rota-
tion R” of the orbital space. Therefore, the residue



symmetry is H = SO(3), the group of combined
rotations. As a result, the manifold Rp is just the
coset space Rp = G/H.

e A phase: The general form of the solution Eq.(0.10)
has the following symmetries:

1. Spin rotation SO(2)s about axis §;

2. U(1).: U(1) gauge transformation e'®, ac-
companied by orbital rotation of the dreibein
é®) e and [ about the axis Zby the same an-
gle ¢, since under such a rotation é*) 4ie(¥) —
e~ (e(®) 4ie®)), where the factor e*¢ is can-
celled out by the U(1) transformation;

3. A discrete combined symmetry Z$, the spin
rotation of d by angle m about a perpendic-
ular axis, accompanied by gauge transforma-
tion e™. The former flips the sign which is
further cancelled out by the latter e’™.

Therefore, the residue symmetry is H = SO(2)g x
U(1), x Z§, and the manifold of the equilibrium
degenerate state is [1]

Ra=G/H = 5" % SO(3)e1/Zo. (0.12)

Be aware that here the SO(3),.; describes the rota-
tions about the axis [ = 6@ x é®) relative to gauge
transformations, which is different from the one in
B phase.

PHYSICAL RESULTS FROM THE BROKEN
RELATIVE SYMMETRIES

Notice that both B and A phase have broken relative
symmetries, summarized as follows:

e B phase: Relative spin-orbital rotation: Only the
relative rotation of spin and orbital frame will
change the degenerate state.

e A phase: Relative gauge-orbital rotation: Only the
gauge transformation counted from the orbital ro-
tations around ! will change the degenerate state.

Such broken relative symmetries have very interesting
physical consequence.

For B phase, the spin or orbital space are both
isotropic. However, the broken spin-orbital rotational
symmetry results in relative anisotropy of the magnetic
and orbital properties in an isotropic liquid. If an
anisotropy axis n; of orbital properties is induced by ex-
ternal conditions, then an anisotropy axis relative to the
orbital axis niy = Ra;7; of the magnetic properties will
simultaneously appear.

For A phase, due to the breaking gauge-orbital rota-
tional symmetry, all the gauge invariant quantities in A
phase will obtain an anisotropy axis L. They are invariant
under rotations around such an axis [.

SUMMARY

In this paper, we briefly introduced the symmetry
breaking of 3He and the resulting B and A phase. The
new features, broken relative symmetries, generate many
interesting physical properties of the superfluid *He.

There are also many other important and intriguing
aspects in the study of superfluid 3He. For example, in
the topological perspective, topological defects are un-
der extensive investigation; 3He vortices also have lots
of fascinating content to be studied. In addition, super-
fluid phases can also be studied with the help of gravity
theory, which I found very attractive.
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