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In this paper, we will briefly introduce the application of Landau-Ginzburg (L-G) theory and
symmetry breaking in superfluid phases of liquid 3He. From the solutions of L-G equation for B and
A phase, we can identify the symmetry breaking in these two phases. Then we will briefly introduce
the physical consequence of the broken relative symmetries in these two phases.

INTRODUCTION

Superfluidity of 3He

A superfluid is a state of matter in which the matter
behaves as a fluid with vanishing viscosity. The most
famous example is 4He, an isotope of He. Due to large
zero-point motion of the atoms in 4He, it still in a phase
of liquid at absolute zero temperature. Since 4He has
zero nucleus spin, at a temperature of few K, the en-
semble of the 4He atoms forms a quantum Bose liquid.
When T < Tc = 2.2 K, 4He Bose-condenses and the cor-
related motion of the Bose condensate has no dissipation,
therefore, it exhibits properties of superfluidity.

3He also doesn’t solidify at absolute zero temperature.
It also can become a superfluid. However, 3He has 1/2
nucleus spin, therefore, it becomes a quantum Fermi liq-
uid at few K. In order to behave as a superfluid, 3He
atoms must first pair up and form Cooper pairs, which
have integer spin. Then the ensemble of such bosonic
Cooper pairs will Bose-condenses and results in superflu-
idity at low temperature.

Not only the complicity in the formation of Cooper
pair, there is a more important and interesting conse-
quence of the non-zero nucleus spin, namely, non-trivial
internal structure, followed by additional degrees of free-
dom on low energy scale E � Tc. The Cooper pair has
non-zero spin S = 1 and non-zero angular momentum of
the orbital motion of the Cooper pair L = 1. The strong
correlation of the spin and angular momenta of the Bose
condensate results in magnetic and liquid-crystal-like or-
dering, which means not only the gauge symmetry, the
SO(3)S for spin and SO(3)L for orbital rotation symme-
tries are also spontaneously broken in 3He.

Superfluid Phase of 3He

Since S = 1 and L = 1 are both three dimensional
representation of SO(3)S and SO(3)L group respectively.
Therefore the parameter space is 3 ⊗ 3, which is nine
dimensional. Such large degrees of freedom enrich the
classification of the superfluid phases of 3He. Three of
them are under extensive investigation[1]:

FIG. 1: Phase diagram for 3He at the lowest magnetic field[2].

• The quasi-isotropic phase 3He-B. The total angular
momentum of the Cooper pair is zero, J = 0, where
~J = ~L+ ~S.

• The anisotropic phase 3He-A. In this phase, the
Cooper pair in this state has non-zero projection of
the orbital angular momentum ml = 1 on some axis
l̂, where l̂ is not only an axis of spontaneous orbital
anisotropy of this liquid, but also represents the
direction of its spontaneous ferromagnetic moment.
The projection of spin angular momentum is zero
ms = 0.

• There is another phase, namely, the 3He-A1 phase,
which only exists if a magnetic field is present. Be-
ing different from the 3He-A phase, it has ml = 1
and also non-vanishing projection of spin angular
momentum ms = 1. The quantization axes for spin
and orbital angular momentum are not necessarily
parallel.

In this next section, we will mostly focus on B and A
phase.
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SYMMETRY BREAKING IN 3HE SUPERFLUID

If we only consider the interactions involved in the for-
mation of condensed states, then the free energy is in-
variant under the following transformation

G = SO(3)L × SO(3)S × U(1)φ, (0.1)

where the two SO(3) groups describe rotations in spin
space and orbital space respectively, and U(1)φ describes
gauge transformation.

Symmetry breaking will result in different phases [3]:

• G ⊃ SO(3)L × SO(3)S → SO(3)L+S , where
SO(3)L+S describes some linear combinations of
transformations from SO(3)L and SO(3)S groups.
This symmetry breaking results in B phase.

• G ⊃ SO(3)L × U(1)φ → U(1)Lz+φ, which results
in A phase.

In this section, we will first briefly review the Landau-
Ginzburg theory and then introduce these two phases in
details.

Laudau-Ginzburg Theory for Liquid 3He

The wave function of Cooper pair is

ψ =
∑
ms,ml

Ams,mlψms,ml , (0.2)

where ms,ml = +, 0,−1 corresponds to the magnetic
quantum number for spin and orbital angular momentum
MS ,ML = 1, 0,−1 respectively.

We can write the L-G functional in terms of a 3×3 ma-
trix Aαi, defined as Aαi =

∑
ms,ml

Ams,mlλmsα λmli , where

λ0α = ẑα, λ
±
α = (x̂α±iŷα)/

√
2. Then The behavior near

the critical temperature Tc is described by the quadratic
term in the L-G functional FLG ⊃ (T − Tc)A∗

αiAαi, and
the equilibrium order parameter A0

αi can be found by
solving G-L equations

δFLGbulk[Aαi]

δAαi
= 0, (0.3)

where FGLbulk ⊂ FLG is the bulk condensation energy term
in the L-G free energy functional[4].

By this method, we can find the order parameter for
B and A phase:

• When the pressure below the so called policritical
point, the solution of the L-G equation is

A0
αi = ∆B(T, P )δαi. (0.4)

In terms of the amplitude, we have

A+,− = A−,+ = A0,0 = ∆B(T, P ). (0.5)

Therefore, the projection of the total angular mo-
mentum mj = ms + ml = 0, and the state is
isotropic, which indicates J = 0.

• When the pressure above the policritical point, we
obtain the A phase solution [1]:

A0
αi = ∆A(T, P )ẑα(x̂i + iŷi). (0.6)

In term of the amplitude, we have only one non-
zero order parameter:

A0,+ =
√

2∆A(T, P ), (0.7)

from which we can tell the state has ms = 0 and
ml = 1. The quantization axes for spin and orbital
angular momentum are both along the same axis.

Manifold of the Degenerate State and Residue
Symmetry

The transformation of the total group g ∈ G can be
described explicitly as

(gA0)αi = eiφRSαβAβjR
L
ji, (0.8)

where RS , RL are the matrices of rotations
SO(3)S , SO(3)L in the orbital and spin spaces re-
spectively, φ is the parameter of the global gauge
transformation U(1). Applying this to different state
Eq.(0.4) and Eq.(0.6), we obtain[1]

B phase: A0
αi = ∆B(T, P )eiφRαi (0.9)

A phase: A0
αi = ∆A(T, P )ŝα(ê

(x)
i + ê

(y)
i ), (0.10)

where ŝα is the spin axis and ê(x)×ê(y) = l̂ is the deribein.
l̂ is the orbital axis.

From these two general forms, we can obtain the man-
ifolds and residue symmetries for the degenerate states:

• B phase: B phase is described by 1) φ parameter,
and 2) the orthogonal real matrix Rαi. The space
corresponding to U(1) is just S1. As for Rαi, no-
tice it’s from Rαi = RSαβδβj(R

L)−1
ij and δβj is from

the initial solution Eq.(0.4), Rαi describes the rel-
ative rotation of spin and orbital frames. When
this apply to the initial state with J = 0, the total
angular momentum of resulting state is no longer
zero. Therefore, the manifold of the equilibrium
degenerate states RB is [1]

RB = S1 × SO(3)rel, dim(RB) = 4. (0.11)

where S1 is described by the phase φ and SO(3)rel
is for the relative spin-to-orbit rotations Rαi.

Because Rrel = RS(RL)−1, it’s invariant under a
spin rotation RS accompanied by an equal rota-
tion RL of the orbital space. Therefore, the residue
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symmetry is H = SO(3)J , the group of combined
rotations. As a result, the manifold RB is just the
coset space RB = G/H.

• A phase: The general form of the solution Eq.(0.10)
has the following symmetries:

1. Spin rotation SO(2)S about axis ŝ;

2. U(1)c: U(1) gauge transformation eiφ, ac-
companied by orbital rotation of the dreibein
ê(x), e(y) and l̂ about the axis l̂ by the same an-
gle φ, since under such a rotation ê(x)+ie(y) →
e−iφ(ê(x)+ie(y)), where the factor e−iφ is can-
celled out by the U(1) transformation;

3. A discrete combined symmetry Zc2, the spin

rotation of d̂ by angle π about a perpendic-
ular axis, accompanied by gauge transforma-
tion eiπ. The former flips the sign which is
further cancelled out by the latter eiπ.

Therefore, the residue symmetry is H = SO(2)S ×
U(1)c × Zc2, and the manifold of the equilibrium
degenerate state is [1]

RA = G/H = S1 × SO(3)rel/Z2. (0.12)

Be aware that here the SO(3)rel describes the rota-

tions about the axis l̂ = ê(x)× ê(y) relative to gauge
transformations, which is different from the one in
B phase.

PHYSICAL RESULTS FROM THE BROKEN
RELATIVE SYMMETRIES

Notice that both B and A phase have broken relative
symmetries, summarized as follows:

• B phase: Relative spin-orbital rotation: Only the
relative rotation of spin and orbital frame will
change the degenerate state.

• A phase: Relative gauge-orbital rotation: Only the
gauge transformation counted from the orbital ro-
tations around l̂ will change the degenerate state.

Such broken relative symmetries have very interesting
physical consequence.

For B phase, the spin or orbital space are both
isotropic. However, the broken spin-orbital rotational
symmetry results in relative anisotropy of the magnetic
and orbital properties in an isotropic liquid. If an
anisotropy axis n̂l of orbital properties is induced by ex-
ternal conditions, then an anisotropy axis relative to the
orbital axis n̂s = Rαin̂l of the magnetic properties will
simultaneously appear.

For A phase, due to the breaking gauge-orbital rota-
tional symmetry, all the gauge invariant quantities in A
phase will obtain an anisotropy axis l̂. They are invariant
under rotations around such an axis l̂.

SUMMARY

In this paper, we briefly introduced the symmetry
breaking of 3He and the resulting B and A phase. The
new features, broken relative symmetries, generate many
interesting physical properties of the superfluid 3He.

There are also many other important and intriguing
aspects in the study of superfluid 3He. For example, in
the topological perspective, topological defects are un-
der extensive investigation; 3He vortices also have lots
of fascinating content to be studied. In addition, super-
fluid phases can also be studied with the help of gravity
theory, which I found very attractive.
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