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This paper reviews some recent developments in the categorical symmetry. The categorical sym-
metry is a generalization of the ordinary global symmetry in the sense that the operators which
impose the symmetry form a fusion category instead of the ordinary group algebra. Categorical
symmetries in conformal field theories and gapped phases are analyzed and the consequences of
imposing the categorical symmetry is discussed.

INTRODUCTION

Global symmetry places many constraints on the kine-
matics of a physical system and is endowed with pre-
diction power by Noether theorem (for conservation
law), Ward identity (for correlation functions), Mer-
min–Wagner theorem (for spantaneous symmetry break-
ing) and so on.

Global symmetry with anomaly further constrains the
renormalization group (RG) flow. For example, the ’t
Hooft anomaly is an obstruction for gauging the global
symmetry, if a global symmetry has the ’t Hooft anomaly,
then there cannot be a symmetric RG flow to unique
gapped phase, the possible phases are topological order,
gapless or spontaneous symmetry breaking phase.

Another important concept is anomaly inflow, which
allows us to put the theory with ’t Hooft anomaly on
the boundary of symmetry protected topological phases
(SPT). SPT is a gapped phase, if no symmetry is im-
posed, the SPT can be connected to the trivial gapped
phase with unique ground state. When imposing the
symmetry, there will be a quantum phase transition be-
tween the SPT and the trivial gapped phase. In the lan-
guage of anomaly inflow, an SPT phase in spatial dimen-
sion d has a global symmetry G such that, when placed
on a manifold with boundary, the (d − 1)-dimensional
theory on the boundary has a ’t Hooft anomaly for G.

All the above discussions suggest various applications
of the global symmetry G. The question is can we gener-
alize the notion of global symmetry and may have more
or other constraints on the system?

Before the generalizations, let’s see the two manifesta-
tions of global symmetry in a system,

1. The states and local operators are classified by rep-
resentations of the symmetry group G, they are
usually called particles and observables charged un-
der G, denoted by Vλ, λ for some representation of
G. In the Lagrangian formalism, the field contents
are representations of G and each term in the La-
grangian transforms as a singlet of G.

2. The operators Ug supported on the (d − 1)-
dimensional manifold M (d−1) impose the symme-
try, meaning that Ug commute with the Hamilto-

nian and UgUh = Ugh and g, h, gh ∈ G. Such oper-
ators are usually called charge operator.

It turns out the charged operator Vλ may be not clear but
the charge operator Ug still exist (“d” makes differences).

Nonetheless, the first manifestation can be used
to make meaningful analytic continuation of the
symmetry group, for example, continuous group
O(N), Sp(N), U(N) and discrete group SN can be an-
alytic continued to N ∈ Z → n ∈ R, the price is to use
category language. This is explored in [1], by generalizing
the charged objects Vλ which form representations in G
to objects in category Rep(G) (this category contains rep
as object, irrep as simple object and intertwiner as mor-
phism, fusion rule is the usual tensor product of reps) and
the invariant tensors in the Lagrangian to “birdtrack”
string diagrams in Rep(G) [2].

More fruitful generalizations of global symmetry are
based on the second manifestation, namely generalizing
the charge operator Ug. Note that the charge operator Ug
associated to symmetry means that the dependence on
its supported (d−1)-manifold M (d−1) is topological, but
the charged objects Vλ is not always topological. There
are two main generalizations in the literature,

1. High-form symmetry[3]: for q-form symmetry, the
charge operator is now supported on the (d−q−1)-
manifold, denoted as Ug(M

(d−q−1)) and they still
satisfy the group multiplication,

Ug(M
(d−q−1))Uh(M (d−q−1)) = Ugh(M (d−q−1)), (0.1)

for q > 0, the group must be abelian and the
charged objects are supported on q-dimensional
manifold. The ordinary symmetry is thus 0-form
symmetry.

2. Categorical symmetry in 2d [4–10]: as noted previ-
ously, the charge operator Ug supported on M (d−1)

is topological, they form a subset of the most
general topological defect line operators (TDLs)
Xa, a ∈ C where C is some label set. These opera-
tors commute with the Hamiltonian and in general
only satisfy the fusion algebra, namely,

Xa ⊗Xb =
⊕
c∈C

N c
abXc (0.2)
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where N c
ab ∈ Z≥0. For ordinary symmetry, we re-

quire N c
ab =

{
1 c = ab ∈ G
0 otherwise

, thus Xa⊗Xb = Xab

gives back the group multiplication law. Note that
Xa is not invertible for general N c

ab. It is possible to
generalize the notion of global symmetry by having
certain subset of the TDLs.

In a short, the categorical symmetry is defined by
the presence of the topological defect line operators
which form a fusion category (kind of a generaliza-
tion of finite group). The conditions will be explicit
later.

3. Combining above two: In dimension d > 2, it
is possible to have topological operator supported
on different dimensions corresponding to various
high form symmetries. Specifying what conditions
should these topological operators satisfy will lead
to more exotic global symmetry.

We will focus on the second generalization in this paper,
and most of the systems we studied are 2d. The topolog-
ical defect line operators in the 2d conformal field theory
(CFT) are a good starting point to understand categor-
ical symmetry [5, 7], the categorical symmetry can also
be generalized to other gapped phases.

TOPOLOGICAL DEFECT LINE OPERATORS IN
CFTS AND CATEGORICAL SYMMETRY

See Appendix for a short review on the concepts and
notations in CFT. We denote the modes of the holomor-
phic and anti-holomorphic component of the stress tensor
by Lm and L̄m, we call the defect line operator Xa topo-
logical if and only if [Lm, Xa] = 0 = [L̄m, Xa] for all
m ∈ Z [6][20], meaning that the topological defect line
operators are transparent to all components of the stress
tensor, and they can be deformed without change the cor-
relation functions. Since the Hamiltonian H ∝ (L0+L̄0),
the TDLs commute with the Hamiltonian, but the inverse
needs not to be true.

One can think of the TDL as a circle surrounding the
origin, the composition (or fusion) of two TDLs can be
realised by placing the defect Xb on the unit circle, the
defect Xa on a circle with radius r > 1 and taking the
limit r → 1, and in the limit (well-defined for TDLs) one
obtains the fused TDL Xa ⊗ Xb at r = 1. In this way,
one can get the fusion algebra of the TDLs [6, 11, 12]. In-
terestingly, for all A-type Virasoro minimal models, this
fusion algebra coincides with the fusion rules of Virasoro
highest weight representations [11]. The TDLs and their
fusion rules for free boson are also known [13].

With the correspondence between the fusion rule of
TDLs and highest weight representations in the A-type

minimal models, one can have some applications, for ex-
ample, the Ising CFT contains 3 primary field operators
1, σ, ε, and the fusion rule is

σ × σ = 1 + ε, σ × ε = σ, ε× ε = 1, (0.3)

the correspond TDLs have the fusion rule,

Xσ ⊗Xσ = X1 ⊕Xε,

Xσ ⊗Xε = Xσ, Xε ⊗Xε = X1. (0.4)

We would like to further specify the types of the TDLs.
Following [13], the group-like TDLs are those invert-
ible TDLs, Xa ⊗ X̄a = X1 and Xa ⊗ Xb = Xab with
a, b, ab ∈ G, and bar denotes the orientation reversal.
They actually impose the symmetry transformation of
local operators in the ordinary way, e.g. Xε in the Ising
CFT is the group-like TDL which generates the Z2 sym-
metry. We denote this set of TDLs by G.

FIG. 1: The blue line is the group-like TDL, the green dot is the
bulk field, when taking the TDL past the bulk fields, it will yield
a transformed bulk field. Note. figure reprints from [5], I can’t
draw a better one.

Note that till now both sides of the TDLs we dis-
cussed are the same CFT, in general they can be different.
The duality TDLs are those separate the CFT(A) and
CFT(B), also satisfy: for every bulk fields in CFT(A),
first taking Xa past the bulk fields and then taking an-
other X̄a past the resulting in general disorder fields in
CFT(B), gives back a sum over bulk fields in CFT(A).
The iff condition is the duality TDLs fusing with them-
selves yields a sum of group-like TDLs, Xa ⊗ X̄a =⊕

h∈G Xh. The set of the duality TDLs is denoted by
D, note that G is the subset of D.

FIG. 2: The blue lines are the duality TDLs, the green dot is the
bulk field, when taking the TDL past the bulk fields, it will yield
disorder fields as the middle step, then taking another TDL past,
results in a summation of bulk fields and the duality TDLs no
longer separable. Note. figure reprints from [5].

Furthermore, assuming the existence of the duality de-
fect lines, then the torus partition function of CFT(B)
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can be expressed in terms of torus amplitudes with de-
fect lines of CFT(A) as follows,

(0.5)
The CFT(B) obtained in this way is the orbifold of
CFT(A), one can also think this as a gauging G pro-
cess. If an RCFT possesses a duality defect, it automat-
ically also has the “auto-orbifold”(or self-duality) prop-
erty which means the model is equivalent to its orbifold
or G-gauged version.

In the Ising CFT, Kramer-Wannier duality is imposed
by Xσ which transforms the order operators to the disor-
der operator thus exchanges the order/disorder phases,
and Xσ ⊗ Xσ = X1 ⊕ Xε suggesting Xσ is the duality
TDL by definition. The presence of Xσ means that the
Ising CFT is equivalent to its Z2 gauged version which
is summing over ε the Z2 lines. Indeed the Ising model
is equivalent to the Z2 gauge theory. In the Ising model,
G = {1, ε}, D = {1, ε, σ} = C.

The Kramer-Wannier duality of Ising CFT can be
generalized to system with abelian symmetry by the
Tambara-Yamagami category. The Tambara-Yamagami
category consists of TDLs Xg associated to an abelian
group G as well as a duality line XN , satisfies the follow-
ing fusion rule,

Xg ⊗XN = XN , XN ⊗XN =
⊕
h∈G

Xh (0.6)

These categories are Z2 extensions of VecG where G is
an abelian group and we denote the Tambara-Yamagami
category induced by abelian G as TY(G) (more date need
specifying, we omit for the purpose of demonstration).

To wrap up what we learned about the topological de-
fect lines in CFTs,

1. The ordinary symmetry transformation is imposed
by group-like topological defect lines which are in-
vertible TDLs.

2. The most general TDLs form a fusion category
and the fusion rule is the same as the fusion rule
of primary field operators in the type-A minimal
model, fusion rules in other minimal models and
free boson theory are also known. (One can think
of a fusion category as a non-commutative, non-
cocommutative generalization of a finite group, see
the link)

3. The duality TDL satisfies Xa ⊗ Xa =
⊕

h∈G Xh,
and when an RCFT has such duality TDL, it is au-
tomatically equivalent to its orbifold or G-gauged
version.

4. The G-orbifold or G-gauging is obtained by sum-
ming over a sufficiently fine network of group-like
TDLs associated to G.

CATEGORICAL SYMMETRY OF GAPPED
PHASES

We have discussed that the TDLs are common in the
CFTs, they are in general non-invertible and form a fu-
sion category, we denote the CFT with a set C of TDLs
as having the categorical symmetry C. It is also possible
to have categorical symmetry in gapped phases, there are
two known systems that have categorical symmetry,

1. Nonabelian-G gauge theory.

2. Gapped boundary of 3d topological field theory
(TFT) with categorical “gauge” symmetry.

Nonabelian G-gauge theory

Let’s first review two relevant fusion categories,

1. VecωG: for finite group G and 3-cocycle ω ∈
H3(G,U(1)), VecωG contains a simple objects for
every element g ∈ G and fusion rules defined by
group multiplication, with one-dimensional fusion
spaces and F g1,g2,g3g4 = exp(iω(g1, g2, g3, g4)). If ω
is trivial, then VecG describes the ordinary group.

2. Rep(G): for finite group G, the objects of Rep(G)
are representations of G and simple objects are the
irreducible representations, the fusion is the usual
tensor product of representations.

In a gapped phase of G-gauge theory where G is a
finite (possibly nonabelian) group, the Wilson lines are
topological operators generating an integral fusion cate-
gory Rep(G) (the quantum dimension of a Wilson line is
the dimension of its representation). When G is abelian,
then Rep(G) = VecĜ and the symmetries generated by

the Wilson line are grouplike symmetries Ĝ known as the
magnetic symmetries of the gauge theory, where

Ĝ = {χ : G→ U(1)| χ is an irrep}

is the Pontrjagin dual of G, for example, Ẑn ∼= Zn.
The nonabelian G-gauge theory is more interesting,

since now Rep(G) contains simple objects which are not
invertible, corresponding to irreps of dimension greater
than one, so one needs the fusion category perspective
to analyze the symmetry properly. One can further sum
over a fine enough mesh of lines in Rep(G) to get back
to the theory with global symmetry G. The gauging and
regauging the nonabelian symmetry is discussed in [10].

https://mathoverflow.net/questions/6180/why-are-fusion-categories-interesting
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Gapped boundary of 3d TFTs

One incarnation of the holographic principle in quan-
tum field theory is the correspondence between 3d G-
Chern-Simons theory as the bulk field theory and the 2d
Wess-Zumino-Witten CFT on a suitable Lie group G as
the boundary field theory [14]. This fits in the more gen-
eral anomaly inflow argument, namely when putting the
non-trivial bulk theory on the manifold with boundary,
there is some inconsistency that needs to be canceled by
the boundary theory, the inconsistency is captured by
the ’t Hooft anomaly of the symmetry G.

Actually the CFT is one consequence ofG with ’t Hooft
anomaly, all possibilities are,

1. gapless,

2. G symmetry spontaneously broken (for discrete
symmetry G in d > 1 and continuous G in d > 2,
d is spacetime dimension.)

3. non-trivial gapped phase preserve G (e.g. topolog-
ical order)

For finite group, the above discussion is replaced by
Dijkgraaf-Witten theory which can be though of as fi-
nite group version of Chern-Simons theory, and they ad-
mit SPT or spontaneous symmetry breaking phase as
the gapped boundary. By generalizing the ordinary sym-
metry to categorical symmetry, it is possible to have
gapped phase preserve the categorical symmetry C via
the anomaly inflow. In [8], the authors argue that a
1+1D theory with a fusion category symmetry forms a
boundary condition of a 2+1D topological quantum field
theory known as Turaev-Viro/Levin-Wen theory, which
is a construction induced from a fusion category C. They
also prove several theorems, one is

If C has an object with non-integer quantum
dimension, then the Turaev-Viro theory de-
fined by C does not admit a gapped, nonde-
generate, C-symmetric boundary condition.

For example TY(Z2) having dim(XN ) =
√

2 does
not admit gapped boundary but TY(Z2 × Z2) having
dim(XN ) = 2 admits symmetric gapped boundary and
this is associated to the self-dual property of the SPT or-
der on the 1+1d boundary [8]. However, there are some
other examples of anomalous fusion categories which
have all integer quantum dimensions, such as TY(Zn)
with n being a perfect square. (The Tambara-Yamagami
category is introduced around Eq. 0.6, it also needs
more data to specify the category, they are omitted for
demonstration. With specified data, TY(Z2×Z2) can be
equivalent to Rep(H8),Rep(D8),Rep(Q8) as analyzed in
[8, 10, 15])

SUMMARY

The invertible topological defect lines which forms a
VecG impose the ordinary symmetry, this is generalized
to the categorical symmetry by allowing the TDLs to
form a general fusion category and the TDLs are in gen-
eral non-invertible. The interesting fusion categories that
possess the non-invertible TDLs are

1. Rep(G) with G being nonabelian, this can be ob-
tained by gauging the nonabelian G or equivalent
to certain Tambara-Yamagami category.

2. Tambara-Yamagami category TY(G), which is rel-
evant to the self-duality/auto-orbifold of a system
with any abelian ordinary symmetry G, is con-
structed by having the group-like TDLs associated
to the abelian group and one additional duality
TDL. This is a generalization of the Ising Kramer-
Wannier duality.

Conversely, if a system admits duality line, then it is au-
tomatically self-dual, if the dimension of the duality line
is not integer, the system cannot have symmetric gapped
phase. The duality line places a rather strict and inter-
esting constraint on the bahavior of the system. Apart
from the group-like and duality TDLs, other subsets of
TDLs may also place interesting constraints on the sys-
tem, these need to be explored.

Other physical relevant fusion categories need to be
found, one is to generalize the duality to n-ality, for
example, the n-ality line may have the fusion algebra
X⊗nN =

⊕
h∈GXh and dimXN =

n
√
|G|. Another one

is to further understand the TDLs corresponding to the
T -duality of free boson theory and level/rank duality of
the WZW theory, the TDLs in free boson theory are in-
vestigated in [13].

Another interesting generalization is towards higher di-
mension. It is known that when gauging a p-form sym-
metry given by an abelian group, the dual abelian group
generates the (d−2−p)-form symmetry. However for non-
abelian 0-form symmetry, the gauged version will have
Rep(G) as the dual (d − 2)-form “categorical” symme-
try, and for d = 3 the 1-form symmetry seems to require
including the modular tensor categories[10]. It is also
interesting to study the duality lines/surfaces in higher
dimension, for example, the eletromagentic duality ex-
changing electric field and magnetic field is an analogue
of the 2d Kramer-Wannier duality. Recent developments
in duality web of the 2+1d quantum field theories offers
more examples [16].
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APPENDIX

A short review on CFT and minimal models

We review some notations in the CFTs [17]. The
2d plane is parametrized by complex number z, z̄, the
fields are separated to holomorphic and anti-holomorphic
parts, in many cases they decouple, one only need to
focus on the holomorphic part and the antihomorphic
part is easy to restore. The energy-momentum tensor
T (z), T̄ (z̄) generates the local conformal transformation,
and the mode expansions is T (z) =

∑
n∈Z z

−n−2Ln. The
Ln, L̄n satisfy the well-known Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0.

where c is the central charge. Similar to the represen-
tations of Lie algebra. The the highest weight state is
defined by,

L0

∣∣h, h̄〉 = h
∣∣h, h̄〉 , L̄0

∣∣h, h̄〉 = h̄
∣∣h, h̄〉

Ln
∣∣h, h̄〉 = 0, L̄n

∣∣h, h̄〉 = 0 if n > 0.

As mentioned previously, one can focus on the homolo-
morphic part, the descendant states are obtained by ap-
plying the raising operators in all possible ways,

L−k1L−k2 ...L−kn |h〉 , (1 ≤ k1 ≤ ... ≤ kn).

The highest weight state and the descendant states form
a representation of the Virasoro algebra, called Verma
module, labeled by the central charge and highest weight
V (c, h).

It is possible that V (c, h) is reducible, there exists a
singluar vector, the norm of it and its descendant are
zero. By identifying states that differ only by a state
of zero norm, one can get the irreducible representa-
tions M(c, h). The minimal models are constructed by
M(c, h)s, the Hilbert space is

H =
⊕

1≤r<p′ 1≤s<p

M(c, hr,s)⊗ M̄(c, hr,s)

and this diagonal minimal model is labeled by M(p, p′)
with p > p′. And,

c = 1− 6
(p− p′)2

pp′

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′

The minimal models are relevant to many physical ap-
plications, e.g. M(4, 3), c = 1

2 describes Ising transition,
M(5, 4), c = 7

10 describes tricritical Ising criticality and
so on.

Thanks to the state-operator correspondence in the
CFT, the highest weight states correspond to primary
field operators. The operator product expansion of
these primary field operators in the minimal mod-
els satisfies the fusion algebra. For example, in the
Ising CFT, the primary fields are 1, σ, ε with (h, h̄) =
(0, 0), ( 1

16 ,
1
16 ), ( 1

2 ,
1
2 ), the fusion rules for these primary

operators are,

σ × σ = 1 + ε, σ × ε = σ, ε× ε = 1 (0.7)

A short review on fusion category

As discussed in the main text, one can think of the
topological defect line as a circle surrounding the origin,
the composition (or fusion) of two TDLs can be realised
by placing the defect Xb on the unit circle, the defect Xa

on a circle with radius r > 1 and taking the limit r → 1,
and in the limit (well-defined for TDLs) one obtains the
fused TDL Xa⊗Xb at r = 1. In this way, one can get the
fusion algebra of the TDLs [6, 11, 12]. Diagrammatically,
fusing blue and red lines to a green line is represented as,

The fusion category is determined by the fusion rule
Xa ⊗ Xb =

⊕
c∈C N

c
abXc and the F -symbols associated

to the F -move,

The F -symbol is N -by-N matrix if a, b are N -
dimensional, for VecωG, F is 1-dimensional and F g1,g2,g3g4 =
exp(iω(g1, g2, g3, g4)). The F -symbols satisfy the consis-
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tency condition,

which is called the “pentagon” equation, stating that
the upper way and lower way to get the right side from
the left side should be equivalent. Knowing the fusion
rule, one can solve the pentagon equation to find the F -
symbols.
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