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In this short note, we give a veryN brief overview of SL(2,R) and its application. Dachuan said,
for sufficiently large N , veryN fuse into the vacuum. But since I didn’t figure out how large N
should be, as always, I ended up with 3 and a half pages, diagram excluded.

INTRODUCTION

The Lie algebra sl(2,R) is given by

[Λ0,Λ1] = Λ2, [Λ0,Λ2] = −Λ1, [Λ1,Λ2] = −Λ0.
(0.1)

The simply connected Lie group with the Lie algebra
sl(2,R) is denoted by S̃L(2,R) and its has the center

Z = {e2πnΛ0 : n ∈ Z}. (0.2)

The Casimir operator is given by

Q = Λ2
0 − Λ2

1 − Λ2
2. (0.3)

REPRESENTATIONS OF sl(2,R)

Here we list all the unitary irreducible representation of
sl(2,R). The irreducible representations are labelled by
two quantum numbers q = λ(1 − λ) ∈ R, the eigenvalue
of the Casimir operator Q (where λ ∈ R or λ ∈ 1

2 + iR),
and e−2πiµ, the eigenvalue of the center element e2πΛ0

(where µ ∈ R/Z). Here are the following irreducible rep-
resentations of sl(2,R):

• Trivial representation I: q = µ = 0.

• Discrete series with lowest weight D+
λ : λ > 0, µ =

λ.

D+
λ = {|λ;m〉 : m = λ, λ+ 1, λ+ 2, · · · }. (0.4)

• Discrete series with highest weight D−λ : λ > 0, µ =
−λ.

D−λ = {|λ;m〉 : m = −λ,−λ− 1,−λ− 2, · · · }. (0.5)

• Principal series Cµλ : λ ∈ 1
2 + iR, where we chosen

µ ∈ (−1/2, 1/2].

Cµλ = {|λ, µ;m〉 : m = µ, µ± 1, µ± 2, · · · }. (0.6)

• Complementary series Eµλ : |µ| < λ < 1/2, and we
have chosen µ ∈ (−1/2, 1/2].

Eµλ = {|λ, µ;m〉 : m = µ, µ± 1, µ± 2, · · · }. (0.7)

GLOBAL STRUCTURES

In the above section, we list all the unitary irreducible
representation constructed from the Lie algebra sl(2,R).
This gives all the irreducible representation of the sim-
ply connected Lie group with this Lie algebra, which is
denoted by S̃L(2,R). Lie groups with different global
structures are acquired by taking quotient with respect
to the center Z or a subset of Z. Allowed irreps can be
found by requiring the set we quotient out acting trivially
on the irreps.

For instance, PSL(2,R) = S̃L(2,R)/Z. Therefore, Z
must act trivially on the irreps of PSL(2,R). Hence, only
irreps with e−2πiµ = 1 are allowed. As another example,
PSL(2,R) = SL(2,R)/{1,−1}. Hence, for SL(2,R), the
condition is relaxed to e−2πiµ = ±1.

Finally, as a bonus, we describe the allowed irreps of

GB = S̃L(2,R)×R
Z where we quotient the diagonal Z gen-

erated by the action

(g, θ) 7→ (e2πΛ0g, θ+B) ∈ S̃L(2,R)×R, B ∈ R. (0.8)

Before taking quotient, the irreps of S̃L(2,R) × R are

irreps of S̃L(2,R) tensor product the irreps of R. The
irreps of R are given by |k〉 where k ∈ R, and θ ∈ R
acts on |k〉 as eikθ|k〉. Notice that there is no charge
quantization on k because the group is R rather than
U(1). To quotient the diagonal Z means the irreps must
be invariant under the action (e2πΛ0 , B), which requires

e−2πiµeiBk = 1, (0.9)

that is,

µ− Bk

2π
∈ Z. (0.10)

As we will see, an application of this construction is when
we want to sum over irreps of S̃L(2,R) with fixed e−2πiµ,
which is in the same spirit as one can gauge ZN center
symmetry out of SU(N) by first extending SU(N) to

U(N) = SU(N)×U(1)
ZN in [5].

FOURIER ANALYSIS (OR HOW TO FIND
WAVEFUNCTIONS)

To motivate this section, let’s consider the a 1-dim
particle in QM. A complete basis of wave function is given
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by

1√
2π
eipx, (0.11)

and any other wave function can be written as a linear
superposition of the above. Notice that if we view the
position space R as a group, then this is precisely the
representation matrix (1-by-1, of course) of the charge p
irrep of R up to normalization. This idea naturally gen-
eralizes to particles moving on Lie groups. Specifically,
consider the action

S =

∫
dtTr(∂tg)(∂tg

−1), g ∈ G, (0.12)

then a basis of wave functions are given by the matrix
element functions U jα,k:

U jα,k = 〈j|Uα(g)|k〉, (U
j

α,k(g) = U jα,k(g−1) = 〈k|Uα(g)|j〉∗),
(0.13)

where α labels the irreps of G. Notice that since each
matrix element function U jα,k carries two indices k, j, it
is naturally to define two actions (i.e., the left action and
the right action) of G on U jα,k:

L(h) · Ukα,j = U
k

α,nU
n
α,j(h), (0.14)

R(h) · Ukα,j = U
k

α,n(h)U
n

α,j . (0.15)

If you wonder why left action acts from the right and vice
versa, this is because we are working with U rather than
U . Anyway, this is consistent with the fact that there are
two conserved currents in the above Lagrangian:

j1 = g−1ġ, j2 = ġg−1. (0.16)

However, there is a caveat. If G is compact, then
U jα,k(g) is obviously normalizable; however, if G is non-

compact, it is often U jα,k(g) is not normalizable. For

instance, for G = R, Uα(θ) = 1√
2π
eiαθ is clearly not nor-

malizable. But it is at least δ-normalizable, in the sense
that,

〈Uα|Uβ〉 ≡
∫ ∞
−∞

dθ Uα(θ)Uβ(θ) = 2πδ(α− β). (0.17)

However, some of the wave functions are not even δ-
normalizable, therefore should be excluded. For G =
S̃L(2,R), this is the complementary series Eµλ and the
discrete series D±λ with λ < 1

2 .
Similar to the U(1) case, these δ-normalizable wave

functions satisfies the following orthogonality conditions.
For discrete series D±λ with λ > 1

2 , we have

〈U±(λ+k)

λ,±(λ+j)|U
±(λ′+k′)

λ′,±(λ′+j′)〉 =
8π2

2λ− 1
δ(λ− λ′)δjj′δkk′ ,

(0.18)

where λ, λ′ > 1/2, j, k, j′, k′ ∈ Z≥0. For principal series
Cµq , we have

〈Uµ+k
1
2 +is,µ+j |U

µ′+k′

1
2 +is′,µ′+j′〉

=4π2 cosh(2πs) + cos(2πµ)

s sinh(2πs)
δ(s− s′)δ(µ− µ′)δjj′δkk′ .

(0.19)
Here, we stop to introduce the concept of Plancherel

measure, which is the analog of the normalization of the
wave function Uk = eikx:

〈Uk|Uk′〉 = 2πδ(k − k′). (0.20)

In this case, the identity operator I is given by

I = (2π)−1

∫
|Uk〉〈Uk|dk. (0.21)

Hence the Plancherel measure is (2π)−1dk, and is com-
puted from 〈Uk|Uk′〉. In general, consider

〈Ukα,j |U
l

β,m〉 = Cαδ(α− β)δjmδ
kl, (0.22)

then C−1
α dα is the Plancherel measure. For discrete series

D±λ , the Plancherel measure is

(2π)−2(λ− 1

2
)dλ, λ >

1

2
. (0.23)

For principal series Cµ= 1
2 +is

λ , the Plancherel measure is

(2π)−2 s sinh(2πs)

cosh(2πs) + cos(2πµ)
dsdµ. (0.24)

APPLICATION I: FIRST ORDER FORMALISM
OF JT GRAVITY

In this section, we briefly show how to see the partition
function of JT gravity formulated using SL(2,R) gauge
theory on a disk D2 is the same as the partition func-
tion of Schwarzian theory on the boundary ∂D2 = S1

following [2].
The Schwarzian theory is given by the action

SSchw[f ] = −C
∫ β

0

du

{
tan

πf

β

}
, {F, u} ≡ F ′′′

F ′
−3

2

(
F ′′

F ′

)2

,

(0.25)
and the partition function over S1 is given by

SSchwarzian(β) ∝
∫ ∞

0

dss sinh(2πs)e−
β
2C s

2

. (0.26)

For compact group, the partition function of 2d YM the-
ory on D2 is given by (this should be reviewed in Zipei’s
paper)

Z(g, eβ) =
∑
R

dimRχR(g)e−
eβC2(R)

4N , (0.27)
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where tr(ΛiΛj) = Nδij , g is the holonomy of G along
the boundary and eβ is the size of the boundary S1. For
non-compact group, the partition function then becomes

Z(g, eβ) =

∫
dRρ(R)χR(g)e−

eβC2(R)
4N , (0.28)

and tr(ΛiΛj) = Nηij .
For this, we first extend the gauge group to GB defined

in the previous section and add to the action

∆SE = −i
∫

Σ

φRFR + i

∮
∂Σ

φRAR. (0.29)

The holonomy along the boundary is given by g̃ =∮
∂Σ
AiΛi ∈ S̃L(2,R) and θ =

∮
∂Σ
AR, as

Zk0(g̃, eβ) =

∫
dθZ((g̃, θ), eβ)e−ik0θ, (0.30)

where we’ve chosen φR|∂Σ = k0, and this allows us to
isolate the contribution of the R labelled by k0, and thus
fixes e2πiµ with µ ∈ Bk0

2π +Z. Then, we send µ→ i∞, or
equivalently kB →∞,

G = GB with B →∞, φR|∂Σ = k0 = −i. (0.31)

For fixed GB holonomy (g, eβ), the partition function
is given by

Z(g, eβ) ∝
∫ ∞
−∞

dk

∫ ∞
0

ds
s sinh(2πs)

cosh(2πs) + cos(Bk)

×χ(s,µ=Bk
2π ,k)(g)e−eβs

2/2 + (discrete series),

(0.32)

and after (0.30) and taking k0 = −i and B → ∞, the
leading order contribution for g̃ = 1 is given by

Zk0(1, eβ) ∝ C
∫ ∞

0

dss sinh(2πs)e−eβs
2/2 +O(e−B).

(0.33)
Thus we recover the partition function (0.26) of the
Schwarzian theory.

APPLICATION II: STRING IN AdS3

In this section, we briefly review the spectrum of
strings in AdS3 and its relation to the representation the-
ory of S̃L(2,R) following [3].

Notice that the group manifold of S̃L(2,R) is the AdS3

with non-compact time direction. Hence string theory on
AdS3 is made of S̃L(2,R) WZW model tensor product
some internal CFT. This internal CFT usually arise from
the string compactification. The action of the S̃L(2,R)
WZW model is given by

S =
k

8πα′

∫
d2σTr

(
g−1g∂µgg

−1∂µg

)
+ kΓWZ . (0.34)

The theory has a set of conserved left moving and right
moving currents JaR(x+) and JaL(x−), corresponding to

the S̃L(2,R)× S̃L(2,R) symmetries of the Lagrangian.
Before study the theory quantum mechanically, a lit-

tle discussion classical solutions might be helpful. The
theory has a spectral flow symmetry, parameterized by
w ∈ Z, which allows one to generate new solutions from
the known one. Under the spectral flow, the currents
transform as

J3
R/L = J̃3

R/L −
k

2
w, J±R/L = J̃±R/Le

±iwx± , (0.35)

and in terms of the Fourier modes

J3
n = J̃3

n −
k

2
wδn,0, J±n = J̃±n±w. (0.36)

As one may recognize, this is the spectral flow in CFT.
There are three classes of solutions we are interested

in:

• Geodesic: For these solutions, the string collapsed
to a point, hence the string world sheet shrinks into
a world line in AdS3.

• Short Strings: These solutions are acquired from
the spectral flow of the timelike geodesics. They
describe a string expand and contract repeatedly.

• Long Strings: These solutions are acquired from
the spectral flow of the spacelike geodesic. They
describe a string, which starts its life as a circular
string of an infinite radius on the boundary of the
AdS3 at t = −∞, collapses into the bulk and then
expand to an infinite circle on the boundary again.
The reason for such solution to have finite energy is
the NS-NS B field tends to extend the string, which
balance the contraction force of the string tension.

FIG. 1: A terrible drawing to illustrate the three types of classical
solutions mentioned above.

We pause here to explain the two puzzled before [3].
People used to believe the spectrum only contains the
representations of ŜLk(2,R) whose zero modes are the
discrete series with 0 < λ < k

2 , whose L0 is bounded be-
low. This raises the following puzzles. First, there is an
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upper bound on the mass of the string states in AdS3,
which implies the energy contribution from the internal
CFT can not be too high. That is, if the compact dimen-
sions contain a circle, then there will be a cut-off on the
winding numbers, which seems quite arbitrary. Second,
among those representations, there is no one correspond
to the long string solutions.

In the quantum theory, the S̃L(2,R) extends into Kac-

Moody algebra ŜLk(2,R). The full representation is ac-
quired by acting the raising operators (creating string
oscillation) on the zero modes, which are representations

of S̃L(2,R). In the low energy limit, the strings will be-
come particles and only those zero modes will survive.
Hence the WZW model will reduce to the quantum me-
chanics over AdS3 = S̃L(2,R). From previous discussion,
we learn we must keep all the (δ-)normalizable represen-
tations, including the principal continuous series Cµλ and
the discrete series D±λ with λ > 1

2 and we must include
both. We will denote the corresponding representations
of ŜLk(2,R) as Ĉµλ and D̂±λ respectively.

However, there are still two extra complexities. First,
the representation of ŜLk(2,R) will contain negative
norm states, thus must be removed from the spectrum
by imposing the Virasoro constraint:

(Ln + Ln − δn,0)|phsical〉 = 0, n ≥ 0, (0.37)

where Ln is the Virasoro generators of the ŜLk(2,R) the-
ory and Ln is the Virasoro generators of the internal
CFT. Those representations still include negative norm
states after imposing the Virasoro constraints must not
be included in the theory.

Second, the ŜLk(2,R) has the spectral flow 0.36, under
which

L̃n = Ln + wJ3
n −

k

4
w2δn,0. (0.38)

Unlike the spectral flow for U(1) symmetry in the case
of compact boson, this does lead to new representations
which generically are not isomorphic to the Ĉµλ and D̂±λ .

We will denote them as Ĉµ,wλ and D̂±,wλ . Hence, we must
keep those new representations which satisfy unitarity
after imposing the Virasoro constraint.

After some tedious algebra which you can find in the
appendix of [3], one finds the spectrum of the S̃Lk(2,R)
WZW model contains two types of representations. The
spectral flow of the principal series Ĉµ,w1

2 +is,L
⊗Ĉµ,w1

2 +is,R
and

the spectral flow of the discrete series D̂+,w
λ,L ⊗ D̂

+,w
λ,R with

1
2 < j < k−1

2 . For string theory, we tensor the above
with the representations of the internal CFT and impose
the Virasoro constraints.

Two comments:

• We have to include two copies of the same rep-
resentations for the left-mover and the right-mover
because there are two copies of the Virasoro. If you

wonder why we can’t have something like Ĉ⊗D̂, this
is because, in the low energy limit where strings be-
come particles, the wave functions are of the same
irreps under the two copies S̃L(2,R), see (0.14).

• And if you wonder we do not include D̂−, this is
because D̂− is actually related to D̂+ under the
spectral flow.

How does this spectrum helps solve the two puzzles we
mentioned previously? First, the Ĉµ,w1

2 +is,L
⊗Ĉµ,w1

2 +is,R
would

correspond to the long strings in the classical limit. The
appearance of the principal representation also explains
what happens if we try to push the internal energy h
very high, the discrete representation which seems to vi-
olate the unitarity bound would decay, and a continuous
representation would appear and save the day.
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