GROUP ACTIONS ON
MULTISYMPLECTIC MANIFOLDS

BRIAN TRAN

ABSTRACT. Analogous to the Poisson bracket
on symplectic manifolds, the observables on
multisymplectic manifolds can be equipped with
an algebra structure. We investigate these
algebraic structures; paying particular atten-
tion to the conserved quantities arising from
group actions on a multisymplectic manifold.

Introduction

In this paper, we investigate the algebraic structures
associated to multisymplectic manifolds. Keeping the
prototypical example of classical field theory in our
mind, this algebraic structure provides a covariant
generalization of the Poisson bracket which one usu-
ally employs in the quantization of a symplectic sys-
tem. For field theory, there are two immediate issues
in the symplectic formulation: first, it requires that
one introduce an explicit foliation of spacetime and
hence break manifest covariance; furthermore, the re-
sulting symplectic phase space is infinite-dimensional,
which introduces many functional analytic issues. By
studying the algebraic structure of the multisymplec-
tic formulation of classical field theories (which is both
covariant and finite-dimensional, see Appendix B for a
primer), the hope is that one can rigorously formulate
a quantization theory for field theories; this is still an
active area of research but there has been progress for
specific types of manifolds, e.g. the multisymplectic
quantization of hyperkéhler manifolds [1].

In this paper, we put the major ideas and concepts
in the main body of the paper, and leave specific ex-
amples (appendix B) and proofs (appendix C) to the
appendices.

Multisymplectic Geometry and the Algebra of
Observables

In this section, we introduce the basics of multisym-
plectic geometry and the algebra of observables. We
say a manifold M with a closed n + 1 form w €
QnFTL(M) is a pre-n-plectic manifold, where 1 < n <
dim(M) — 1. Furthermore, if w is non-degenerate, in
the sense that the map v — ,w is injective, then we
call the system (M,w) n—plectic. The simplest ex-
amples are n = 1 which is a symplectic manifold and
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n = dim(M) — 1 which is an oriented manifold (where
w is the volume form). In the context of classical field
theory (see Appendix B), the relevant multisymplectic
form is defined over the restricted dual jet bundle of
a fiber bundle; one can think of the multisymplectic
form as encoding a symplectic form in each space-
time direction; upon introducing an explicit foliation
of spacetime, the multisymplectic form transgresses
into a symplectic form.

Given an n—plectic manifold (M, w), we say that an
(n — 1)—form H is Hamiltonian if there exists a vec-
tor field Xy € X(M), called the associated Hamil-
tonian vector field, such that dH = —ix,w. We de-
note the space of such Hamiltonian forms Q7! (M) C
Q=Y(M).

Now, consider the following Lie co—algebra (which
is a graded generalizaton of a Lie algebra; although
I won’t state the precise definition here, it is just a
graded algebra with a graded analog of the Jacobi
identity),

Loo(M,w) = (L = @ Ly, {[- -+, ],

where Ly = Q?{;,ln(M),Lz = Q”flfi(M) for1 <<
n — 1 (an element of L, is said to have degree «),
and the k—ary brackets are defined as follows. [ -] :
L® — L; [a]; = da if dega > 0, and [a]; = 0 if
dega =0. For k > 1,

_(_l)k(k+1)/2

[al,...,ak]k: iXal---iXakw

if deg(a; ® --- ® ag) = 0 and 0 otherwise. This al-
gebra is known as the Poisson Bracket Lie n—algebra
and serves as the algebra of observables in the multi-
symplectic setting.

A particularly important subalgebra is (Lo, [, -|2), [, Bl2 =

ixXaix,w. [a, Bz is clearly an n — 1 form by defini-
tion. In fact, it is also a Hamiltonian form; its associ-
ated Hamiltonian vector field is just [Xq, X3| (which
follows routinely from Cartan’s magic formula and
closedness of w, see Appendix C). Thus, we have an al-
gebra morphism from the Lie algebra of vector fields
equipped with the Jacobi Lie bracket to (Lo, [, ]2)-
Note that [-, ]2 is just the multisymplectic analog of
the Poisson bracket (see Appendix B); in the case
n 1 (i.e. symplectic geometry), this is precisely
the Poisson bracket.

Conserved Quantities

Next, we state the algebraic properties of conserved
quantities. Conserved quantities are of course funda-
mental in a physical system; in the setting of quantiza-
tion, they provide operators which commute with the
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Hamiltonian governing the system. Even in the clas-
sical context, they are useful as they provide a way to
effectively reduce the dimensionality of the system (a
process known as symplectic reduction in mechanics
or more generally, multisymplectic reduction).

We say a form a € Q(M) = @, QF (M) is strictly (resp.
locally, globally) conserved in the direction v € X(M)
if £,a0 =0 (resp. £, is closed, £, is exact), where
£ denotes the Lie derivative. Of the three notions of
conserved, the notion of globally conserved is usually
emphasized in physics, where we say that a symmetry
of a Hamiltonian/Lagrangian density is a transforma-
tion which leaves the density invariant up to a total
derivative. Subsequently, for brevity, we will focus on
globally conserved quantities, although similar state-
ments can be made in the local and strictly conserved
cases. Note that a € Q.1 (M) is globally conserved
by Xu (ie. £x,a is exact) if and only if £x H is
exact (see Appendix C).

The algebraic structure of the conserved quantities
arises from the fact that they form subalgebras of
Lo (M,w). In particular, if C'(v) denotes the set of
globally conserved forms in the direction v, where v is
also a multisymplectic symmetry (i.e. £,w = 0), then
Loo(M, w) N C(v) is an Lo, —subalgebra of Lo, (M, w)
(and similarly for strict and locally conserved quanti-
ties). For a proof, see Appendix C.

Homotopy Co-momentum Maps for
Multisymplectic Group Actions

Since the algebra of conserved quantities is fundamen-
tal to the structure of a multisymplectic system, we
want to be able to construct such conserved quanti-
ties. One way to do this is by finding homotopy co-
momentum maps. These are the multisymplectic gen-
eralizaton of momentum maps in symplectic geometry,
which translate symmetries into conserved quantities
(e.g. the momentum map for rotational symmetry
is angular momentum); for a primer on momentum
maps, see Appendix A (if you're unfamiliar with mo-
mentum maps, I recommend reading this before our
discussion of homotopy co-momentum maps).

Consider the following L., —algebra:
Loo (g) = (@Z=1Akgv ['7 ])

where the bracket is extended from the usual bracket
on one copy of g:

[EL A AN&ym A Amp] = [E,m] A A [k M)
Define the homology differential Og({1 A -+ A &) =

Zlgz’<j§k(_1)i+j[5i?§] NN ANEN NN A
&;. The skew symmetry and Jacobi identity of the
bracket implies that 0p_1 o Jy = 0 and so the above

forms a chain complex. Its homology will allow us
to describe the conserved quantities. Now, suppose
we have a G—action on M which is multisymplectic,
i.e. the G—action preserves the multisymplectic form:
g*w = w or infinitesimally, £ew = 0. We define a
homotopy co-momentum map as an L., —morphism
(f) ¢ Loo(g) = Loo(M,w), where (f) denotes a col-
lection of maps f; : A'g — L;_1, and in addition,
for ¢ € Alg = g, dfi(¢) = —icw, where the vec-
tor field on the RHS is from the infinitesimal action
on M. Thus, a homotopy co-momentum map is an
Loo—morphism of the above algebras, with the ad-
ditional condition that fi : g — Lo = Q};,} (M) is
a co-momentum map in the usual sense as described
in Appendix A; as we will see, this will single out a
stronger conservation property that fi; has than the
other fr. We will provide an example of such an f;
in the context of field theory in Appendix B; unsur-
prisingly, it is the usual Noether current. Using the
algebras of both and the homology operator, the con-
dition that (f) preserves the algebras is equivalent to
—fr-1(08) = dfi(§) + (=1)FFFD24g,
E=& A N& € AFg.

As we noted, the space ®@A*g forms a chain complex,
so we define its relevant homology spaces: the cycles
Zi(g) = ker O, the boundaries By (g) = im0k1, and
the k—th homology Hy(g) = Zx(g)/Bx(g). Now, sup-
pose the group action globally conserves the Hamil-
tonian H € Q1 (M) of our system (the system is
governed the vector field Xy of dH = —ix,w), then
fr(&) is locally conserved by X for any € € Zy(g) and
fr(n) is globally conserved by Xy for any n € Bg(g)
(For a proof of the result, see Appendix C). Note
the contrast to the result for the co-momentum map
in symplectic geometry (see Appendix A), where an
H—preserving symplectic action preserves p*(n) for
any 1 € g; this should not be too surprising, as the
conserved quantities in the multisymplectic case con-
tain much more content than the class of conserved
functions; they contain the whole class of k—form
Noether currents (k from 0 to n — 1). However, while
the fr have weaker conservation properties than the
usual co-momentum map in symplectic geometry (that
is, fx(&) needs £ to be a cycle (resp. boundary) to be
locally (resp. globally) conserved), f1 has the stronger
conservation property that f1(&) is globally conserved
for any £ € g, since we explicitly required that df;(§) =
—t¢w. The proof is identical to the proof of the con-
servation of the (co-)momentum map in symplectic
geometry, except there we assumed that the group ac-
tion strictly conserved H whereas here we assume it
globally conserves H (if we instead assumed the mul-
tisymplectic action strictly conserved H, then fi(&) is
strictly conserved for any & € g). Thus, the subalgebra

.1, w, Where
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of the degree 1 homotopy co-momentum maps con-
tained in (Lo = Q.1 (M), [-,]2) C Loo(M,w) forms
a special algebra of conserved currents. This is the
algebra of Noether currents as we usually think of it

(again, see Appendix B).

Conclusion

We investigated the algebraic structures associated to
multisymplectic manifolds, which generalize the usual
Poisson algebra of functions in symplectic geometry
to an algebra on k—forms. It also extends the usual
conservation of co-momentum maps in symplectic ge-
ometry, modulo conditions concerning the homology
spaces Z; and By of the Lie algebra, but reproduces
the stronger conservation property for the special sub-
algebra of Noether currents. This algebra and its sub-
algebras on multisymplectic manifolds are at the heart
of recent attempts to quantize multisymplectic sys-
tems and is an active area of research. Another in-
teresting question is the generalization of integrable
systems in symplectic geometry: in symplectic geom-
etry, if one has a complete set of commuting observ-
ables, one has a completely integrable system and the
dynamics are solved (Louville-Arnold theorem). The
multisymplectic generalization is much more intricate,
as the theory of completely integrable PDE is less un-
derstood (but see [6] for an excellent framework of
pluri-Lagrangian systems for approaching this prob-
lem).

(Note: I recommend reading appendix B for putting
our discussion into the context of Hamiltonian field
theory.)

APPENDIX A. Momentum Maps in Symplectic
Geometry

Let (M,w) be a symplectic manifold and suppose we
have a Lie group G (with Lie algebra g) acting on
(M, w) by symplectomorphisms, i.e. g*w = w for every
g € G; infinitesimally, £¢,,w = 0 (see below for the
definition of the vector field £5;). We say that this
action is Hamiltonian if it admits a momentum map
w: M — g* (here g* is the linear dual of g, with
duality pairing which we denote (,-)), i.e. u satisfies

d{p, &) = i¢,,w, V€ € g,

where £)s is the infinitesimal generator of the group
action on M, i.e. it is a vector field on M, defined
by (§m)p = %\0 exp(t€)p. One also usually requires
that the momentum map is Ad*-equivariant; g o g =
Adgop (this is so that the pre-image of the momentum
map is stable under the group action and thus one can
perform symplectic reduction).

Aside from symplectic reduction, the significance of a
momentum map is the following: if the group action
admits a momentum map and it preserves a Hamil-
tonian H (in the sense that ¢*H = H or equivalently
LeyH = 0), then the momentum map is preserved
under the time evolution of H. The proof is as fol-
lows: Compute

0= ngH = igMdH = _iSMiXHw = iXHigMUJ

d
= ixy (1, ) = £ A, &) = 5 (.6),

(where the d/dt is relative to the time flow generated
by Xpr). Thus, if we have a group action which ad-
mits a momentum map and is also a symmetry of the
Hamiltonian which evolves our system, then that mo-
mentum map is conserved. This is of course Noether’s
theorem stated in the language of symplectic geome-
try.

Now, we define a dual notion to momentum map,
the co-momentum map (these are equivalent for con-
nected Lie groups). We say that the group action
admits a co-momentum map if there exists a map
p* g — C°(M) such that dup*(§) = i¢,,w and p*
is a Lie algebra homomorphism from the Lie algebra
(g, [, ]) to the algebra of observables (C*°(M),{-,-}),
ie. p*[¢,n] = {u*(&), " (n)}. The comomentum map
has the same conservative property as the momentum
map: if the group action admits a comomentum map
and additionally preserves some Hamiltonian H, then
the comomentum map is preserved under the time
evolution of H.

The comomentum map is the object that generalizes
in the case of multisymplectic geometry; in particular,
by replacing (C*°(M),{-,-}) with Lo (M,w) and Lie
algebra homomorphism to L, morphism.

APPENDIX B. Multisymplectic Hamiltonian
Field Theory

To keep the exposition simple, we will not dive in to
the details of jet bundle geometry too thoroughly (but
see [3] and then [2] for great introductions to this the-
ory). Instead, to keep things simple, we will work in
coordinates.

Let X be an (n+ 1)—dimensional spacetime and Y —
X be a fiber bundle over spacetime. Intuitively, this is
the space where our fields live; more precisely, a field
is a section of this fiber bundle (if you're not familiar
with fiber bundles, think of it locally as a Cartesian
product X x @Q; the fields then map X into @, e.g.
@ = R is the case of a real scalar field). This space is
coordinatized by the coordinates of the spacetime z*
and the coordinates of the fiber ¢, so our coordinates
are (xH,¢"). The relevant multisymplectic manifold



4 BRIAN TRAN

in the Hamiltonian setting is the restricted dual jet

bundle associated to the fiber bundle; M = (J'Y)*.
The coordinates on this space are (z#,¢%, pl). The
ph are thought of as the multi-momenta: we have a
momentum coordinate for each spacetime coordinate
and fiber coordinate. These momenta arise from the

covariant Legendre transform,
oL
90,6
which passses from the Lagrangian picture (involving
the first order derivatives 0,¢%) to the (covariant!)

Hamiltonian picture (involving the multi-momenta p;).
Note that in order for the coordinates p} to be non-

ph =

degenerate i.e. good coordinates, the Lagrangian should

be hyperregular; otherwise, we should be working on
some constraint submanifold of the restricted dual jet
bundle (more precisely, on the image of the Legendre
transform).

We define the Cartan (n + 1)—form
0 =—ph Ndop* Nd"z,,

where d"x, = ig,d"'z. The multisymplectic (n +
2)—form is then defined as

w=—df = dp/ A d¢* A d"zy;

then (assuming the Lagrangian is hyperregular), (M,w)
is an (n + 1)—plectic manifold (note w is not a form
on X but a form on M, which is an (n+1+dim(Q) +
(n+1) dim(Q))—dimensional manifold). Think of w as
the spacetime generalization of the symplectic form in
mechanics, dp, Adq®; in fact, the multisymplectic form
w encodes such a symplectic form in each spacetime
direction, so is a covariant generalization.

Now, let’s get a feel for what the governing equations
dH = —ix,w look like. Let’s make a choice for H €

QYL (M); let’s say H = H (o, pj)d"xo, where H €
C>°(M). In coordinates, a vector field on M (and in

particular, Xy) can be written
.0
Xy =0o¢"
H=¢"73 o
where 2 denotes the time derivative of x along the flow
of Xg. Now, compute dH = —ix,w in coordinates.

0
oot

OH OH
dH = do® N d"
gon 10" Nt e o
and
ixgw = phde® Nd"x, — qﬁadp“ Nd"x,
Comparing both sides of dH = —ix,w, we get
_OH OH
-0 a
P = —, ¢ =
O oy

These are the usual time evolution Hamilton’s equa-
tions that one sees in Hamiltonian field theory. Why

was time singled out here (i.e. the O component of mo-
menta)? This is because we chose H = Hd"xg. The
key point is that we could’ve chosen a different slicing
of the form and produced a different set of equations
corresponding to the evolution of the system in the
direction of the slicing, i.e. this construction is co-
variant. The most general form of these equations is
known as the De Donder-Weyl equations,

My O
A’ -~ oph’

The first equation is just the Legendre transform of
the perhaps more familiar Euler-Lagrange equations
oL oL
s — 7 =0,

o) 09"
and the second equation is just the inverse Legendre
transform.

aupg = - 8u¢a

Recall our discussion of Lo, (M,w) in the abstract set-
ting and in particular the subalgebra (Lo, [+, -]2). Let’s
see how this subalgebra looks in this setting with the
above H and a similar F' = Fd"xg. Compute
_(OH OF OF OH o
(3172 99" Opy 5¢“)
This is just the usual Poisson bracket of the functions
H,F (multiplied by d"x¢) and so clearly (Lo, [, ]2)
forms a Lie algebra contained inside the L.,—algebra.
Of course, as noted before, [, ]2 is more general (co-
variant), since we did not have to slice our forms as

we did.

Now, as promised, let’s construct the degree 1 homo-
topy co-momentum map fi. Suppose we have a group
action on M that preserves 6, g*0 = 6 which implies
(since pullbacks commute with exterior derivatives)
that the action is multisymplectic, g*w = w. Infinites-
imally, we have £¢,,0 = 0, £¢,,w = 0. Note that usu-
ally, one considers actions on the fields i.e. sections of
the fiber bundle space Y — X and lifts these actions
to the restricted dual jet bundle M; these types of ac-
tions automatically preserve 6 (this extends the usual
result in symplectic geometry: cotangent lifted actions
preserve the tautological one-form on the cotangent
bundle). Let {3 denote the infinitesimal generator
vector field on M associated with £ € g. I claim

fl(g) = —ng@
is a co-momentum map, i.e. that dfi(§) = —i¢,w
To see this, one uses Cartan’s magic formula £, =
diy + 1,d. Compute

[H, F]Q = Z.XHZ‘XFW

df1(§) = —dig, 0 = ig) dO— L, 0 = _iﬁM(_dQ) = gy W
——
=0
which verifies that f; is a co-momentum map. If

you look at the coordinate expression of 6 (remem-
ber that pf is the image of the Legendre transform
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OL/0(0,¢%), you can convince yourself that f; is the
usual field-theoretic Noether current. If this group ac-
tion also preserves the H of our theory, this quantity is
conserved in the (strong homology-independent) sense
described in the main body of the paper.

APPENDIX C. Some proofs

In this part of the Appendix, we’ll prove some of the
claimed results that we left out of the main body of
the paper for brevity. The main tools are just Cartan’s
magic formula and the Lie homotopy formula, which
we will state below.

Claim 1: The first claim we made is that given two
Hamiltonian vector fields X, and Xg corresponding to
a, B € Q.. (M) respectively, [X,, Xg] is the Hamil-
tonian vector field corresponding to [a, ]2, i.e. that

we have a Lie algebra morphism.

Proof. All we need are Cartan’s magic formula £, =
iyd + di,, the Lie homotopy formula ] = Loty —
iy£y, and the fact that w is closed by definition. By

definition, we know ix,w = —da,ix,w = —dB, [a, B]2 =

ix,ix,w. We want to show that

—d[Oé, /8]2
Starting from the LHS, compute

Z[XOHXB]W =

Z[XQ,XB]W = £Xazxﬁw — 2X5£Xaw
= _£XangW — ngiXa dw —iXBdiXaw
=0
= —fXaZXBw + ZXB ddo
=0
= —diXaiXBw — ixadz’xﬁw
= —dix,ix,w +ix, ddp
~—~
=0
= —d[a, Bl2.

O

Claim 2: Next, we claimed that £x, o is exact if
and only if £x, H is exact. H,a € Q1 (M) were

Ham
arbitrary, so we only need to show one direction.

Proof. Suppose £x,a is exact, i.e. equals df for
some 3 € Q"2. Then, using Cartan’s magic formula,
we have

df = £x,H =ix,dH + d(ix H)

= —ix,ix,w+ dlix, H)

= ix,ix,w + d(ix, H)

= —ix,da+d(ix, H)
—Lxyda+d(ix,a)+dix, H),

which shows that
£xyda=d( = B+ix,atix,H)

is exact. O

Claim 3: Next, we claimed that for a multisymplectic
vector field, i.e. v such that £,w = 0, Loo(M,w) N
C(v) is an Ly —subalgebra of L. (M,w), where C(v)
denotes globally conserved forms in the direction v.

Proof. We want to show that the bracket of v—globally
conserved quantities is again v—globally conserved. In
fact, we can prove the stronger statement: the bracket
of v—locally conserved quantities is v—strictly con-
served. Thus, we want to show

£o([ar, ...

for any o; € L. The case k = 1 (where [a]; = do for
deg a # 0) is analogous to the previous proofs, so I'll
leave that up to you. For the case k > 1, recall the
k—ary bracket [...]; is only non-trivial when «; are
all degree 0 i.e. in Q. (M). This means they each
admit a Hamiltonian vector field X,,. Then,

£o(lon, .. aplp) = (—1)k<k+l>/2fvz'xa1 X, W

Recall the Lie homotopy formula ip, ) = £yiy — iy L.
Now, we claim that £, commutes with X0, when
acting on w. To see this, using the Lie homotopy
formula, we have

sop)k) =0

.v _ £v. w— . . £U
Z[ 7Xai}w ZXazw ,LX(% \7;&)/
= —,fdeéi = —d(fuai) = O,

where in the last line, we used that the Lie derivative
commutes with the exterior derivative and that «; is
v—locally conserved (recall we weakened our assump-
tions), so acting on it by the exterior derivative gives
zero. Thus, £, commutes with ¢ X,, When acting on
w, so in the above expression,

£U([Oc1, e ,ak}k) = (—1)k<k+l)/2£1,ixa1 . -ixakw,

we can commute £, to the right, the extra commuta-
tor terms i, x, | can be moved to the right by total
anti-symmetry of w with contractions so they are an-
nihilated. We are left with

(—1)k(k+1)/2ixa1 Cix,, Low.

=0
O

Claim 4: Finally, we claimed that the homotopy co-
momentum map satisfies: fi (&) is locally conserved by
Xp for any € € Zi(g), where H is globally conserved
by the group action. Similarly, fx(n) is globally con-
served by Xp for any n € Bi(g).
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Proof. Suppose as above; £ = {1+ -AEg € Zi(g),n =
mA---Ang € Bi(g), and H globally conserved by the
group action. From the definition of (f), we have

— fro1(8€) = dfi(€) + (—~1)FFHD24 g 0.

Instead of writing (—1)**+1/2_ T'll just put +, since it
will be zero anyway. We want to show that £x,, f(£)
is closed, i.e. dfx, fr(§) = 0. Since the exterior
derivative commutes the Lie derivative, this is

JEXdek(g) = _£Xka71( )j:fXHiﬁl"'iﬁkw7

29
~—
=0
where we used that £ € Zj so 9 = 0 (and (f) is an
algebra morphism which implies f;_1(0) = 0). Now,
since the group action preserves H, we have g*H =
H. Since pullbacks commute with exterior derivatives,
this gives ¢*(—ix,w) = ¢*dH = dH = —ix,w. In-
finitesimally, this says £¢ix,w = 0. By the Lie homo-
topy formula, we can write this as ix, £¢+ix, ¢ = 0.
Now, note ijx, gw = 0 (just use the definitions as
we’ve been doing, since & preserves w and H). Thus,
we can perform the same maneuver as in the proof of
Claim 3 to move £¢ to the right where it annihilates

w, since the action is multisymplectic, £¢w = 0.

The case of fi(n) globally conserved by Xp for n €
By (g) follows similarly. O
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