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INTRODUCTION

This paper is mainly about the Monstrous Moonshine,
which describes a weird relation by the monster and the
elliptic modular function. This relation was first observed
by John Mckay and he proposed this conjecture in 1978.
It was proven by Richard Borcherds in 1992 using the no-
ghost theorem from string theory and the theory of vertex
operator algebras and generalized Kac–Moody algebras
[10]. The first half part is about some conceptions that
appear in the moonshine; and the second half part is a
very brief outline of its proof.

We know that finite simple groups have been com-
pletely classified. Every finite simple group belongs to
countable infinite families or is one of the 26 sporadic
groups. The symmetry described by sporadic groups are
quite different, so it took people several decades to fig-
ure all of them out. The monster, is the largest sporadic
simple group, having order

808, 017, 424, 794, 512, 875, 886, 459, 904,

961, 710, 757, 005, 754, 368, 000, 000, 000

= 246 · 320 · 59 · 76 · 112 · 133 · 17

·19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

It is almost impossible to elaborate the detail struc-
ture of the monster. For example, we are used to start
from the multiplication table when studying entry-level
groups, but this doesn’t work for the monster. Although
there are two matrices that generates the monster, their
sizes are incredibly large – they have 196883×196883 en-
tries. The reason why multiplying two elements is dif-
ficult is not the huge order of the monster (for exam-
ple, A100 has much more elements than the monster but
multiplying 2 elements of A100 is rather easy), but the
lack of small representations. The monster has 194 ir-
reducible representations (discovered by Fischer, D. Liv-
ingstone and M. P. Thorne[1]), the smallest one except
for the trivial representation has dimension 196883.

In Galois Theory, there is a function j(τ), called the
elliptic modular function. The Laurent expansion of j(τ)
is,

j(τ) = q−1 + 196884q + 21493760q2 + ... (q = e2πiτ )

John McKay found that the coefficient of the first order
term 196884=196883+1, where 196883 is the dimension
of the smallest irreducible representation of the monster.
The “monstrous moonshine” refers to this strange rela-
tion between the structure of the monster and the coef-
ficients of modular functions.

This paragraph is about the modular function j(τ).
The group SL2(Z) acts on the upper half plane

H = {τ ∈ C|Im(τ) > 0} by,

(
a b
c d

)
(τ) = aτ+b

cτ+d .If we

let a = c = 1 and d = 0, we get a symmetric operation(
1 b
1 0

)
(τ) = τ + b, b ∈ Z, which keeps j(τ) invariant. As

a result, j(τ) is periodic and can be written as a series
in q = e2πiτ . Apparently, the symmetry of SL2(Z) is a
very strong constraint, and in fact, such a constraint is so
strong that j(τ) is unique up to normalization. Its exact
form is:

j(τ) =
(1 + 240

∑
n>0 σ3(n)qn)3

q
∏
n>0(1− qn)24

where σ3(n) =
∑
d|n d

3 is the sum of the cubes of the divi-

sors of n [2]. In general, we can replace this SL2(Z) with
other groups, and we will get more complicated modu-
lar functions, which are called Hauptmoduls (fortunately
we are not going to discuss them here). Another way of
thinking about j is that it is an isomorphism from the
quotient space H/SL2(Z) to the complex plane.

John Thompson found that not only the coefficient of
the first order term, but also the next a few coefficients of
the elliptic modular function are related with the dimen-
sion of the irreducible representations of the monster by
some simple relations. He conjectured that there should
exist a graded representation V =

∑
n∈Z Vn of the mon-

ster, such that the dimension of Vn is the coefficient c(n)
of qn in j(τ). With this graded representation, we can
construct a series which is called McKay-Thompson se-
ries Tg(τ) =

∑
n∈Z Trace(g|Vn)qn, whose coefficients are

given by the traces of elements g of the monster on the
representation Vn. The question is whether such a graded
representation really exists, and if so, whether it is con-
structable. Both answers are yes, the representation was
constructed by I. B. Frenkel, J. Lepowsky, and A. Meur-
man using vertex operators[3, 4]. There are some more
information about vertex algebras[5].

Now we can state the “monstrous moonshine” again,
in a more rigorous way.
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Theorem 1: Suppose that V =
∑
n∈Z Vn is the in-

finite dimensional graded representation of the monster
constructed by Frenkel, Lepowsky and Meurman. Then
for any element g of the monster the Thompson series
Tg(τ) =

∑
n∈Z Trace(g|Vn)qn is a Hauptmodul for a

genus 0 subgroup of SL2(Z). V satisfies the main con-
jecture in Conway and Norton’s paper [8].

The symmetry described by a group is usually indi-
cated by the algebraic structure it preserves on a vec-
tor space. For example, orthogonal groups preserve the
Kronecher symbol. The monster module constructed by
Frenkel-Lepowsky-Meurman has a vertex operator alge-
bra structure invariant under the action of the monster.
The definition of vertex operators is given in the ap-
pendix A.

The above part is explaining what the moonshine is,
with nothing about its proof. If one wants to prove the
theorem above, explicitly calculating the Thompson se-
ries using the monster Lie algebra M is a feasible way.
M is a Z2 = Z ⊕ Z graded Lie algebra, whose piece of
degree (m,n) ∈2 has dimension c(mn) when both m and
n are non-zero. The monster Lie algebra is a generalized
Kac-Moody algebra[6,7] (See definition of the generalized
Kac-Moody algebra in Appendix B), and Kac-Moody al-
gebras have a denominator formula which says that a
product over positive roots is equal to a sum over the
Weyl group. The denominator formula for the monster
Lie algebra is:

j(σ)− j(τ) = p−1
∏

m>0,n∈Z

(1− pmqn)c(mn)

Where p = e2πiσ and q = e2πiτ [6]. There are similar
identities with j(τ) replaced by the McKay-Thompson
series of any element of the monster, which look like:

p−1exp(−
∑
i>0

∑
m>−,n∈Z

Tr(gi|Vmn)pmiqni/i)

=
∑
m∈Z

Tr(g|Vm)pm −
∑
n∈Z

Tr(g|Vn)pn

These relations between the coefficients Tr(g|Vn) of
the Thompson series are strong enough to determine
them from their first few coefficients. If we compare
the coefficients of p2 and p4 of BHS, we find recur-
sion formulas of cg(n) = Tr(g|Vn). They look like:

cg(4k) = cg(2k + 1) + (cg(k)2 − cg2(k))/2

+
∑

1≤j<k cg(j)cg(2k − j)

cg(4k + 1) = cg(2k + 3)− cg(2)cg(2k)

+(cg(k)2 + cg2(k))/2

+(cg(k + 1)2 − cg2(k + 1))/2

+
∑

1≤j<k cg(j)cg(2k − j + 2)

cg(4k + 2) = cg(2k + 2) +
∑

1≤j≤k cg(j)cg(2k − j + 1)

cg(4k + 3) = cg(2k + 4)− cg(2)cg(2k + 1)

-(cg(2k + 1)2 − cg2(2k + 1))/2

+
∑

1≤j≤k+1 cg(j)cg(2k − j + 3)

+
∑

1≤j≤k cg2(j)cg(4k − 4j + 2)

+
∑

1≤j≤2k(−1)jcg(j)cg(4k − j + 2)

where cg(n) = Tr(g|Vn), cg2(n) = Tr(g2|Vn). If n = 4
or n > 5, the coefficients cg(n) is completely determined
by coefficients cg(i) and cg2(i) for 1 ≤ i < n. If we know
the coefficient cg(n) = Tr(g|Vn) for n = 1, 2, 3 and 5, all
the coefficients of the Thompson-Mckay series are deter-
mined. The coefficient cg(5) is not determined,because
when you try to plug in k = 1 into the second equation,
it gives cg(5) = cg(5).

The interesting thing is, Hauptmoduls suggested by
Conway and Norton[8] satisfy the same identities and
have the same first five coefficients. How to verify this?
It was proved by Koike[9] that the recursion functions for
modular functions are the same as Thompson series. As
for the first few coefficients, We can check them case by
case. Although they are no quite easy to work out, fortu-
nately we just need to know first five of them. As a result,
the Thompson series Tg(τ) =

∑
n∈Z Trace(g|Vn)qnis in-

deed a Hauptmodul, as is claimed by Theorem 1.
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Appendix A: Definition of vertex algebras

A vertex algebra over the real numbers is a vector space
V over the real numbers with an infinite number of bi-
linear products, written unv for u, v ∈ V , n ∈ Z, such
that

(1) unv = 0 for n sufficiently large

(2)
∑
i∈Z

(
m
i

)
(uq+iv)m+n−iω

=
∑
i∈Z(−1)i

(
q
i

)
(um+q−i(vn+iω)

− (−1)qvn+q−i(um+iω))

for all u,v, and w in V and all integers m, n and q.

(3) There is an element 1 ∈ V such that vn1 = 0 if
n ≥ 0 and v11 = v.

Appendix B: Definition of the generalized Kac-
Moody algebra

A Lie algebra G is defined to be a generalized Kac-
Moody algebra if it has an almost positive definite con-
travariant bilinear form, which means that G has the
following three properties.

(1) G can be Z-graded as G = ⊕i∈ZGiand Gi is finite
dimensional if i 6= 0

(2) G has an involution ω which maps Gi into G−i and
acts as 1 on G0, so in particular G0 is abelian.

(3) G has an invariant bilinear form (,) invariant under
ω such that Gi and Gj are orthogonal if i 6= j, and such
that (g, ω(g)) > 0 if g is a nonzero homogeneous element
of G of nonzero degree.


