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In this paper, we will talk about the strong coupling expansion, especially in the case of the pure
SU(N ) lattice gauge theory with Wilson’s action.

INTRODUCTION

Perturbation theory can be applied to gauge theory in
the continuum as well as on a lattice. We can use per-
turbative calculations in discussing the continuum limit
of lattice gauge theory. However, several interesting as-
pects are inaccessible to a perturbative treatment. So it
requires non-perturbative methods. Strong-coupling ex-
pansion is one of these which amount to expansions in
powers of the inverse coupling.

STRONG-COUPLING GRAPHS

In the following we consider the pure SU(N ) lattice
gauge theory with Wilson’s action:

S =
∑
p

Sp(Up) (0.1)

Sp(Up) = − β

2N
{TrU + TrU† − 2N} (0.2)

Here, p is the smallest closed loops on the lattice, pla-
quettes with four links. Actually we can define gauge
invariant actions in other ways, but Wilson’s action ap-
pears to be the simplest one. Consider a system with high
temperature, i.e. β → 0, we know that e−Sp(U) → 1. We
can write

e−S =
∏
p

e−Sp(U)

=
∏
p

(1 + fp)
(0.3)

where fp is a correction term, which vanishes when β goes
to zero. Using the character expansion and factoring out
the trivial character, we can write

e−Sp(Up) = c0(β){1 +
∑
r 6=0

drar(β)χr(Up)} (0.4)

dr is the dimension of the representation r, ar is the
coefficient. We obtain

e−S = c0(β)6Ω
∏
p

{1 +
∑
r 6=0

drar(β)χr(Up)} (0.5)

where Ω is the lattice volume. We can expand this prod-
uct and get a sum of terms. We will define a graph G

for each term. First, we notice that these terms have the
form

dr1ar1χr1(Up1) · dr2ar2χr2(Up2) . . . (0.6)

The graph G maps each plaquette p to a representation
rp according to the form of these terms. If some pla-
quettes don’t occur in this term, they are associated to
the trivial representation r = 0. Different plaquettes can
be associated to the same representation r. Now we can
write the partition function

Z =

∫ ∏
b

dU(b)e−S

= c6Ω
0

∑
G

Φ(G)
(0.7)

where

Φ(G) =

∫ ∏
b

dU(b)
∏
p∈G

drparpχrp(Up) (0.8)

Φ(G) is called the contribution of the graph G.
The simplest example is a cube, with six plaquettes. All
of these plaquettes have the fundamental representation
f of SU(N ). We can write the Φ(G)

Φ(G) = af (β)6

∫ ∏
dU(b)

6∏
i=1

[dfTr(Upi)] (0.9)

According to the integration rule that∫
dU Tr(UV1) Tr(U−1V2) = Tr(V1V2) (0.10)

That means the integration is equivalent to the value on
the surface. So the contribution of the cube is equivalent
to that of one plaquette.∫ ∏

b∈p1

dU(b)dfTrUp1dfTrU†p1
= d2

f (0.11)

So the result for the cube is

Φ(G) = d2
faf (β)6 (0.12)

Consider more complicated situations. Since we have∫
dUχr(U) = δr,0 (0.13)
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If we want the integral below not vanishing, the Kro-
necker product r1⊗r2⊗· · ·⊗rn should contain the trivial
representation. We can get the selection rule:
1. The support ‖G‖ (the support of graph means the
plaquettes which are associated with nontrivial represen-
tations) is a closed surface
2. The Kronecker product of the occurring representa-
tions must contain the trivial representation.
Otherwise, the contribution of the graph G vanishes.
For the graphs which consist of several disjoint compo-
nents:

|G| = |X1| ∪ · · · ∪ |Xn| (0.14)

with |Xi| ∩ |Xj | = 0, for i 6= j. In this case the contribu-
tion is

Φ(G) =
∏
i

Φ(Xi) (0.15)

Given an arbitrary graph, we can decompose it into con-
nected parts (polymers) Xi.

CLUSTER EXPANSION FOR THE FREE
ENERGY

First, we need the concept of moments and cumulants.
Let I be a set. Then the moment is a sequence of sym-
metric, real functions over I

< α, . . . , β >∈ R (0.16)

The cumulant of the moment <> satifies

< α, . . . , ζ >=
∑
P

[α, . . . , β][γ, . . . , δ] . . . [µ, . . . , ν]

(0.17)
where P goes over all partitions. Now we proceed to
the graphical expansion of the free energy. The partition
function in the terms of polymers is

Z = c6Ω
0 {1 +

∞∑
n=1

∑
X1,...,Xn

1

n!
Φ(X1) · · · · · Φ(Xn)} (0.18)

We can define the following moment:

< X1, . . . , Xn >= 1, if every pairXi, Xj is disconnected

The expression of Z is

Z = c6Ω
0 {1+

∞∑
n=1

∑
X1,...,Xn

1

n!
< X1, . . . , Xn > Φ(X1)·· · ··Φ(Xn)}

(0.19)
Using the main theorem of the moment-cumulant formal-
ism, we can write the free energy in the form

F = − 1

Ω
lnZ

= −6lnc0 −
1

Ω
(

∞∑
n=1

∑
X1,...,Xn

1

n!
[X1, . . . , Xn]

Φ(X1) · · · · · Φ(Xn))

(0.20)

We define a cluster of C to be a connected collection
of polymers. If a cluster C contains polymers Xi with
possible multiplications ni, we write

C = (Xn1
1 , Xn2

2 , . . . ) (0.21)

Then the free energy expansion can be written in terms
of clusters

F = −6lnc0−
1

Ω

∑
C=(X

n1
1 ,...,X

nk
k )

a(C)Φ(X1)n1 ·· · ··Φ(Xk)nk

(0.22)
This is the cluster expansion for the free energy. In the
presence of translation invariance, such as a finite lattice
with periodic boundary conditions, we can simplified it
as

F = −6lnc0 −
∑

C=(X
ni
i )

a(C)
∏
i

Φ(Xi)
ni (0.23)

Now we can see the example of SU(2) lattice gauge theory
expanded up to O(β12):
1. The single polymers like cube and double-cube has
the combinatorial factor a(C) = 1.
2. Clusters consisting of two distinct polymers:
a) X1 and X2 are both cubes but in different places, we
have C = (X1, X2) and a(C) = 1. The contribution is

− (4a1/2(β)6)2 (0.24)

b) X1 and X2 are the same cube, then C = (X2
1 ), a(C) =

− 1
2! , and the contribution is

− 1

2
(4a1/2(β)6)2 (0.25)

Finally, we will get the expansion of F in terms of the
coefficients aj :

F = −6lnc0 −
∑

ak1/2a
l
1a

m
3/2 . . . (0.26)

This can be reexpanded in powers of β for numerical
purposes.

CONCLUSION

In contrast to perturbation theory, the strong-coupling
expansion has a finite range of convergence. It is possible
to prove various properties of the theory in a rigorous way
by the strong-coupling expansion, such as Existence of a
mass gap and Static quark confinement.
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