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We briefly review how to generalize Weyl integral formula to functional integral and show that
the generalized formula can be used to compute partition function of 2d Yang-Mills theory on closed
surface.

INTRODUCTION

In group theory, we can simplify the integral of a con-
jugation invariant function over a compact Lie group G
by restricting the domain of integral to T which is a max-
imal torus of G:∫

G

dgf(g) =

∫
T

dt det∆W (t)f(t) (1)

where ∆w(t) is the Weyl determinant. This relies on the
fact that every element of G is conjugate to some element
of T(in other words every g ∈ G can be ’diagonalized’ in
some basis). Since T is Abelian, this formula seems to
imply that an integral of a function with a non-Abelian
(conjugation) symmetry can be reduced to an integral
of a function with an Abelian symmetry.

GENERALIZATION OF WEYL INTEGRAL
FORMULA

One natural question is how can we generalize (1) to
functional integral so that we can simplify the path in-
tegral of gauge theory. So we first need to answer if a
smooth map g ∈ Map(M,G) can be written as

g(x) = h(x)t(x)h(x)
−1

(2)

for t∈ Map (M,T) and h ∈ Map(M,G). We can always
do this pointwise but there are topological obstructions
to achieving this globally.
As an example consider a map from S2 → SU(2). We
can parametrize elements of SU(2) as

x41 +

3∑
k=1

xkσk =

(
x4 + ix3 x1 + ix2

−x1 + ix2 x4 − ix3

)
(3)

Here we are using the convention that Trσkσl=-2δkl. The
winding number of this map n(g)=1.
Now suppose we can smoothly deform map g into U(1)
via some h, h−1gh=t. As the space of maps from S2

to SU(2) is connected, g is homotopic to t and one has
n(g)= n(f). But, since g2=-1, t is a constant map so that
n(t)=0. This contradiction shows that there can be no
smooth or continuous h satisfying h−1gh=t.

In fact one can further consider generalization n(f,A) of
n(f),

n(f,A) = − 1

32π

∫
S2

trf [df, df ]− 1

2π

∫
S2

tr[d(fA)] (4)

depending on both f and an SU(2) connection A. It turns
out that the first Chern class of the U(1) component of
the gauge field Ah is equal to the winding number of the
original map. In this case it is just the pull-back of the
U(1) bundle SU(2)→ SU(2)/U(1) ∼ S2 via g and this
turns out to be more or less what happens in general.
The correct generalization of (1) is

Z[PG] =
∑

l∈[PT ;PG]

∫
A[l]

d[At]

∫
B[l]

d[Ak]

∫
d[φt]∆w[t]eiS[φt,At,Ak]

(5)
where we denote the space of connections on PG and
on a principle T bundle P lT representing an element l∈
[PT ;PG] by A and A[l] respectively and the space of one-
form with values in the section of P lT × T k by B[l].

ABELIANIZATION OF 2D YANG-MILLS
THEORY

Now we can use the generalized Weyl integral formula
to study Yang-Mills theory on a 2-d closed surface Σg
with genus g.

ZΣg (ε) =

∫
A

[dA]e
1
2ε

∫
Σg

trFA?FA (6)

where ε represents the coupling constant of the theory.
We can rewrite this integral by introducing a g-valued
scalar field φ ∈Map(Σg,g), so that the partition function
becomes

ZΣg (ε) =

∫
A

[dA]

∫
Map(Σg,g)

d[φ]e
∫
Σg

tr[iφFA+ ε
2φ?φ]

(7)

Since the action is invariant under gauge transformation

S[g−1φg,Ag] = S[φ,A] (8)

we can proceed by using the gauge freedom to conjugate
φ into Map(Σg,t). The reduced action is

S[φt, At, Ak] = tr

∫
Σg

φtdAt+
1

2
[φt, Ak]Ak+

ε

2
φt?φt (9)
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We can integrate out Ak since the action is quadratic in
Ak ∫

d[Ak]⇒ det−1/2ad(φt)|Ω1(Σg,k) (10)

This almost cancels against the Weyl determinan-
t(contribution from ghost)as one-form in 2d has as many
degrees of freedom as two scalars. The zero modes sur-
plus is one constant scalar mode minus g harmonic one-
form modes so that the combined determinant would sim-
ply reduce to a finite dimensional determinant,

det ad(φt)|Ω0(Σg,k)

det1/2ad(φt)|Ω1(Σg,k)

= (det ad(φt)|k)
χ(Σg)/2

(11)

We have assumed that only constant modes of τ con-
tribute to the path integral.
Putting the above together, we are left with an Abelian
functional integral over φt and At and a sum over the
topological sectors,

ZΣg (ε)

=
∑

l∈[PT ;PG]

∫
A[l]

d[At](det ad(φt)|k)
χ(Σg)/2

e
∫
Σg

tr(iφtdAt+ ε
2φ

t?φt)

(12)

We can expand the gauge At and φtas

At = iαlA
l, φt = iφlλ

l (13)

where λt is a basis of fundamental weights.
At are connections on torus bundles over Riemann sur-
face Σg and such bundles are completely classified by
their first chern class. That is for a given torus bundle,
we have a set of integers nl, l = 1, ..., r with∫

Σg

F lA = 2πnl (14)

In order to do the integral, we can split the gauge field At

into a classical Ac and a quantum parAq. The quantum
part is a torus valued one-form while the classical piece
may be taken to satisfy

dAlc = 2πnlω (15)

which clear obeys (14).
The path integral over the torus gauge field can be per-
formed and yield a constraint

dφl = 0 (16)

This implies φt must be space-time independent and the
final integral reduces to a finite integral.
Putting everything together, the complete integral is

r∏
l=1

∑
nl

∫
dφl detk(ad(φt))

χ(Σg)/2
exp(−iφ

lnl
2π
− εφ2

16π2
)

(17)

The sum over nl yields a periodic delta function on φ

r∏
l=1

∑
nl

exp(i
φlnl
2π

) =

r∏
l=1

∑
nl

δ(φl − 4π2nl) (18)

Substituting this expression into (17) gives us

r∏
l=1

∑
nl

∫
dφl detk(ad(φt))

χ(Σg)/2
exp(−επ2n2

l ) (19)

The sum over Chern classes may be thought of as a sum
over the weight lattice. That is, one sets λ =

∑
l nlλ

l

with the weight lattice given by

Λ = Z[λ1, ..., λr] (20)

. In this way we obtain,

∑
λ

∏
α

< α, λ >χ(Σg)/2exp(−2π2ε < λ, λ >) (21)

If we shift the weight λ by the Weyl vector ρ we obtain

∑
λ

∏
α

< α, λ+ ρ >χ(Σg)/2exp(−2π2ε < λ+ ρ, λ+ ρ >)

(22)
We can further factor out the action of Weyl group by
a sum over highest weights and the final formula for the
partition function is given by

ZΣg =
∑
λ

d(λ)
χ(Σg)

exp(−2π2ε < λ+ ρ, λ+ ρ >) (23)

where d(λ) is the dimension of the irreducible represen-
tation labelled by the weights λ,

d(λ) =
∏
α>0

< α, λ+ ρ > /
∏
α>0

< α, ρ > (24)

This result can be compared with the one obtained by us-
ing cutting and pasting techniques and the difference be-
tween them can be absorbed by a redefinition of counter
terms.

CONCLUSION

We briefly reviewed how to generalize Weyl formula
and how to apply it to study 2d Yang-Mills theory. In
particular we checked that this method succeeds in repro-
ducing previous result obtained by cutting and pasting
techniques. And this should be suffice to prove the cor-
rectness of this method.
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