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1. Maxwell’s equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation

operators

[aks, a
†
k′s] = δ3(k − k′)δss′ . (1)

implies (using the mode expansion for A) that

[Ai(~r),Ej(~r
′)] = −i~

∫
d̄3k ei

~k·(~r−~r′)
(
δij − k̂ik̂j

)
(and also [Ai(~r),Aj(~r

′)] = 0 and [Ei(~r),Ej(~r
′)] = 0).

Conclude that it’s not possible to simultaneously measure Ex(~r) and By(~r).

(b) Using the result of the previous part, check that the wave equation for Ai(x)

follows from the Heisenberg equations of motion

+∂t~E =
i

~
[H, ~E].

2. Goldstone boson. Here is a simple example of the Goldstone phenomenon,

which I mentioned briefly in lecture. Consider again the complex scalar field

from a previous assignment.

Suppose the potential is

V (Φ?Φ) = g
(
Φ?Φ− v2

)2
where g, v are constants. The important features of V are that (1) it is only

a function of |Φ|2 = ΦΦ?, so that it preserves the particle-number symmetry

generated by q which was the hero a previous homework problem, and (2) the

minimum of V (x) away from x = 0.

Treat the system classically. Write the action S[Φ,Φ?] in polar coordinates in

field space:

Φ(x, t) = ρeiθ

where both ρ, θ are functions of space and time.
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(a) Consider constant field configurations, and show that minimizing the po-

tential fixes ρ but not the phase θ.

(b) Compute the mass2 of the ρ field about its minimum, m2
ρ = 1

2
∂2ρV |ρ=v.

(c) Now ignore the deviations of ρ from its minimum (it’s heavy and slow and

hard to excite), but continue to treat θ as a field. Plug the resulting expres-

sion

Φ = veiθ(x,t)

into the action. Show that θ is a massless scalar field.

(d) How does the U(1) symmetry generated by q act on θ?

3. Gaussian integrals are your friend.

(a) Show that ∫ ∞
−∞

dxe−
1
2
ax2+jx =

√
2π

a
e

j2

2a .

[Hint: square the integral and use polar coordinates.]

(b) Consider a collection of variables xi, i = 1..N and a real, symmetric matrix

aij. Show that ∫ N∏
i=1

dxie
− 1

2
xiaijxj+J

ixi =
(2π)N/2√

det a
e

1
2
Jia−1

ij J
j

.

(Summation convention in effect, as always.)

[Hint: change integration variables to diagonalize a. det a =
∏
ai, where ai

are the eigenvalues of a.]

(c) I include this problem partly because it might be helpful for a future prob-

lem. In that regard, for any function of the N variables, f(x), let

〈f(x)〉 ≡
∫ ∏N

i=1 dxie
− 1

2
xiaijxjf(x)

Z[J= 0]
, Z[J ] =

∫ N∏
i=1

dxie
− 1

2
xiaijxj+J

ixi .

Show that

〈xixj〉 = ∂Ji∂Jj logZ[J ]|J=0 = a−1ij

Also, convince yourself that〈
eJixi

〉
=

Z[J ]

Z[J = 0]
.

(d) Note that the number N in the previous parts may be infinite. This is really

the only path integral we know how to do.
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4. Gaussian identity. Show that for a gaussian quantum system〈
eiKq

〉
= e−A(K)〈q2〉

and determine A(K). Here 〈...〉 ≡ 〈0| ... |0〉, vacuum expectation value. Here

by ‘gaussian’ I mean that H contains only quadratic and linear terms in both

q and its conjugate variable p (but for the formula to be exactly correct as

stated you must assume H contains only terms quadratic in q and p; for further

entertainment fix the formula for the case with linear terms in H).

I recommend using the path integral representation (with hints from the previous

problem). Alternatively, you can use the harmonic oscillator operator algebra.

Or, even better, do it both ways.

5. Casimir energy from balls and springs. [I am declaring this a bonus problem

because it is quite a bit more involved than I initially thought.] Regularize the

Casimir energy of a 1d scalar field by discretizing space. That is, suppose there

are N ≡ d/a ∈ Z lattice points in the left cavity:

| ← d→ | ←− L− d −→ |

What answer do you find for the force on the middle plate?

6. Casimir force is regulator-independent. [Bonus problem] Suppose we use a

different regulator for the sum in the vacuum energy
∑

j ~ωj. Instead we replace

f(d) 
1

2

∞∑
j=1

ωjK(ωj)

where the function K is

K(ω) =
∑
α

cα
Λα

ω + Λα

.

We impose two conditions on the parameters cα,Λα:

• We want the low-frequency answer to but unmodified:

K(ω)
ω→0→ 1

– this requires
∑

α cα = 1.

• We want the sum over j to converge; this requires that K(ω) falls off faster

than ω−2. Taylor expanding in the limit ω � Λα, we have

K(ω)
ω→∞→ 1

ω

∑
α

cαΛα −
1

ω2

∑
α

cαΛ2
α + · · · .

So we also require
∑

α cαΛα = 0 and
∑

α cαΛ2
α = 0.
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First, verify the previous claims about K(ω).

Then compute f(d) and show that with these assumptions, the Casimir force is

independent of the parameters cα,Λα.

[A hint for doing the sum: use the identity

1

X
=

∫ ∞
0

dse−sX

inside the sum to make it a geometric series. To do the remaining integral over

s, Taylor expand the integrand in the regime of interest.]
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