University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2021 Assignment 5

Due 11:59pm Thursday, October 28, 2021

1. Brain-warmer: the identity does nothing twice. Check our relativistic state normalization by squaring the expression for the identity in the 1-particle sector:

$$
\mathbb{1}_{1}^{2} \stackrel{!}{=} \mathbb{1}_{1}=\int \frac{\mathrm{d}^{d} p}{2 \omega_{\vec{p}}}|\vec{p}\rangle\langle\vec{p}| .
$$

2. Even more about QFT in $0+0$ dimensions.

In this problem we return to the simplest scalar QFT, namely a one-dimensional integral with quartic action.
(a) By a change of integration variable show that

$$
Z=\int_{-\infty}^{\infty} d q e^{-S(q)}
$$

with $S(q)=\frac{1}{2} m^{2} q^{2}+g q^{4}$ is of the form

$$
Z=\frac{1}{g^{1 / 4}} \mathcal{Z}\left(m^{2} / \sqrt{g}\right) .
$$

This means you can make your life easier by setting $g=1$, without loss of generality.
(b) Convince yourself (e.g. with Mathematica) that the integral really is expressible as a Bessel function.
(c) It would be nice to find a better understanding for why the partition function of $(0+0)$-dimensional ϕ^{4} theory is a Bessel function. Then find a SchwingerDyson equation for this system which has the form of Bessel's equation for

$$
K\left(x^{2} / a\right) \equiv e^{-x^{2} / a}\left(x^{2}\right)^{-1 / 4} \mathcal{Z}(x)
$$

for some constant a. (If you get stuck I can tell you what function to choose for the 'anything' in the S-D equation.)
(d) Make a plot of the perturbative approximations to the 'Green function' $G \equiv\left\langle q^{2}\right\rangle$ as a function of g, truncated at orders 1 through 6 or so. Plot them against the exact answer.
(e) (Bonus problem) Show that $c_{n+1} \sim-\frac{2}{3} n c_{n}$ at large n (by brute force or by cleverness).
3. The vacuum is a fluid with $p=-\rho$. [Bonus problem]

We said in lecture that the vacuum energy density ρ gravitates and that, when positive, its effect is to cause space to inflate - to expand exponentially in time. An important aspect of this phenomenon is that the vacuum fluctuations produce not only an energy density, but a pressure, $p=T_{i}^{i}$ (no sum on i), of the form $p=-\rho$, which is negative for $\rho>0$. The vacuum therefore acts as a perfect fluid with $P=-\rho$. (The stress tensor for a perfect fluid in terms of its velocity field u^{μ} takes the form $T^{\mu \nu}=(p+\rho) u^{\mu} u^{\nu}+p g^{\mu \nu}$, so in a frame with $u^{\mu}=\left(1, \overrightarrow{0}^{\mu}\right)$, $T_{0}^{0}=\rho, T_{i}^{i}=P$.) Solving Einstein's equations with such a source produces an inflating universe. In this problem we show that this is is the case.
(a) Show that the energy-momentum tensor for a free relativistic scalar field $\left(S[\phi]=\int d^{D} x \sqrt{g} \mathcal{L}, \mathcal{L}=\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{m^{2}}{2} \phi^{2}\right)$ takes the form

$$
T_{\mu \nu}=a \partial_{\mu} \phi \partial_{\nu} \phi-b g_{\mu \nu} \mathcal{L}
$$

with some constants a, b.
(b) Reproduce the formal expression for the vacuum energy

$$
\langle 0| \mathbf{H}|0\rangle=V \int \mathrm{~d}^{d} k \frac{1}{2} \hbar \omega_{\vec{k}}
$$

using the two point function

$$
\langle 0| \phi(x)^{2}|0\rangle=\langle 0| \phi(0) \phi(0)|0\rangle=\lim _{x, t \rightarrow 0}\langle 0| \phi(x) \phi(0)|0\rangle
$$

and its derivatives. (V is the volume of space.)
(We will learn to draw this amplitude as a Feynman diagram which is a circle (a line connecting a point to itself).)
(c) Show that the vacuum expectation value of the pressure

$$
\langle 0| T_{i i}|0\rangle
$$

(no sum on i) gives the same answer, up to a sign.
[Hints: You'll find a quite different looking integral from the vacuum energy. Use rotation invariance of the vacuum to simplify the answer. The claim is that however you regulate the integral vacuum pressure and $\frac{1}{2} \int \AA^{d} k \omega_{k}$, you'll get the same answer. A convenient regulator is dimensional regularization: treat the dimension d as an arbitrary complex number.]
(d) Show that the resulting vacuum energy momentum tensor ($T_{00}=\rho, T_{i i}=-\rho$ (no sum on i)) is the same as the contribution to the energy-momentum tensor from an action of the form

$$
S_{\mathrm{cc}}=\int d^{D} x \sqrt{g} \Lambda
$$

where Λ is a constant (the cosmological constant).
(e) Argue that $p=-\rho$ is required in order that the vacuum energy does not specify a preferred rest frame.
4. Non-Abelian currents. On a previous homework, we studied a complex scalar field. Now, we make a big leap to two complex scalar fields, $\Phi_{\alpha=1,2}$, with

$$
S\left[\Phi_{\alpha}\right]=\int d^{d} x d t\left(\frac{1}{2} \partial_{\mu} \Phi_{\alpha}^{\star} \partial^{\mu} \Phi_{\alpha}-V\left(\Phi_{\alpha}^{\star} \Phi_{\alpha}\right)\right)
$$

Consider the objects

$$
Q^{i} \equiv \frac{1}{2} \int d^{d} x \mathbf{i}\left(\Pi_{\alpha}^{\dagger} \sigma_{\alpha \beta}^{i} \Phi_{\beta}^{\dagger}\right)+h . c .
$$

where $\sigma^{i=1,2,3}$ are the three Pauli matrices.
(a) What symmetries do these charges generate (i.e. how do the fields transform)? Show that they are symmetries of S.
(b) If you want to, show that $\left[Q^{i}, H\right]=0$, where H is the Hamiltonian.
(c) Evaluate $\left[Q^{i}, Q^{j}\right]$. Hence, non-Abelian.
(d) To complete the circle, find the Noether currents J_{μ}^{i} associated to the symmetry transformations you found in part 4a.
(e) Generalize to the case of N scalar fields.
5. Combinatorics from 0-dimensional QFT. [This is a bonus problem. I will not post the solutions of this problem until later. If you have a hard time with it now, please try again in a week.]
Catalan numbers $C_{n}=\frac{(2 n)!}{n!(n+1)!}$ arise as the answer to many combinatorics problems (beware: there is some disagreement about whether this is C_{n} or C_{n+1}).
One such problem is: count random walks on a 1d chain with $2 n$ steps which start at 0 and end at 0 without crossing 0 in between.

Another such problem is: in how many ways can $2 n$ (distinguishable) points on a circle be connected by chords which do not intersect within the circle.

Consider a zero-dimensional QFT with the following Feynman rules:

- There are two fields h and l.
- There is an $\sqrt{t} h^{2} l$ vertex in terms of a coupling t.
- The bare l propagator is 1 .
- The bare h propagator is 1 .
- All diagrams can be drawn on a piece of paper without crossing. ${ }^{1}$
- There are no loops of h.

The last two rules can be realized from a lagrangian by introducing a large N (below).
(a) Show that the full two-point green's function for h is

$$
G(t)=\sum_{n} t^{n} C_{n}
$$

the generating function of Catalan numbers.
(b) Let $\Sigma(t)$ be the sum of diagrams with two h lines sticking out which may not be divided into two parts by cutting a single intermediate line. (This property is called 1 PI (one-particle irreducible), and Σ is called the " 1 PI self-energy of h ". We'll use this manipulation all the time later on.) Show that $G(t)=\frac{1}{1-\Sigma(t)}$.
(c) Argue by diagrams for the equation (sometimes this is also called a SchwingerDyson equation)

where Σ is the 1PI self-energy of h.

[^0](d) Solve this equation for the generating function $G(t)$.
(e) If you are feeling ambitious, add another coupling N^{-1} which counts the crossings of the l propagators. The resulting numbers can be called TouchardRiordan numbers.
(f) How to realize the no-crossings rule? Consider
$$
L=\frac{\sqrt{t}}{\sqrt{N}} l_{\alpha \beta} h_{\alpha} h_{\beta}+\sum_{\alpha, \beta} l_{\alpha \beta}^{2}+\sum_{\alpha} h_{\alpha}^{2}
$$
where $\alpha, \beta=1 \cdots N$. By counting index loops, show that the dominant diagrams at large N are the ones we kept above. Hint: to keep track of the factors of N, introduce ('t Hooft's) double-line notation: since l is a matrix, its propagator looks like: $\beta=------\alpha$, while the h propagator is just one index line $\alpha_{\ldots} \ldots \ldots$, and the vertex is __-!!__. If you don't like my ascii diagrams, here are the respective pictures: $\left\langle l_{\alpha \beta} l_{\alpha \beta}\right\rangle={ }_{\beta}^{\alpha}=\beta$, $\left\langle h_{\alpha} h_{\alpha}\right\rangle=\boldsymbol{\alpha} \boldsymbol{\alpha}$ and the $h h l$ vertex is:

(g) Use properties of Catalan numbers to estimate the size of non-perturbative effects in this field theory.
(h) There are many other examples like this. Another similar one is the relationship between symmetric functions and homogeneous products. A more different one is the enumeration of planar graphs. For that, see BIPZ.

[^0]: ${ }^{1}$ An annoying extra rule: All the l propagators must be on one side of the h propagators. You'll see in part 5 f how to justify this.

