University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215A QFT Fall 2021 Assignment 8

Due 11:59pm Thursday, November 18, 2021

1. Brain warmer. Mandelstam variables are Lorentz-invariant combinations of the kinematic variables in $2 \leftarrow 2$ scattering

$$s = (p_1 + p_2)^2, t = (p_1 - p_3)^2, u = (p_1 - p_4)^2$$

where p_i^{μ} are on-shell four-vectors $p_i^2 = m_i^2$ satisfying overall momentum conservation $p_1 + p_2 = p_3 + p_4$. Show that they are not independent but rather satisfy the relation

$$s+t+u=\sum_i m_i^2$$

where i runs over the four external particles.

2. Particle creation by an external source, continued.

Consider again the Hamiltonian

$$H = H_0 + \int d^3x \left(-j(t, \vec{x})\phi(x)\right)$$

where H_0 is the free Klein-Gordon Hamiltonian, ϕ is the Klein-Gordon field, and j is a c-number scalar function.

(a) Compute the probability amplitude for the source to create one particle of momentum k. Perform this computation first to $\mathcal{O}(j)$, and then to all orders, using the trick from HW07 to sum the series.

Compute the analogous amplitude for n particles of definite momenta.

(b) Show that the probability of producing n particles (of any momenta) is given by the Poisson distribution,

$$P(n) = \frac{1}{n!} \lambda^n e^{-\lambda}.$$

[Note that for n > 1, this requires the measure for the final state phase space, which we'll discuss in lecture on Tuesday, November 16.]

(c) Prove the following facts about the Poisson distribution:

$$\sum_{n=0}^{\infty} P(n) = 1, \quad \langle N \rangle \equiv \sum_{n=0}^{\infty} n P(n) = \lambda,$$

that is, P(n) is a probability distribution, and $\langle N \rangle = \lambda$ as predicted. Compute the fluctuations in the number of particles produced $\langle (N - \langle N \rangle)^2 \rangle$.