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1. Brain-warmers.

(a) Check that

(p · σ) (p · σ̄) = p2.

(b) Use the previous part to show that if

ur(~p) =

(√
p · σξr√
p · σ̄ξr

)
and vr(~p) =

( √
p · σηr

−
√
p · σ̄ηr

)
with p2 = m2 (solutions of the Dirac equation with mass m), then

ūr(~p)us(~p) = 2mξ†rξs and v̄r(~p)vs(~p) = −2mη†rηs

(where ū ≡ u†γ0 as usual).

(c) Show that ūr(~p)vs(~p) = 0 and ur(~p)
†vs(−~p) = 0 but ur(~p)

†vs(~p) 6= 0.

2. Other bases for gamma matrices.

Many different bases of gamma matrices are frequently used by humans. You

may read on the internet someone telling you that the gamma matrices are

γ̃0 =

(
12×2 0

0 −12×2

)
, γ̃i =

(
0 σi

−σi 0

)
and think that I have lied to you. This basis is useful for studying the non-

relativistic limit. The Weyl basis which we introduced in lecture instead makes

manifest the reducibility of the Dirac spinor into L plus R Weyl spinors. Find

the unitary matrix U which relates them γ̃µ = UγµU †.

3. Symmetries of the Dirac lagrangian.

(a) Find the Noether currents jµ and jµ5 associated with the transformations

Ψ → e−iαΨ and Ψ → e−iαγ
5
Ψ of a free Dirac field. Show by explicit calcu-

lation that the former is conserved and the latter is conserved if m = 0.
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(b) Find the conserved currents associated with the Lorentz symmetry Ψ 7→
Λ 1

2
(θ, β)Ψ of the Dirac Lagrangian. Show that the conserved charge takes

the form mentioned in lecture

Jµν =

∫
space

(
J µν

orbital + Ψ†JµνDiracΨ
)

where J µν
orbital has the form it would have for a scalar field, and JµνDirac ≡

i
4
[γµ, γν ] are the matrices satisfying the Lorentz algebra.

Convince yourself that the latter matrix specifies how the current acts in

the one-particle sector.

4. Meson scattering.

Consider the Yukawa theory with fermions, with Lint = −gΨ̄Ψφ, where Ψ is a

Dirac fermion field and φ is a real scalar field.

(a) Draw the Feynman diagram that gives the leading contribution to the scat-

tering amplitude for the process φφ→ φφ.

(b) Derive the correct sign of the amplitude by considering the relevant matrix

elements of powers of the interaction hamiltonian.

(c) Evaluate the diagram in terms of a spinor trace and a momentum integral.

Do not do the momentum integral. Suppose that the integral is cutoff at

large k by some cutoff Λ. Estimate the dependence on Λ.

5. The magnetic moment of a Dirac fermion.

In this problem we consider the hamiltonian density

hI = qΨ̄γµΨAµ .

This describes a local, Lorentz invariant, and gauge invariant interaction between

a Dirac fermion field Ψ and a vector potential Aµ. In this problem, we will treat

the vector potential, representing the electromagnetic field, as a fixed, classical

background field.

Define single-particle states of the Dirac field by 〈0|Ψ(x) |~p, s〉 = e−ipxus(p). We

wish to show that these particles have a magnetic dipole moment, in the sense that

in their rest frame, their (single-particle) hamiltonian has a term hNR 3 µB ~S · ~B
where ~S = 1

2
~σ is the particle’s spin operator.

(a) q is a real number. What is required of Aµ for HI =
∫
d3xhI to be hermitian?
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(b) How must Aµ transform under parity P and charge conjugation C in order

forHI to be invariant? (To answer this, you’ll have to find out how the spinor

bilinear transforms, e.g. from Peskin.) How do the electric and magnetic

fields transform? Show that this allows for a magnetic dipole moment but

not an electric dipole moment.

(c) Show that in the non-relativistic limit

ū(p′)γµνu′(p)Fµν = aξ†σ · ~Bξ′

for some constant a (find a). Recall that γµν ≡ 1
2
[γµ, γν ]. Here u, u′ are

positive-energy solutions of the Dirac equation with mass m and

u
NR→
√
m(ξ, ξ), u′

NR→
√
m(ξ′, ξ′)

in the non-relativistic limit.

(d) Suppose that Aµ describes a magnetic field ~B which is uniform in space and

time.

Show that in the non-relativistic limit

〈~p′, s′|HI |~p, s〉 = /δ
3

(~p− ~p′)h(ξ, ξ′, ~B)

and find the function h(ξ, ξ′, ~B). You may wish to use the Gordon identity.

Rewrite the result in terms of single-particle states with non-relativistic

normalization (i.e. 〈~p|~p′〉NR = /δ
3
(p − p′)). Interpret h as a non-relativistic

hamiltonian term saying that the gyromagnetic ratio of the electron is −g |q|
2m

with g = 2.

(e) [optional] How does the result change if we add the term

∆H =
c

M
Ψ̄Fµν [γ

µ, γν ]Ψ ?

6. Non-relativistic interactions from QFT.

(a) Coulomb potential.

Derive from QED that the force between non-relativistic electrons is a re-

pulsive 1/r2 force law!

(b) Pseudoscalar Yukawa theory.

Consider the theory of a massive Dirac fermion Ψ and a massive pseudoscalar

ϕ interacting via the term

V5 ≡ g5Ψ̄γ
5Ψϕ.
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Convince yourself that this theory is parity invariant (for some assignment

of the action of parity on the fields).

List the Feynman rules.

Draw and evaluate the diagrams contributing to ΨΨ → ΨΨ scattering at

leading order in g5.

Consider the non-relativistic limit, m� |~p| and find the effective interaction

hamiltonian. If you happen to find zero for the leading term, then it’s not

the leading term.

7. Supersymmetry. [Bonus problem] A continuous symmetry that mixes bosons

and fermions is called supersymmetry.

(a) The simplest example of a supersymmetric field theory is the theory of a

free complex boson and a free Weyl fermion, with Lagrangian is

L = ∂µφ
?∂µφ+ χ†iσ̄µ∂µχ+ F ?F.

Here F is an auxiliary field whose purpose is to make the supersymmetry

transformations look nice. Show that the action is invariant under

δφ = −iεTσ2χ, δχ = εF + σ · ∂φσ2ε?, δF = −iε†σ̄ · ∂χ (1)

where the symmetry parameter ε is a 2-component spinor of Grassmann

numbers.

(b) Show that the term

∆L =

(
mφF +

1

2
imχTσ2χ

)
+ h.c.

is also invariant under the transformation (1). Eliminate F from the full

Lagrangian L + ∆L by solving its equations of motion, and show that the

fermion and boson fields are given the same mass.

(c) We can include supersymmetric interactions as well. Show that the following

field theory is supersymmetric:

L = ∂µφ
?
i∂

µφi + χ†i iσ̄ · ∂χi + F ?
i Fi +

(
Fi∂φiW +

i

2
∂φi∂φjWχTi σ

2χj + h.c.

)
where i = 1..n and W = W (φ) is an arbitrary function of the φi, called the

superpotential. For the simple case n = 1 and W = gφ3/3 write out the field

equations for φ and χ after eliminating F .
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