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1. Classical Maxwell theory. [Peskin problem 2.1, lightly edited] Classical elec-

tromagnetism follows from the action

S[A] =

∫
d4x

(
−1

4
FµνF

µν − jµAµ
)
, where Fµν = ∂µAν − ∂νAµ.

(a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action,

treating the components Aµ(x) as the dynamical variables

0 =
δS[A]

δAµ(x)
.

Write the equations in the standard form by identifying Ei = −F 0i and

εijkBk = −F ij.

(b) Construct the energy-momentum tensor for this theory, when jµ = 0. Note

that the usual procedure

T µν =
∂L

∂(∂µφ)
∂νφ− Lδµν

does not result in a symmetric tensor. (It is also not gauge invariant.) To

remedy that, we can add to T µν a term of the form ∂λK
λµν , where Kλµν

is antisymmetric in its first two indices. Such an object is automatically

divergenceless, so

T̂ µν ≡ T µν + ∂λK
λµν

is an equally good energy-momentum tensor with the same globally con-

served energy and momentum. Show that this construction, with

Kλµν = F µλAν ,

leads to an energy-momentum tensor T̂ that is symmetric and yields the

standard formulae for the electromagnetic energy and momentum densities:

E =
1

2

(
E2 +B2

)
, ~S = ~E × ~B.
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(c) [Bonus problem] A better way to think about the energy-momentum tensor

is to regard it as the response to a change in the background metric. (This is

why it appears as a source in Einstein’s equations.) To couple the Maxwell

theory to a general background metric gµν , we replace all the ηµνs with gµνs:

S[A, g] =

∫
d4x
√
g

(
−1

4
FµνFρσg

µρgνσ + jµAµ

)
where the factor of

√
g ≡

√
| det g| is required to make the integration

measure coordinate-invariant, and gµν is the inverse metric: gµνgνρ = δµρ .

Compare the resulting energy-momentum tensor

T µνg =
2
√
g

δS[A, g]

δgµν
|gµν=ηµν .

with that of the previous part.

Notice that T µνg is automatically symmetric and gauge invariant.

[Some useful identities are:

δgµν(x)

δgρσ(y)
= −gµρgνσδD(x− y) and

δ det g(x)

δgµν(y)
= δD(x− y) det ggµν .

For proofs of these statements see page 93 of this document.]

2. Maxwell’s equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation

operators

[aks, a
†
k′s] = δ3(k − k′)δss′ . (1)

implies (using the mode expansion for A) that

[Ai(~r),Ej(~r
′)] = −i~

∫
d̄3k ei

~k·(~r−~r′)
(
δij − k̂ik̂j

)
(and also [Ai(~r),Aj(~r

′)] = 0 and [Ei(~r),Ej(~r
′)] = 0).

Conclude that it’s not possible to simultaneously measure Ex(~r) and By(~r).

(b) Using the result of the previous part, check that the wave equation for Ai(x)

follows from the Heisenberg equations of motion

∂t~E =
i

~
[H, ~E].
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3. Goldstone boson. Here is a simple example of the Goldstone phenomenon,

which I mentioned briefly in lecture. Consider again the complex scalar field

from a previous assignment.

Suppose the potential is

V (Φ?Φ) = g
(
Φ?Φ− v2

)2
where g, v are constants. The important features of V are that (1) it is only

a function of |Φ|2 = ΦΦ?, so that it preserves the particle-number symmetry

generated by q which was the hero a previous homework problem, and (2) the

minimum of V (x) away from x = 0.

Treat the system classically. Write the action S[Φ,Φ?] in polar coordinates in

field space:

Φ(x, t) = ρeiθ

where both ρ, θ are functions of space and time.

(a) Consider constant field configurations, and show that minimizing the po-

tential fixes ρ but not the phase θ.

(b) Compute the mass2 of the ρ field about its minimum, m2
ρ = 1

2
∂2ρV |ρ=v.

(c) Now ignore the deviations of ρ from its minimum (it’s heavy and slow and

hard to excite), but continue to treat θ as a field. Plug the resulting expres-

sion

Φ = veiθ(x,t)

into the action. Show that θ is a massless scalar field.

(d) How does the U(1) symmetry generated by q act on θ?

4. Casimir force is regulator-independent. [Bonus problem] Suppose we use a

different regulator for the sum in the vacuum energy
∑

j ~ωj. The regulator we’ll

use here is an analog of Pauli-Villars. We replace

f(d) 
1

2

∞∑
j=1

ωjK(ωj)

where the function K is

K(ω) =
∑
α

cα
Λα

ω + Λα

.

We impose two conditions on the parameters cα,Λα:
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• We want the low-frequency answer to be unmodified:

K(ω)
ω→0→ 1

– this requires
∑

α cα = 1.

• We want the sum over j to converge; this requires that K(ω) falls off faster

than ω−2. Taylor expanding in the limit ω � Λα, we have

K(ω)
ω→∞→ 1

ω

∑
α

cαΛα −
1

ω2

∑
α

cαΛ2
α + · · · .

So we also require
∑

α cαΛα = 0 and
∑

α cαΛ2
α = 0.

First, verify the previous claims about K(ω).

Then compute f(d) and show that with these assumptions, the Casimir force is

independent of the parameters cα,Λα.

[A hint for doing the sum: use the identity

1

X
=

∫ ∞
0

dse−sX

inside the sum to make it a geometric series. To do the remaining integral over

s, Taylor expand the integrand in the regime of interest.]

5. Casimir energy from balls and springs. [More difficult bonus problem]

Regularize the Casimir energy of a 1d scalar field by discretizing space. If you

suppose there are N ≡ d/a ∈ Z lattice points in the left cavity

| ← d→ | ←− L− d −→ |

what answer do you find for the force on the middle plate?

[Hint: you will find the wrong answer! The problem is that with these assump-

tions d cannot vary continuously. One way to allow d to vary continuously is to

impose φ(0) = 0 = φ(d), but do not assume d corresponds to a lattice site.]

6. Gaussian integrals are your friend.

(a) Show that ∫ ∞
−∞

dxe−
1
2
ax2+jx =

√
2π

a
e
j2

2a .

[Hint: square the integral and use polar coordinates.]
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(b) Consider a collection of variables xi, i = 1..N and a real, symmetric matrix

aij. Show that ∫ N∏
i=1

dxie
− 1

2
xiaijxj+J

ixi =
(2π)N/2√

det a
e

1
2
Jia−1

ij J
j

.

(Summation convention in effect, as always.)

[Hint: change integration variables to diagonalize a. det a =
∏
ai, where ai

are the eigenvalues of a.]

(c) I include this problem partly because it might be helpful for a future prob-

lem. In that regard, for any function of the N variables, f(x), let

〈f(x)〉 ≡
∫ ∏N

i=1 dxie
− 1

2
xiaijxjf(x)

Z[J= 0]
, Z[J ] =

∫ N∏
i=1

dxie
− 1

2
xiaijxj+J

ixi .

Show that

〈xixj〉 = ∂Ji∂Jj logZ[J ]|J=0 = a−1ij

Also, convince yourself that

〈
eJixi

〉
=

Z[J ]

Z[J = 0]
.

(d) Note that the number N in the previous parts may be infinite. This is really

the only path integral we know how to do.

7. Gaussian identity. Show that for a gaussian quantum system〈
eiKq

〉
= e−A(K)〈q2〉

and determine A(K). Here 〈...〉 ≡ 〈0| ... |0〉, vacuum expectation value. Here

by ‘gaussian’ I mean that H contains only quadratic and linear terms in both

q and its conjugate variable p (but for the formula to be exactly correct as

stated you must assume H contains only terms quadratic in q and p; for further

entertainment fix the formula for the case with linear terms in H).

I recommend using the path integral representation (with hints from the previous

problem). Alternatively, you can use the harmonic oscillator operator algebra.

Or, even better, do it both ways.
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