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1. Brain-warmer: the identity does nothing twice. Check our relativistic

state normalization by squaring the expression for the identity in the 1-particle

sector:

12
1

!
= 11 =

∫
d̄dp

2ω~p
|~p〉 〈~p| .

2. Even more about QFT in 0 + 0 dimensions.

In this problem we return to the simplest scalar QFT, namely a single integral

with quartic action.

(a) By a change of integration variable show that

Z =

∫ ∞
−∞

dq e−S(q)

with S(q) = 1
2
m2q2 + gq4 is of the form

Z =
1

g1/4
Z
(
m2/
√
g
)
.

This means you can make your life easier by setting g = 1, without loss of

generality.

(b) Convince yourself (e.g. with Mathematica) that the integral really is ex-

pressible as a Bessel function.

(c) It would be nice to find a better understanding for why the partition function

of (0+0)-dimensional φ4 theory is a Bessel function. Find a Schwinger-Dyson

equation for this system which has the form of Bessel’s equation for

K(x2/a) ≡ e−x
2/a(x2)−1/4Z (x)

for some constant a. (If you get stuck I can tell you what function to choose

for the ‘anything’ in the S-D equation.)

(d) Make a plot of the perturbative approximations to the ‘Green function’

G ≡ 〈q2〉 as a function of g, truncated at orders 1 through 6 or so. Plot

them against the exact answer.
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(e) (Bonus problem) Show that cn+1 ∼ −2
3
ncn at large n, where cn is the coef-

ficient of gn in either G or Z (by brute force or by cleverness).

3. The vacuum is a fluid with p = −ρ. [Bonus problem]

We said in lecture that the vacuum energy density ρ gravitates and that, when

positive, its effect is to cause space to inflate – to expand exponentially in time.

An important aspect of this phenomenon is that the vacuum fluctuations produce

not only an energy density, but a pressure, p = T ii (no sum on i), of the form

p = −ρ, which is negative for ρ > 0. The vacuum therefore acts as a perfect fluid

with P = −ρ. (The stress tensor for a perfect fluid in terms of its velocity field

uµ takes the form T µν = (p + ρ)uµuν + pgµν , so in a frame with uµ = (1,~0µ),

T 0
0 = ρ, T ii = P .) Solving Einstein’s equations with such a source produces an

inflating universe. In this problem we show that this is is the case.

(a) Show that the energy-momentum tensor for a free relativistic scalar field

(S[φ] =
∫
dDx
√
gL,L = 1

2
gµν∂µφ∂νφ− m2

2
φ2) takes the form

Tµν = a∂µφ∂νφ− bgµνL

with some constants a, b.

(b) Reproduce the formal expression for the vacuum energy

〈0|H|0〉 = V

∫
d̄dk

1

2
~ω~k

using the two point function

〈0|φ(x)2 |0〉 = 〈0|φ(0)φ(0)|0〉 = lim
~x,t→0

〈0|φ(x)φ(0) |0〉

and its derivatives. (V is the volume of space.)

(We will learn to draw this amplitude as a Feynman diagram which is a

circle (a line connecting a point to itself).)

(c) Show that the vacuum expectation value of the pressure

〈0|Tii|0〉

(no sum on i) gives the same answer, up to a sign.

[Hints: You’ll find a quite different looking integral from the vacuum energy.

Use rotation invariance of the vacuum to simplify the answer. The claim is

that however you regulate the integral vacuum pressure and 1
2

∫
d̄dkωk, you’ll

get the same answer. A convenient regulator is dimensional regularization:

treat the dimension d as an arbitrary complex number.]
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(d) Show that the resulting vacuum energy momentum tensor (T00 = ρ, Tii = −ρ
(no sum on i))is the same as the contribution to the energy-momentum

tensor from an action of the form

Scc =

∫
dDx
√
gΛ

where Λ is a constant (the cosmological constant).

(e) Argue that p = −ρ is required in order that the vacuum energy does not

specify a preferred rest frame.

4. Non-Abelian currents. On a previous homework, we studied a complex scalar

field. Now, we make a big leap to two complex scalar fields, Φα=1,2, with

S[Φα] =

∫
ddxdt

(
1

2
∂µΦ?

α∂
µΦα − V (Φ?

αΦα)

)
Consider the objects

Qi ≡ 1

2

∫
ddxi

(
Π†ασ

i
αβΦ†β

)
+ h.c.

where σi=1,2,3 are the three Pauli matrices.

(a) What symmetries do these charges generate (i.e. how do the fields trans-

form)? Show that they are symmetries of S.

(b) If you want to, show that [Qi, H] = 0, where H is the Hamiltonian.

(c) Evaluate [Qi, Qj]. Hence, non-Abelian.

(d) To complete the circle, find the Noether currents J iµ associated to the sym-

metry transformations you found in part 4a. Show that the resulting charge

Qi =
∫
ddxJ i0 agrees with our starting point.

(e) Generalize to the case of N scalar fields.

5. Combinatorics from 0-dimensional QFT. [This is a more sophisticated

bonus problem. I will not post the solutions of this problem until later. If

you have a hard time with it now, please try again in a week.]

Catalan numbers Cn = (2n)!
n!(n+1)!

arise as the answer to many combinatorics prob-

lems (beware: there is some disagreement in the literature about whether this is

Cn or Cn+1).

One such problem is: count random walks on a 1d chain

with 2n steps that start at 0 and end at 0 without cross-

ing 0 in between.
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Another such problem is: in how many ways can 2n (dis-

tinguishable) points on a circle be connected by chords

that do not intersect within the circle.

Consider a zero-dimensional QFT with the following Feynman rules:

• There are two fields h and l.

• There is an
√
th2l vertex in terms of a coupling t.

• The bare l propagator is 1.

• The bare h propagator is 1.

• All diagrams can be drawn on a piece of paper without crossing.

• An annoying extra rule: All the l propagators must be on one side of the h

propagators1.

• There are no loops of h.

The last two rules can be realized from a lagrangian by introducing a large N

(below).

(a) Show that the full two-point green’s function for h is

G(t) =
∑
n

tnCn

the generating function of Catalan numbers.

(b) Let Σ(t) be the sum of diagrams with two h lines sticking out that may

not be divided into two parts by cutting a single intermediate line. (This

property is called 1PI (one-particle irreducible), and Σ is called the “1PI

self-energy of h”. We’ll use this manipulation all the time later on.) Show

that G(t) = 1
1−Σ(t)

.

(c) Argue by diagrams for the equation (sometimes this is also called a Schwinger-

Dyson equation)

1You’ll see in part 5f how to justify this.
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where Σ is the 1PI self-energy of h.

(d) Solve this equation for the generating function G(t).

(e) If you are feeling ambitious, add another coupling N−1 which counts the

crossings of the l propagators. The resulting numbers can be called Touchard-

Riordan numbers.

(f) How to realize the no-crossings rule? Consider

L =

√
t√
N
lαβhαhβ +

∑
α,β

l2αβ +
∑
α

h2
α

where α, β = 1 · · ·N . By counting index loops, show that the dominant

diagrams at large N are the ones we kept above. Hint: to keep track of the

factors of N , introduce (’t Hooft’s) double-line notation: since l is a matrix,

its propagator looks like:
α−−−−−−− α
β −−−−−−− β, while the h propagator is just

one index line α α, and the vertex is !! . If you don’t like my ascii

diagrams, here are the respective pictures: 〈lαβlαβ〉 = ,

〈hαhα〉 = and the hhl vertex is: . A

closed index loop gives a factor of N .

(g) Use properties of Catalan numbers to estimate the size of non-perturbative

effects in this field theory.

(h) There are many other examples like this. Another similar one is the rela-

tionship between symmetric functions and homogeneous products. A more

different one is the enumeration of planar graphs. For that, see BIPZ.
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