University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2022 Assignment 8

Due 11:00am Thursday, November 17, 2022

1. Brain warmer. Mandelstam variables are Lorentz-invariant combinations of the kinematic variables in $2 \leftarrow 2$ scattering

$$
s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}, u=\left(p_{1}-p_{4}\right)^{2}
$$

where p_{i}^{μ} are on-shell four-vectors $p_{i}^{2}=m_{i}^{2}$ satisfying overall momentum conservation $p_{1}+p_{2}=p_{3}+p_{4}$. Show that they are not independent but rather satisfy the relation

$$
s+t+u=\sum_{i} m_{i}^{2}
$$

where i runs over the four external particles.
2. Particle creation by an external source, continued.

Consider again the Hamiltonian

$$
H=H_{0}+\int d^{3} x(-j(t, \vec{x}) \phi(x))
$$

where H_{0} is the free Klein-Gordon Hamiltonian, ϕ is the Klein-Gordon field, and j is a c-number scalar function.
(a) Compute the probability amplitude for the source to create one particle of momentum k. Perform this computation first to $\mathcal{O}(j)$, and then to all orders, using the trick from HW07 to sum the series.
Compute the analogous amplitude for n particles of definite momenta.
(b) Show that the probability of producing n particles (of any momenta) is given by the Poisson distribution,

$$
P(n)=\frac{1}{n!} \lambda^{n} e^{-\lambda} .
$$

[Note that for $n>1$, this requires the measure for the final state phase space.]
(c) Prove the following facts about the Poisson distribution:

$$
\sum_{n=0}^{\infty} P(n)=1, \quad\langle N\rangle \equiv \sum_{n=0}^{\infty} n P(n)=\lambda
$$

that is, $P(n)$ is a probability distribution, and $\langle N\rangle=\lambda$ as predicted. Compute the fluctuations in the number of particles produced $\left\langle(N-\langle N\rangle)^{2}\right\rangle$.
3. Can there ever be a resonance in a t-channel diagram? Let me break the question down a bit:
(a) Consider a $2 \leftarrow 2$ scattering process where all the particles have the same mass. Let p_{1}, p_{2} be the momenta of the particles in the initial state. Prove that the Mandelstam variables $t=\left(p_{1}-p_{3}\right)^{2}$ and $u=\left(p_{1}-p_{4}\right)^{2}$ cannot be positive when the particles are on-shell $p_{i}^{2}=m^{2}$.
(b) Bonus problem: What happens if the particles have different masses? It may be worth distinguishing two cases:
(a) when the collision is elastic, so that the particles retain their identity and therefore $m_{1}=m_{3}$ and $m_{2}=m_{4}$.
(b) the fully general case where m_{i} are all different.

