University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2021 Assignment 9

Due 11:59pm Wednesday, November 23, 2021 (but a day or two late is fine)

1. Brain warmers on $\mathbf{S O}(3)$.

(a) Consider the statement that the rotation generators transform as a vector under rotations:

$$
\begin{equation*}
\left(D_{(j=1)}(\theta)\right)_{j}^{k} \mathbf{J}^{j}=D_{R}(\theta) \mathbf{J}^{k} D_{R}(\theta)^{\dagger} \tag{1}
\end{equation*}
$$

where $D_{R}(\theta)=e^{-\mathbf{i} \theta^{i} \mathbf{J}^{i}}$ and $D_{(j=1)}(\theta)=e^{-\mathbf{i} \theta^{i} J_{(j=1)}^{i}}$, with $\left(J_{(j=1)}^{i}\right)_{k}^{j}=-\mathbf{i} \epsilon^{i j k}$. Show that to leading nontrivial order in θ (about $\theta=0$) this is equivalent to the so(3) Lie algebra,

$$
\begin{equation*}
\left[\mathbf{J}^{i}, \mathbf{J}^{j}\right]=\mathbf{i} \epsilon^{i j k} \mathbf{J}^{k} . \tag{2}
\end{equation*}
$$

(b) Starting from the form of the generators in the vector (spin 1) representation,

$$
\begin{equation*}
\left(\mathbf{J}^{i}\right)_{k}^{j}=-\mathbf{i} \epsilon^{i j k} \tag{3}
\end{equation*}
$$

(with $\epsilon^{123}=1$) construct the matrix realizing a rotation by angle θ about the z axis on a vector.

2. Decay of a scalar particle.

Consider the following Lagrangian, involving two real scalar fields Φ and ϕ :

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi \partial^{\mu} \Phi-M^{2} \Phi^{2}+\partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}\right)-\mu \Phi \phi^{2} .
$$

The last term is an interaction that allows a Φ particle to decay into two ϕ s, if the kinematics allow it. Calculate the lifetime of the Φ particle to lowest order in μ. In this problem you can set $d=3$. What is the condition on the masses for a finite lifetime?

3. Scalar particle scattering cross-sections.

What is the leading-order differential cross-section $\frac{d \sigma}{d \Omega}$ for $2 \rightarrow 2$ snucleon-snucleon scattering in $d=3$ space dimensions in the center-of-mass frame?
What is the total cross section in the limit that the snucleons (the particles being scattered) are massless?

