University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2022 Assignment 10

Due 11:00am Thursday, December 1, 2022

1. Lorentz algebra in $D=3+1$.
(a) Check the algebra satisfied by rotations and boosts

$$
\begin{equation*}
\left[J^{i}, J^{j}\right]=\mathbf{i} \epsilon^{i j k} J^{k}, \quad\left[J^{i}, K^{j}\right]=\mathbf{i} \epsilon^{i j k} K^{k}, \quad\left[K^{i}, K^{j}\right]=-\mathbf{i} \epsilon^{i j k} J^{k} \tag{1}
\end{equation*}
$$

using the explicit matrices in the vector representation given in lecture, namely

$$
J^{i}=\left(\begin{array}{ll}
0 & \tag{2}\\
& \mathbf{J}^{i}
\end{array}\right)
$$

(where the 3×3 matrix $\mathbf{J}^{\mathbf{i}}$ is $\left(\mathbf{J}^{i}\right)_{k}^{j}=-\mathbf{i} \epsilon^{i j k}$) and

$$
\begin{equation*}
\left(K^{i}\right)^{j}{ }_{0}=\mathbf{i} \delta_{j}^{i}=\left(K^{i}\right)^{0}{ }_{j} \tag{3}
\end{equation*}
$$

and all other components zero.
For this purpose, I think typing them into Mathematica and writing $K . J$ $J . K$ etc.... is perfectly acceptable.
(b) Check that in terms of the antisymmetric tensor of operators

$$
J^{\mu \nu}=\left\{\begin{array}{ll}
\epsilon^{i j k} J^{k}, & \mu \nu=i j \\
K^{i}, & \mu \nu=0 i
\end{array},\right.
$$

(1) can be rewritten as

$$
\begin{equation*}
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=\mathbf{i}\left(\eta^{\nu \rho} J^{\mu \sigma}+\eta^{\mu \sigma} J^{\nu \rho}-(\mu \leftrightarrow \nu)\right), \tag{4}
\end{equation*}
$$

which is the form of the so $(d, 1)$ Lie algebra for general d. Make sure you take advantage of symmetries to avoid working too hard.
(c) Show that in $D=3+1$, (1) is equivalent to $\operatorname{su}(2)_{L} \times \operatorname{su}(2)_{R}$:

$$
\left[J_{+}^{i}, J_{-}^{j}\right]=0, \quad\left[J_{ \pm}^{i}, J_{ \pm}^{j}\right]=\mathbf{i} \epsilon^{i j k} J_{ \pm}^{k}
$$

in terms of

$$
J_{ \pm}^{i} \equiv \frac{1}{2}\left(J^{i} \pm \mathbf{i} K^{i}\right) .
$$

2. A representation of the Clifford algebra gives a representation of Lorentz. [Bonus problem] Show the following: Given a collection of $k \times k$ matrices satisfying $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$ (the Clifford algebra, with $\mu, \nu=0 . . d$), we can make a k-dimensional representation of $S O(1, d)$ with generators

$$
J^{\mu \nu}=\frac{\mathbf{i}}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

As an intermediate step, it is helpful to show that

$$
\left[J^{\mu \nu}, \gamma^{\rho}\right] \propto\left(\gamma^{\mu} \eta^{\nu \rho}-\gamma^{\nu} \eta^{\rho \mu}\right)
$$

Convince yourself that this last equation says that γ^{ρ} transforms as a four-vector, i.e.

$$
\left[\gamma^{\rho}, J_{\text {Dirac }}^{\mu \nu}\right]=\left(J_{\text {vector }}^{\mu \nu}\right)^{\rho}{ }_{\sigma} \gamma^{\sigma} .
$$

The following problems are about discrete symmetries of scalar field theories. They are a useful warmup to the discussion of discrete symmetries of the Dirac fermion.

3. Brain warmer: \mathbb{Z}_{2} symmetry of real scalar field theory.

What does the operator

$$
U \equiv e^{\mathbf{i} \pi \sum_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}}
$$

do to the real scalar field

$$
\phi(x) \rightarrow \phi^{\prime}(x)=U \phi(x) U^{\dagger}
$$

whose ladder operators are $\mathbf{a}, \mathbf{a}^{\dagger}$?
For which Lagrangians is this a symmetry?
4. Charge conjugation in complex scalar field theory. [Bonus problem]

Consider again a free complex Klein-Gordon field Φ. Define a discrete symmetry operation (charge conjugation) C, by

$$
\Phi(x) \mapsto C \Phi(x) C^{-1}=\eta_{c} \Phi^{\dagger}(x)
$$

where C is a unitary operator, and η_{c} is an arbitrary phase factor. Assume that the vacuum is invariant under charge conjugation: $C|0\rangle=|0\rangle$.
(a) Show that the free lagrangian is invariant under C, but the particle number current j^{μ} changes sign.
(b) Show that the annihilation operators satisfy

$$
C \mathbf{a}_{k} C^{-1}=\eta_{c} \mathbf{b}_{k}, \quad C \mathbf{b}_{k} C^{-1}=\eta_{c}^{\star} \mathbf{a}_{k}
$$

and hence show that C interchanges particle and antiparticle states, up to a phase.
5. Parity symmetry of scalar field theory. [Bonus problem]

Under the parity transformation

$$
\vec{x} \mapsto \vec{x}^{\prime}=-\vec{x}
$$

a real Klein-Gordon transforms as

$$
\begin{equation*}
\phi(t, \vec{x}) \mapsto P \phi(t, x) P^{-1}=\eta_{p} \phi(t,-\vec{x}) \tag{5}
\end{equation*}
$$

where P is unitary and $\eta_{P}= \pm 1$ is the intrinsic parity of the field ϕ. Again assume $P|0\rangle=|0\rangle$.
(a) Show that the parity transformation preserves the free Lagrangian (though not the Lagrangian density), for both values of η_{P}.
(b) Show that an arbitrary n-particle state transforms as

$$
P\left|\vec{k}_{1}, \cdots \vec{k}_{n}\right\rangle=\eta_{P}^{n}\left|-\vec{k}_{1}, \cdots,-\vec{k}_{n}\right\rangle .
$$

(c) Here we give an explicit realization of the parity operator. Let

$$
P_{1} \equiv e^{-\mathbf{i} \frac{\pi}{2} \sum_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}}, \quad P_{2} \equiv e^{\mathbf{i} \eta_{p} \frac{\pi}{2} \sum_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{-k}}
$$

Show that

$$
P_{1} \mathbf{a}_{k} P_{1}^{-1}=\mathbf{i} \mathbf{a}_{k}, \quad P_{2} \mathbf{a}_{k} P_{2}^{-1}=-\mathbf{i} \eta_{p} \mathbf{a}_{-k} .
$$

Hint: Use the following version of the Campbell-Baker-Hausdorff formula

$$
e^{\mathbf{i} \alpha A} B e^{-\mathbf{i} \alpha A}=\sum_{n=0}^{\infty} \frac{(\mathbf{i} \alpha)^{n}}{n!} B_{n}
$$

where $B_{0} \equiv B$ and $B_{n}=\left[A, B_{n-1}\right]$ for $n=1,2 \ldots$.
Show that $P \equiv P_{1} P_{2}$ is unitary, and satisfies (5).
(d) Action on the current of a complex scalar field. Consider now a complex scalar field. Using the results from problems 4 and the preceding parts of 5 , find the action of parity on the particle current $j^{\mu} \mapsto P j^{\mu} P^{-1}$. (You'll have to extend the action of P from the case of a real field to the complex case.)

