University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2023 Assignment 2

Due 11am Monday, October 16, 2022
Thanks in advance for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

A comment about what to hand in: please feel free to skip straightforward steps in your final writeup to save yourself some typing.

1. Brain-warmer on units. Briefly show that we can convert between energy, momentum, inverse length, and inverse time by multiplying by various factors of \hbar and c. Thus these dimensionful quantities are all directly comparable once we choose units where $\hbar=c=1$. What are the length scale and time scale and mass scale associated with $1 \mathrm{GeV}=10^{9} \mathrm{eV}$? What are the units of the Newton constant of gravity, and what is its value expressed in terms of powers of GeV ?
2. Momentum. In this problem we consider a scalar field theory in d spatial dimensions. The scalar field is expanded in momentum modes as usual:

$$
\phi(\vec{x})=\int \mathrm{T}^{d} k \sqrt{\frac{\hbar}{2 \omega_{k}}}\left(e^{\mathrm{i} \cdot \vec{x} \cdot \vec{x}} a_{k}+e^{-\mathrm{i} \vec{k} \cdot \vec{x}} a_{k}^{\dagger}\right) .
$$

Consider the operator

$$
\overrightarrow{\mathbf{P}} \equiv \int \mathrm{d}^{d} k \hbar \vec{k} a_{k}^{\dagger} a_{k}
$$

where $\int \mathrm{d}^{d} k \ldots \equiv \int \frac{d^{d} k}{(2 \pi)^{d}} \cdots$
(a) Find $\left[\overrightarrow{\mathbf{P}}, a_{k}^{\dagger}\right]$, and $\left[\overrightarrow{\mathbf{P}}, a_{k}\right]$.
(b) Show, using 2a and the mode expansion of the scalar field, that

$$
[\overrightarrow{\mathbf{P}}, \phi(x)]=\mathbf{i} \hbar \vec{\nabla} \phi(x) .
$$

(c) Conclude (using Taylor's theorem) that

$$
e^{-\mathbf{i} \cdot \vec{a} \cdot \overrightarrow{\mathbf{P}} / \hbar} \phi(x) e^{\mathbf{i} \vec{a} \cdot \overrightarrow{\mathbf{P}} / \hbar}=\phi(x+a)
$$

and that therefore $\overrightarrow{\mathbf{P}}$ generates translations. Therefore $\overrightarrow{\mathbf{P}}$ is the operator representing the momentum carried by the field (like the Poynting vector for the electromagnetic field).
(d) Find $\overrightarrow{\mathbf{P}}\left|\vec{k}_{1}, \vec{k}_{2} \ldots \vec{k}_{n}\right\rangle$, the action of this operator on a state of n phonons. Conclude that $\hbar \vec{k}$ is the momentum of the phonon labelled by wavenumber \vec{k}, as promised in lecture.

3. Complex scalar field and antiparticles.

[This problem is related to Peskin problem 2.2.] So far we've discussed scalar field theory with one real scalar field. The particles created by such a field are their own antiparticles.

To understand this statement better, consider a scalar field theory in $d+1$ dimensions with two real fields ϕ_{1}, ϕ_{2}. Organize them into one complex field $\Phi \equiv \frac{1}{\sqrt{2}}\left(\phi_{1}+\mathbf{i} \phi_{2}\right)$, with $\Phi^{\star}=\frac{1}{\sqrt{2}}\left(\phi_{1}-\mathbf{i} \phi_{2}\right)$, and let

$$
S\left[\Phi, \Phi^{\star}\right]=\int d^{d} x d t\left(\frac{1}{2} \mu \partial_{t} \Phi \partial_{t} \Phi^{\star}-\frac{1}{2} \mu v^{2} \vec{\nabla} \Phi \cdot \vec{\nabla} \Phi^{\star}-V\left(\Phi^{\star} \Phi\right)\right)
$$

for some potential function $V(x)$.
(a) Show that

$$
S\left[\Phi, \Phi^{\star}\right]=\int\left(\sum_{i=1,2}\left(A\left(\partial_{t} \phi_{i}\right)^{2}-B \vec{\nabla} \phi_{i} \cdot \vec{\nabla} \phi_{i}\right)-V\left(\left(\phi_{1}^{2}+\phi_{2}^{2}\right) / 2\right)\right)
$$

and where A, B are constants you must determine. If $V\left(q^{2}\right)=\frac{1}{2} \tilde{m}^{2} q^{2}$, notice that the action is just the sum of two copies of the action of the theory we considered previously.
(b) Show by doing the Legendre transformation that the associated hamiltonian is

$$
\mathbf{H}=\int d^{d} x\left(C \Pi \Pi^{\star}+D \vec{\nabla} \Phi \cdot \vec{\nabla} \Phi^{\star}+V\left(\Phi \Phi^{\star}\right)\right)
$$

where C, D are constants you must determine, and the canonical momenta are

$$
\Pi=\frac{\partial \mathcal{L}}{\partial \dot{\Phi}}=\frac{1}{2} \mu \dot{\Phi}^{\star}, \quad \Pi^{\star}=\frac{\partial \mathcal{L}}{\partial \dot{\Phi}^{\star}}=\frac{1}{2} \mu \dot{\Phi}
$$

with the Lagrangian density \mathcal{L} defined by $S=\int d t d^{d} x \mathcal{L}$.
(c) This theory has a continuous symmetry under which $\Phi \rightarrow e^{\mathbf{i} \alpha} \Phi, \Phi^{\star} \rightarrow e^{-\mathbf{i} \alpha} \Phi^{\star}$ with α a real constant. Show that the action S does not change if I make this replacement. ${ }^{1}$

[^0](d) The existence of a continuous symmetry means a conserved charge - a hermitian operator that commutes with the Hamiltonian, which generates the symmetry (this is the quantum version of the Noether theorem). Show that
$$
\mathbf{q} \equiv \int d^{d} x \mathbf{i}\left(\Phi^{\star} \Pi^{\star}-\Pi \Phi\right)
$$
generates this transformation, in the sense that the change in the field under a transformation with infinitesimal α is
$$
\delta \Phi=\mathbf{i} \alpha \Phi=-\mathbf{i} \alpha[\mathbf{q}, \Phi], \quad \text { and } \quad \delta \Phi^{\star}=-\mathbf{i} \alpha \Phi^{\star}=-\mathbf{i} \alpha\left[\mathbf{q}, \Phi^{\star}\right] .
$$

Show that $[\mathbf{q}, \mathbf{H}]=0$.
(e) For the case where $V\left(\Phi \Phi^{\star}\right)=\frac{1}{2} \tilde{m}^{2} \Phi \Phi^{\star}$ the hamiltonian is quadratic. Diagonalize it in terms of two sets of creation operators and annihilation operators. Work in the continuum. You should find something of the form

$$
\begin{equation*}
\Phi=\sqrt{\frac{\hbar}{2 \mu}} \sum_{k} \frac{1}{\sqrt{\omega_{k}}}\left(e^{\mathbf{i} k x} \mathbf{a}_{k}+e^{-\mathbf{i} k x} \mathbf{b}_{k}^{\dagger}\right) . \tag{1}
\end{equation*}
$$

(f) Write the canonical commutators

$$
\left[\Phi(x), \Pi\left(x^{\prime}\right)\right]=\mathbf{i} \hbar \delta^{d}\left(x-x^{\prime}\right), \quad\left[\Phi(x), \Pi^{\star}\left(x^{\prime}\right)\right]=0
$$

(and the hermitian conjugate expressions) in terms of \mathbf{a} and \mathbf{b}.
(g) Rewrite \mathbf{q} in terms of the mode operators.
(h) Evaluate the charge of each type of particle created by \mathbf{a}_{k}^{\dagger} and \mathbf{b}_{k}^{\dagger} (i.e. find $\left[\mathbf{q}, \mathbf{a}^{\dagger}\right]$).

I claim that the particle created by \mathbf{a}^{\dagger} is the antiparticle of that created by \mathbf{b}^{\dagger} in the sense that they have opposite quantum numbers. This means that we can add terms to the hamiltonian by which they can annihilate each other, without breaking any symmetries. What might such a term look like? Write something local in position space, i.e. of the form $\Delta H=\int d^{d} x V\left(\Phi, \Phi^{\dagger}\right)$.
$\overline{'(1) ') ~ c o m p l e x ~ v e c t o r . ~ N o t i c e ~ t h a t ~ o n ~ t h e ~ r e a l ~ c o m p o n e n t s ~} \phi_{1}, \phi_{2}$ it acts as a two-dimensional rotation:

$$
\binom{\phi_{1}}{\phi_{2}} \rightarrow\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}
$$

The name for this group is $\mathrm{SO}(2)$. So $\mathrm{U}(1)$ is the same as $\mathrm{SO}(2)$.

[^0]: ${ }^{1}$ This is called a $U(1)$ symmetry: it is a unitary rotation (hence ' U ') on a one-dimensional (hence

