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1. Classical Maxwell theory. [Peskin problem 2.1, lightly edited] Classical elec-

tromagnetism follows from the action

S[A] =

∫
d4x

(
−1

4
FµνF

µν − jµAµ
)
, where Fµν = ∂µAν − ∂νAµ.

(a) Derive two of the Maxwell equations (Gauss’ Law and Faraday’s Law) as

the Euler-Lagrange equations of this action, treating the components Aµ(x)

as the dynamical variables:

0 =
δS[A]

δAµ(x)
.

Write the equations in the standard form by identifying Ei = −F 0i and

εijkBk = −F ij.

(b) Construct the energy-momentum tensor for this theory, when jµ = 0. Note

that the usual procedure

T µν =
∂L

∂(∂µφ)
∂νφ− Lδµν

does not result in a symmetric tensor. (It is also not gauge invariant.) To

remedy that, we can add to T µν a term of the form ∂λK
λµν , where Kλµν

is antisymmetric in its first two indices. Such an object is automatically

divergenceless, so

T̂ µν ≡ T µν + ∂λK
λµν

is an equally good energy-momentum tensor with the same globally con-

served energy and momentum. Show that this construction, with

Kλµν = F µλAν ,

leads to an energy-momentum tensor T̂ that is symmetric and yields the

standard formulae for the electromagnetic energy and momentum densities:

E =
1

2

(
E2 +B2

)
, ~S = ~E × ~B.

1



(c) [Bonus problem] A better way to think about the energy-momentum tensor

is to regard it as the response to a change in the background metric. (This is

why it appears as a source in Einstein’s equations.) To couple the Maxwell

theory to a general background metric gµν , we replace all the ηµνs with gµνs:

S[A, g] =

∫
d4x
√
g

(
−1

4
FµνFρσg

µρgνσ + jµAµ

)
where the factor of

√
g ≡

√
| det g| is required to make the integration

measure coordinate-invariant, and gµν is the inverse metric: gµνgνρ = δµρ .

Compare the resulting energy-momentum tensor

T µνg =
2
√
g

δS[A, g]

δgµν
|gµν=ηµν .

with that of the previous part.

Notice that T µνg is automatically symmetric and gauge invariant.

[Some useful identities are:

δgµν(x)

δgρσ(y)
= −gµρgνσδD(x− y) and

δ det g(x)

δgµν(y)
= δD(x− y) det ggµν .

For proofs of these statements see page 93 of this document.]

2. Maxwell’s equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation

operators

[aks, a
†
k′s] = δ3(k − k′)δss′ . (1)

implies (using the mode expansion for A) that

[Ai(~r),Ej(~r
′)] = −i~

∫
d̄3k ei

~k·(~r−~r′)
(
δij − k̂ik̂j

)
(and also [Ai(~r),Aj(~r

′)] = 0 and [Ei(~r),Ej(~r
′)] = 0).

Conclude that it’s not possible to simultaneously measure Ex(~r) and By(~r).

(b) Using the result of the previous part, check that the wave equation for Ai(x)

follows from the Heisenberg equations of motion

∂t~E =
i

~
[H, ~E].
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3. Goldstone boson. Here is a simple example of the Goldstone phenomenon,

which I mentioned briefly in lecture. Consider again the complex scalar field

from a previous assignment.

Suppose the potential is

V (Φ?Φ) = g
(
Φ?Φ− v2

)2
where g, v are constants. The important features of V are that (1) it is only

a function of |Φ|2 = ΦΦ?, so that it preserves the particle-number symmetry

generated by q which was the hero a previous homework problem, and (2) the

minimum of V (x) away from x = 0.

Treat the system classically. Write the action S[Φ,Φ?] in polar coordinates in

field space:

Φ(x, t) = ρeiθ

where both ρ, θ are functions of space and time.

(a) Consider constant field configurations, and show that minimizing the po-

tential fixes ρ but not the phase θ.

(b) Compute the mass2 of the ρ field about its minimum, m2
ρ = 1

2
∂2ρV |ρ=v.

(c) Now ignore the deviations of ρ from its minimum (it’s heavy and slow and

hard to excite), but continue to treat θ as a field. Plug the resulting expres-

sion

Φ = veiθ(x,t)

into the action. Show that θ is a massless scalar field.

(d) How does the U(1) symmetry generated by q act on θ?

4. Angular momentum as Noether charge.

Consider an arbitrary local scalar field theory with Lagrangian density L =

L(φ, ∂µφ) such that the action is invariant under rotations of space. A rotation

acts on a scalar field by

φ(xi) 7→ φ(Ri
jx
j) (2)

where R is a rotation matrix RTR = 1. Consider an infinitesimal rotation Ri
j =

δij +ωij, for ω an arbitrary (small) real antisymmetric matrix specifying the plane

and angle of rotation. Find the associated Noether currents in terms of φ.

Relate your answer to the form of the stress tensor. [Hint for interpreting the

answer: a rotation is a space-dependent translation.]
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If you prefer, you may consider instead the full Lorentz group, which acts by

φ(xµ) 7→ φ(Λµ
νx

ν) (3)

where Λ is a D ×D matrix preserving the Minkowski metric ηµν .

Bonus problem: find the associated Noether charges in the case of a field theory of

a vector such as electromagnetism, which transforms likeAµ(x) 7→ (R−1)
ν
µAν(Rx).

The following two problems can be handed either with HW03 or with HW04.

5. Casimir force is regulator-independent. [Bonus problem] Suppose we use a

different regulator for the sum in the vacuum energy
∑

j ~ωj. The regulator we’ll

use here is an analog of Pauli-Villars. In the notation introduced in the lecture

notes, we replace

f(d) 
1

2

∞∑
j=1

ωjK(ωj)

where the function K is

K(ω) =
∑
α

cα
Λα

ω + Λα

.

We impose two conditions on the parameters cα,Λα:

• We want the low-frequency answer to be unmodified:

K(ω)
ω→0→ 1

– this requires
∑

α cα = 1.

• We want the sum over j to converge; this requires that K(ω) falls off faster

than ω−2. Taylor expanding in the limit ω � Λα, we have

K(ω)
ω→∞→ 1

ω

∑
α

cαΛα −
1

ω2

∑
α

cαΛ2
α + · · · .

So we also require
∑

α cαΛα = 0 and
∑

α cαΛ2
α = 0.

First, verify the previous claims about K(ω).

Then compute f(d) and show that with these assumptions, the Casimir force is

independent of the parameters cα,Λα.

[A hint for doing the sum: use the identity

1

X
=

∫ ∞
0

dse−sX

inside the sum to make it a geometric series. To do the remaining integral over

s, Taylor expand the integrand in the regime of interest.]
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6. Casimir energy from balls and springs. [More difficult bonus problem]

Regularize the Casimir energy of a 1d scalar field by discretizing space. If you

suppose there are N ≡ d/a ∈ Z lattice points in the left cavity

| ← d→ | ←− L− d −→ |

what answer do you find for the force on the middle plate?

[Hint: you will find the wrong answer! The problem is that with these assump-

tions d cannot vary continuously. One way to allow d to vary continuously (and

get the right answer) is to impose φ(0) = 0 = φ(d), but do not assume d corre-

sponds to a lattice site.]
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