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1. Classical Maxwell theory. [Peskin problem 2.1, lightly edited] Classical elec-

tromagnetism follows from the action

(a)

1
S[A] = /d4:c (_ZFWFW — j”A#> , where F,, = 90,A, —0,A,.

Derive two of the Maxwell equations (Gauss’ Law and Faraday’s Law) as
the Euler-Lagrange equations of this action, treating the components A, (z)
as the dynamical variables:

0— dS[A]
" 54,()
Write the equations in the standard form by identifying E* = —F% and

kBt — —Fi,
Construct the energy-momentum tensor for this theory, when j# = 0. Note
that the usual procedure

T — oL
9(0u9)
does not result in a symmetric tensor. (It is also not gauge invariant.) To

remedy that, we can add to T" a term of the form 0y K", where K

is antisymmetric in its first two indices. Such an object is automatically

divergenceless, so
TH =T" 4+ O\KM

is an equally good energy-momentum tensor with the same globally con-
served energy and momentum. Show that this construction, with

K)\/U/ — FMAAV,
leads to an energy-momentum tensor T that is symmetric and yields the
standard formulae for the electromagnetic energy and momentum densities:

E=>(E*+B?, S=ExB.
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(¢) [Bonus problem] A better way to think about the energy-momentum tensor
is to regard it as the response to a change in the background metric. (This is
why it appears as a source in Einstein’s equations.) To couple the Maxwell
theory to a general background metric g, we replace all the n,,s with g,,s:

1 .
S[A, g] = /d4x\/§ (_ZFWFPUQM)QW —i—j“A“)

where the factor of /g = +/|detg]| is required to make the integration
measure coordinate-invariant, and g"” is the inverse metric: ¢g"”g,, = 4.
Compare the resulting energy-momentum tensor

TH — 1M|
G g T

with that of the previous part.
Notice that T} is automatically symmetric and gauge invariant.

[Some useful identities are:

69" (x)
5900(9)

ddet g(x)

= —g"¢"" 6P (z — y) and
g0 e ~u) 09, (Y)

= 0P (x — y) det gg".

For proofs of these statements see page 93 of this document.]

2. Maxwell’s equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation
operators
Ayl = 6 (k — K)o 1)

implies (using the mode expansion for A) that
[A(7), E;(7)] = —ih /dsk? eiF-(F=7) <5ij — I%¢I%j>

(and also [A;(7), A;(")] = 0 and [E;(7), E;(7")] = 0).
Conclude that it’s not possible to simultaneously measure E,(7) and B, (7).

(b) Using the result of the previous part, check that the wave equation for A;(z)
follows from the Heisenberg equations of motion

—

S|
E=—-H E|
at h[ I ]


https://mcgreevy.physics.ucsd.edu/f13/225A-lectures.pdf

3. Goldstone boson. Here is a simple example of the Goldstone phenomenon,
which I mentioned briefly in lecture. Consider again the complex scalar field
from a previous assignment.

Suppose the potential is
V(®*P) = g (9 — 0?)”

where g,v are constants. The important features of V' are that (1) it is only
a function of |®|? = ®®*, so that it preserves the particle-number symmetry
generated by q which was the hero a previous homework problem, and (2) the
minimum of V(z) away from = = 0.

Treat the system classically. Write the action S[®, ®*] in polar coordinates in
field space:
®(z,t) = pet

where both p, 6 are functions of space and time.

(a) Consider constant field configurations, and show that minimizing the po-
tential fixes p but not the phase 6.

(b) Compute the mass® of the p field about its minimum, m? = 392V ,—,.

(¢) Now ignore the deviations of p from its minimum (it’s heavy and slow and
hard to excite), but continue to treat 6 as a field. Plug the resulting expres-
sion

$ — peif@d)

into the action. Show that 8 is a massless scalar field.

(d) How does the U(1) symmetry generated by q act on 67

4. Angular momentum as Noether charge.

Consider an arbitrary local scalar field theory with Lagrangian density £ =
L(¢,0,¢) such that the action is invariant under rotations of space. A rotation
acts on a scalar field by

o(') = o(Rja’) (2)
where R is a rotation matrix RT R = 1. Consider an infinitesimal rotation R;'. =

5; +w§-, for w an arbitrary (small) real antisymmetric matrix specifying the plane
and angle of rotation. Find the associated Noether currents in terms of ¢.

Relate your answer to the form of the stress tensor. [Hint for interpreting the
answer: a rotation is a space-dependent translation.]



If you prefer, you may consider instead the full Lorentz group, which acts by

¢(z") = p(Ajz") (3)
where A is a D x D matrix preserving the Minkowski metric 7, .

Bonus problem: find the associated Noether charges in the case of a field theory of
a vector such as electromagnetism, which transforms like A, (x) — (Rfl)z A, (Rz).

The following two problems can be handed either with HWO03 or with HW04.

d.

Casimir force is regulator-independent. [Bonus problem] Suppose we use a
different regulator for the sum in the vacuum energy > ; hwj. The regulator we’ll
use here is an analog of Pauli-Villars. In the notation introduced in the lecture
notes, we replace

£ = 5 DK )

where the function K is A

Kw) = Co—.
@) ; “w+ A,
We impose two conditions on the parameters c,, Ay:

e We want the low-frequency answer to be unmodified:

w—0

Kw) =1

— this requires ) ¢, = 1.

e We want the sum over j to converge; this requires that K (w) falls off faster
than w™2. Taylor expanding in the limit w > A,, we have

K (w) W3W%ZCQAQ—$ZCO¢A2+... .

So we also require > c,Ay =0 and Y c,A2 = 0.

First, verify the previous claims about K (w).

Then compute f(d) and show that with these assumptions, the Casimir force is
independent of the parameters ¢, A,.

[A hint for doing the sum: use the identity

1 oo
X:/o dse X

inside the sum to make it a geometric series. To do the remaining integral over
s, Taylor expand the integrand in the regime of interest.]
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6. Casimir energy from balls and springs. [More difficult bonus problem]
Regularize the Casimir energy of a 1d scalar field by discretizing space. If you
suppose there are N = d/a € Z lattice points in the left cavity

|« d—|+— L—d — |

what answer do you find for the force on the middle plate?

[Hint: you will find the wrong answer! The problem is that with these assump-
tions d cannot vary continuously. One way to allow d to vary continuously (and
get the right answer) is to impose ¢(0) = 0 = ¢(d), but do not assume d corre-
sponds to a lattice site.]



