University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2023 Assignment 3

Due 11:00am Monday, October 23, 2023

1. Classical Maxwell theory. [Peskin problem 2.1, lightly edited] Classical electromagnetism follows from the action

$$
S[A]=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-j^{\mu} A_{\mu}\right), \quad \text { where } F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} .
$$

(a) Derive two of the Maxwell equations (Gauss' Law and Faraday's Law) as the Euler-Lagrange equations of this action, treating the components $A_{\mu}(x)$ as the dynamical variables:

$$
0=\frac{\delta S[A]}{\delta A_{\mu}(x)} .
$$

Write the equations in the standard form by identifying $E^{i}=-F^{0 i}$ and $\epsilon^{i j k} B^{k}=-F^{i j}$.
(b) Construct the energy-momentum tensor for this theory, when $j^{\mu}=0$. Note that the usual procedure

$$
T_{\nu}^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi-\mathcal{L} \delta_{\nu}^{\mu}
$$

does not result in a symmetric tensor. (It is also not gauge invariant.) To remedy that, we can add to $T^{\mu \nu}$ a term of the form $\partial_{\lambda} K^{\lambda \mu \nu}$, where $K^{\lambda \mu \nu}$ is antisymmetric in its first two indices. Such an object is automatically divergenceless, so

$$
\widehat{T}^{\mu \nu} \equiv T^{\mu \nu}+\partial_{\lambda} K^{\lambda \mu \nu}
$$

is an equally good energy-momentum tensor with the same globally conserved energy and momentum. Show that this construction, with

$$
K^{\lambda \mu \nu}=F^{\mu \lambda} A^{\nu}
$$

leads to an energy-momentum tensor \widehat{T} that is symmetric and yields the standard formulae for the electromagnetic energy and momentum densities:

$$
\mathcal{E}=\frac{1}{2}\left(E^{2}+B^{2}\right), \quad \vec{S}=\vec{E} \times \vec{B}
$$

(c) [Bonus problem] A better way to think about the energy-momentum tensor is to regard it as the response to a change in the background metric. (This is why it appears as a source in Einstein's equations.) To couple the Maxwell theory to a general background metric $g_{\mu \nu}$, we replace all the $\eta_{\mu \nu} \mathrm{S}$ with $g_{\mu \nu} \mathrm{S}$:

$$
S[A, g]=\int d^{4} x \sqrt{g}\left(-\frac{1}{4} F_{\mu \nu} F_{\rho \sigma} g^{\mu \rho} g^{\nu \sigma}+j^{\mu} A_{\mu}\right)
$$

where the factor of $\sqrt{g} \equiv \sqrt{|\operatorname{det} g|}$ is required to make the integration measure coordinate-invariant, and $g^{\mu \nu}$ is the inverse metric: $g^{\mu \nu} g_{\nu \rho}=\delta_{\rho}^{\mu}$. Compare the resulting energy-momentum tensor

$$
T_{g}^{\mu \nu}=\left.\frac{2}{\sqrt{g}} \frac{\delta S[A, g]}{\delta g_{\mu \nu}}\right|_{g_{\mu \nu}=\eta_{\mu \nu}}
$$

with that of the previous part.
Notice that $T_{g}^{\mu \nu}$ is automatically symmetric and gauge invariant.
[Some useful identities are:

$$
\frac{\delta g^{\mu \nu}(x)}{\delta g_{\rho \sigma}(y)}=-g^{\mu \rho} g^{\nu \sigma} \delta^{D}(x-y) \text { and } \frac{\delta \operatorname{det} g(x)}{\delta g_{\mu \nu}(y)}=\delta^{D}(x-y) \operatorname{det} g g^{\mu \nu}
$$

For proofs of these statements see page 93 of this document.]

2. Maxwell's equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation operators

$$
\begin{equation*}
\left[\mathbf{a}_{k s}, \mathbf{a}_{k^{\prime} s}^{\dagger}\right]=\delta^{3}\left(k-k^{\prime}\right) \delta_{s s^{\prime}} . \tag{1}
\end{equation*}
$$

implies (using the mode expansion for \mathbf{A}) that

$$
\left[\mathbf{A}_{i}(\vec{r}), \mathbf{E}_{j}\left(\vec{r}^{\prime}\right)\right]=-\mathbf{i} \hbar \int \mathrm{d}^{3} k e^{\mathrm{i} \cdot \vec{k} \cdot\left(\vec{r}-\vec{r}^{\prime}\right)}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right)
$$

(and also $\left[\mathbf{A}_{i}(\vec{r}), \mathbf{A}_{j}\left(\vec{r}^{\prime}\right)\right]=0$ and $\left.\left[\mathbf{E}_{i}(\vec{r}), \mathbf{E}_{j}\left(\vec{r}^{\prime}\right)\right]=0\right)$.
Conclude that it's not possible to simultaneously measure $E_{x}(\vec{r})$ and $B_{y}(\vec{r})$.
(b) Using the result of the previous part, check that the wave equation for $\mathbf{A}_{i}(x)$ follows from the Heisenberg equations of motion

$$
\partial_{t} \overrightarrow{\mathbf{E}}=\frac{\mathbf{i}}{\hbar}[\mathbf{H}, \overrightarrow{\mathbf{E}}] .
$$

3. Goldstone boson. Here is a simple example of the Goldstone phenomenon, which I mentioned briefly in lecture. Consider again the complex scalar field from a previous assignment.

Suppose the potential is

$$
V\left(\Phi^{\star} \Phi\right)=g\left(\Phi^{\star} \Phi-v^{2}\right)^{2}
$$

where g, v are constants. The important features of V are that (1) it is only a function of $|\Phi|^{2}=\Phi \Phi^{\star}$, so that it preserves the particle-number symmetry generated by \mathbf{q} which was the hero a previous homework problem, and (2) the minimum of $V(x)$ away from $x=0$.

Treat the system classically. Write the action $S\left[\Phi, \Phi^{\star}\right]$ in polar coordinates in field space:

$$
\Phi(x, t)=\rho e^{\mathrm{i} \theta}
$$

where both ρ, θ are functions of space and time.
(a) Consider constant field configurations, and show that minimizing the potential fixes ρ but not the phase θ.
(b) Compute the mass ${ }^{2}$ of the ρ field about its minimum, $m_{\rho}^{2}=\left.\frac{1}{2} \partial_{\rho}^{2} V\right|_{\rho=v}$.
(c) Now ignore the deviations of ρ from its minimum (it's heavy and slow and hard to excite), but continue to treat θ as a field. Plug the resulting expression

$$
\Phi=v e^{\mathbf{i} \theta(x, t)}
$$

into the action. Show that θ is a massless scalar field.
(d) How does the $U(1)$ symmetry generated by \mathbf{q} act on θ ?

4. Angular momentum as Noether charge.

Consider an arbitrary local scalar field theory with Lagrangian density $\mathcal{L}=$ $\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)$ such that the action is invariant under rotations of space. A rotation acts on a scalar field by

$$
\begin{equation*}
\phi\left(x^{i}\right) \mapsto \phi\left(R_{j}^{i} x^{j}\right) \tag{2}
\end{equation*}
$$

where R is a rotation matrix $R^{T} R=1$. Consider an infinitesimal rotation $R_{j}^{i}=$ $\delta_{j}^{i}+\omega_{j}^{i}$, for ω an arbitrary (small) real antisymmetric matrix specifying the plane and angle of rotation. Find the associated Noether currents in terms of ϕ.

Relate your answer to the form of the stress tensor. [Hint for interpreting the answer: a rotation is a space-dependent translation.]

If you prefer, you may consider instead the full Lorentz group, which acts by

$$
\begin{equation*}
\phi\left(x^{\mu}\right) \mapsto \phi\left(\Lambda_{\nu}^{\mu} x^{\nu}\right) \tag{3}
\end{equation*}
$$

where Λ is a $D \times D$ matrix preserving the Minkowski metric $\eta_{\mu \nu}$.
Bonus problem: find the associated Noether charges in the case of a field theory of a vector such as electromagnetism, which transforms like $A_{\mu}(x) \mapsto\left(R^{-1}\right)_{\mu}^{\nu} A_{\nu}(R x)$.

The following two problems can be handed either with HW03 or with HW04.
5. Casimir force is regulator-independent. [Bonus problem] Suppose we use a different regulator for the sum in the vacuum energy $\sum_{j} \hbar \omega_{j}$. The regulator we'll use here is an analog of Pauli-Villars. In the notation introduced in the lecture notes, we replace

$$
f(d) \rightsquigarrow \frac{1}{2} \sum_{j=1}^{\infty} \omega_{j} K\left(\omega_{j}\right)
$$

where the function K is

$$
K(\omega)=\sum_{\alpha} c_{\alpha} \frac{\Lambda_{\alpha}}{\omega+\Lambda_{\alpha}}
$$

We impose two conditions on the parameters $c_{\alpha}, \Lambda_{\alpha}$:

- We want the low-frequency answer to be unmodified:

$$
K(\omega) \xrightarrow{\omega \rightarrow 0} 1
$$

- this requires $\sum_{\alpha} c_{\alpha}=1$.
- We want the sum over j to converge; this requires that $K(\omega)$ falls off faster than ω^{-2}. Taylor expanding in the limit $\omega \gg \Lambda_{\alpha}$, we have

$$
K(\omega) \xrightarrow{\omega \rightarrow \infty} \frac{1}{\omega} \sum_{\alpha} c_{\alpha} \Lambda_{\alpha}-\frac{1}{\omega^{2}} \sum_{\alpha} c_{\alpha} \Lambda_{\alpha}^{2}+\cdots .
$$

So we also require $\sum_{\alpha} c_{\alpha} \Lambda_{\alpha}=0$ and $\sum_{\alpha} c_{\alpha} \Lambda_{\alpha}^{2}=0$.
First, verify the previous claims about $K(\omega)$.
Then compute $f(d)$ and show that with these assumptions, the Casimir force is independent of the parameters $c_{\alpha}, \Lambda_{\alpha}$.
[A hint for doing the sum: use the identity

$$
\frac{1}{X}=\int_{0}^{\infty} d s e^{-s X}
$$

inside the sum to make it a geometric series. To do the remaining integral over s, Taylor expand the integrand in the regime of interest.]
6. Casimir energy from balls and springs. [More difficult bonus problem] Regularize the Casimir energy of a 1 d scalar field by discretizing space. If you suppose there are $N \equiv d / a \in \mathbb{Z}$ lattice points in the left cavity

$$
|\leftarrow d \rightarrow| \longleftarrow \quad L-d \quad \longrightarrow \mid
$$

what answer do you find for the force on the middle plate?
[Hint: you will find the wrong answer! The problem is that with these assumptions d cannot vary continuously. One way to allow d to vary continuously (and get the right answer) is to impose $\phi(0)=0=\phi(d)$, but do not assume d corresponds to a lattice site.]

