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1. Brain-warmer: the identity does nothing twice. Check our relativistic

state normalization by squaring the expression for the identity in the 1-particle

sector:

12
1

!
= 11 =

∫
d̄dp

2ω~p
|~p〉 〈~p| .

2. Non-Abelian currents. [bonus problem] On a previous homework, we studied

a complex scalar field. Now, we make a big leap to two complex scalar fields,

Φα=1,2, with

S[Φα] =

∫
ddxdt

(
1

2
∂µΦ?

α∂
µΦα − V (Φ?

αΦα)

)
Consider the objects

Qi ≡ 1

2

∫
ddxi

(
Π†ασ

i
αβΦ†β

)
+ h.c.

where σi=1,2,3 are the three Pauli matrices.

(a) What symmetries do these charges generate (i.e. how do the fields trans-

form)? Show that they are symmetries of S.

(b) If you want to, show that [Qi, H] = 0, where H is the Hamiltonian.

(c) Evaluate [Qi, Qj]. Hence, non-Abelian. Where have you seen this algebra

before?

(d) To complete the circle, find the Noether currents J iµ associated to the sym-

metry transformations you found in part 2a. Show that the resulting charge

Qi =
∫
ddxJ i0 agrees with our starting point.

(e) Generalize to the case of N scalar fields.

3. Recovering non-relativistic quantum mechanics.

Consider a complex scalar field, in the non-relativistic limit,

Φ =
√

2me−imtΨ, |Ψ̇| � mΨ.

Recall that in this limit, the antiparticles disappear and the mode expansion is

Ψ(x) =

∫
d̄dp e+i~p·~xap, Ψ†(x) =

∫
d̄dp e−i~p·~xa†p .

1



(a) Show that

P̂i ≡
∫

d̄dppia
†
pap

is the generator of translations and commutes with the Hamiltonian.

(b) Let

X̂ i ≡
∫
ddxΨ†(x)xiΨ(x).

A state of one particle at location ~x is

|x〉 = Ψ†(x) |0〉 .

Show that

X̂ i |x〉 = xi |x〉 .

(c) Consider the general one-particle state

|ψ〉 =

∫
ddx ψ(x)Ψ†(x) |0〉 =

∫
dxx ψ(x) |x〉 .

Show that

X̂ i |ψ〉 =

∫
ddxxiψ(x) |x〉

and (a little more involved)

P̂ i |ψ〉 =

∫
ddx

(
−i ∂
∂xi

ψ(x)

)
|x〉 ,

which is the usual action of these operators on single-particle wavefunctions

ψ(x).

4. Combinatorics from 0-dimensional QFT. [This is a more sophisticated

bonus problem. I will not post the solutions of this problem until later. If

you have a hard time with it now, please try again in a week.]

Catalan numbers Cn = (2n)!
n!(n+1)!

arise as the answer to many combinatorics prob-

lems (beware: there is some disagreement in the literature about whether this is

Cn or Cn+1).

One such problem is: count random walks on a 1d chain

with 2n steps that start at 0 and end at 0 without cross-

ing 0 in between.

Another such problem is: in how many ways can 2n (dis-

tinguishable) points on a circle be connected by chords

that do not intersect within the circle.
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Consider a zero-dimensional QFT with the following Feynman rules:

• There are two fields h and l.

• There is an
√
th2l vertex in terms of a coupling t.

• The bare l propagator is 1.

• The bare h propagator is 1.

• All diagrams can be drawn on a piece of paper without crossing.

• An annoying extra rule: All the l propagators must be on one side of the h

propagators1.

• There are no loops of h.

The last two rules can be realized from a lagrangian by introducing a large N

(below).

(a) Show that the full two-point green’s function for h is

G(t) =
∑
n

tnCn

the generating function of Catalan numbers.

(b) Let Σ(t) be the sum of diagrams with two h lines sticking out that may

not be divided into two parts by cutting a single intermediate line. (This

property is called 1PI (one-particle irreducible), and Σ is called the “1PI

self-energy of h”. We’ll use this manipulation all the time later on.) Show

that G(t) = 1
1−Σ(t)

.

(c) Argue by diagrams for the equation (sometimes this is also called a Schwinger-

Dyson equation)

where Σ is the 1PI self-energy of h.

(d) Solve this equation for the generating function G(t).

1You’ll see in part 4f how to justify this.
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(e) If you are feeling ambitious, add another coupling N−1 which counts the

crossings of the l propagators. The resulting numbers can be called Touchard-

Riordan numbers.

(f) How to realize the no-crossings rule? Consider

L =

√
t√
N
lαβhαhβ +

∑
α,β

l2αβ +
∑
α

h2
α

where α, β = 1 · · ·N . By counting index loops, show that the dominant

diagrams at large N are the ones we kept above. Hint: to keep track of the

factors of N , introduce (’t Hooft’s) double-line notation: since l is a matrix,

its propagator looks like:
α−−−−−−− α
β −−−−−−− β, while the h propagator is just

one index line α α, and the vertex is !! . If you don’t like my ascii

diagrams, here are the respective pictures: 〈lαβlαβ〉 = ,

〈hαhα〉 = and the hhl vertex is: . A

closed index loop gives a factor of N .

(g) Use properties of Catalan numbers to estimate the size of non-perturbative

effects in this field theory.

(h) There are many other examples like this. Another similar one is the rela-

tionship between symmetric functions and homogeneous products. A more

different one is the enumeration of planar graphs. For that, see BIPZ.

5. Scalar Yukawa amplitudes.

Consider again the scalar Yukawa theory of a complex scalar Φ and a real scalar φ.

In the following, assume all particles are in momentum eigenstates. Use artisanal

methods.

(a) Compute the amplitude for the annihilation of a Φ particle and a Φ? particle

into a φ particle, at leading order in the coupling g.

(b) Compute the amplitude for Φ + φ → Φ + φ scattering to the leading non-

trivial order in the coupling. Focus on the generic case where none of the

initial momenta is the same as any of the final momenta.

Can you write the answer in a manifestly Lorentz-invariant way?

6. Fields and forces. Consider a real free relativistic scalar field of mass m

S[φ] =
∫
dd+1x1

2
(∂µφ∂

µφ−m2φ2).
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(a) Calculate the vacuum expectation value

〈0| T
(
ei

∫
dd+1x φ(x)J(x)

)
|0〉 ≡ eiW [J ]

where J is a fixed, external (c-number) source. Use Wick’s theorem. Make

a series expansion in powers of J and draw some diagrams. To understand

the structure of the series, recall the formula on a previous homework for〈
eK·q

〉
in any gaussian theory.

(b) Now specialize to the case where the source is static and is present for a

time 2T :

J(x) = Jstatic ≡ θ(T − t)θ(t+ T )
(
δd(x)− δd(x−R)

)
with T � R� 1/m. You should find an answer of the form

W [Jstatic(x)] = −TV (R)

where V (R) is the Yukawa potential.

(c) Chant the following incantation:

Static sources experience a force due to exchange of virtual particles.

Feel happy at having reproduced by canonical methods the answer we found

earlier using path integral methods.
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