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1. Brain-warmer: Wick example.

For a real scalar field, verify by hand Wick’s prediction for the difference

T (φ(x1)φ(x2)φ(x3))− : φ(x1)φ(x2)φ(x3) :

2. Brain-warmers: Feynman rules.

Consider the field theory with action

S[φ] =

∫
dd+1x

(
1

2
(∂µφ∂

µφ−m2φ2)− g

3!
φ3

)
.

(a) Briefly state the Feynman rules in position space, emphasizing the differ-

ences from the φ4 theory.

(b) Draw the diagrams that correct the position-space two-point function at

order g2.

(c) Find the symmetry factor for these diagrams and verify them directly.

3. Particle creation by an external source.

Compare this problem with problem 6 on HW06.

Consider the Hamiltonian

H = H0 +

∫
d3x (−j(t, ~x)φ(x))

where H0 is the free Klein-Gordon Hamiltonian, φ is the Klein-Gordon field, and

j is a c-number scalar function.

(a) Show that the probability that the source creates no particles is given by

P (0) =
∣∣〈0| T {e+i

∫
d4xj(x)φI(x)} |0〉

∣∣2.
(b) Evaluate the term in P (0) of order j2, and show that P (0) = 1− λ+O(j4)

where

λ =

∫
d̄3p

2Ep
|j̃(p)|2.

We will show below that λ = 〈N〉 is the mean number of particles created

by the source.
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(c) Represent the term computed in part 3b as a Feynman diagram. Now rep-

resent the whole perturbation series for P (0) in terms of Feynman diagrams.

(Hint: you have done this calculation already.) Show that this series expo-

nentiates, so that it can be summed exactly P (0) = e−λ.

(d) On the next problem set, after learning about the notion of final-state phase

space, we’ll find the probability for the source to create any number of

particles.

4. Propagator corrections in a solvable field theory.

Consider a theory of a scalar field in D dimensions with action

S = S0 + S1

where

S0 =

∫
dDx

1

2

(
∂µφ∂

µφ−m2
0φ

2
)

and

S1 = −
∫
dDx

1

2
δm2φ2 .

We have artificially decomposed the mass term into two parts. We will do per-

turbation theory in small δm2, treating S1 as an ‘interaction’ term. We wish to

show that the organization of perturbation theory that we’ve seen lecture will

correctly reassemble the mass term.

(a) Write down all the Feynman rules for this perturbation theory.

(b) Determine the 1PI two-point function in this model, defined by

−iΣ ≡
∑

(all 1PI diagrams with two nubbins) .

(c) Show that the (geometric) summation of the propagator corrections cor-

rectly produces the propagator that you would have used had we not split

up m2
0 + δm2.

5. Wick’s theorem from Schwinger-Dyson equations. [Bonus problem] Study

the derivation of Wick’s theorem from the Schwinger-Dyson equation for the n-

point function of a free scalar field on page 81 of Schwartz’ book.

6. A background field. [This is a bonus problem.]

Consider the following action for a real scalar field Φ:

S[Φ] =

∫
dd+1x

1

2

(
∂µΦ∂µΦ−m2Φ2 − gφ(x)Φ2

)
.
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The last term here is a cubic coupling between φ and Φ. But here we will treat

φ(x) as a fixed background field (analogous to j(x) on previous problems) which

acts as a spacetime-dependent mass for the dynamical field Φ.

(a) Show that the two-point Green’s function, G(x, y) ≡ 〈Ω|T Φ(x)Φ(y)|Ω〉,
satisfies the Schwinger-Dyson equation

− iδd+1(x− y) =
(
∂2 +m2 + gφ(x)

)
G(x, y). (1)

(b) We would like to solve this differential equation. As a warmup, consider the

case g = 0. Here is a trick: add a fictitious additional time direction T(
∂T −

(
∂2 +m2

))
G(x, y, T ) = iδd+1(x− y)δ(T ) (2)

This is just a diffusion equation (in d+2 dimensions and with a funny factor

of i!). Show that given a solution to (9), you can find the solution of (8)

with g = 0 by

G(x, y) =

∫ ∞
0

dTG(x, y, T ). (3)

(c) Show that the solution to the diffusion equation (9) is

G(x, y, T ) =
i

(2πT )α
ea

(x−y)2
2T

+bm
2

2
T . (4)

Find α, a, b. Use this to construct the path integral representation

G(x, y, T ) =

∫ x(T )=y

x(0)=x

[Dx]e−i
∫ T
0 dτ(ẋµẋµ+m2).

(d) For the case of constant m2, the infinitesimal solution (12) actually works

for finite T . Show by differentiation that plugging (12) into (10) gives an

integral representation of the free Klein-Gordon propagator.

(e) Now let g 6= 0 and suppose that φ is slowly varying. Generalize the path

integral representation to include the dependence on φ.

(f) Consider a non-relativistic situation, where the spacetime points x and y

are separated by a timelike distance large compared to 1/m. Justify and

use stationary-phase methods to show that the dominant contribution to

the path integral is a straight-line trajectory between the two points x and

y. Evaluate the resulting amplitude as a functional of φ(x).

This calculation shows that the heavy particle made by the field Φ can be

treated as a source for φ propagating on a fixed path in spacetime.
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(g) Redo the problem for a charged scalar field, Φ in the background of a vector

potential Aµ, with

S[Φ] =

∫
dd+1x

1

2

(
DµΦ?DµΦ−m2Φ?Φ

)
, DµΦ ≡ ∂µΦ− iAµΦ.

It will help to recall that the action of a classical charged particle is
∫
dτ (ẋ2 + ẋµAµ(x)).
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