University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2023 Assignment 9

Due 11:00am Monday, December 4, 2023

1. Brain warmers on $\mathbf{S O}(3)$.

(a) Consider the statement that the rotation generators transform as a vector under rotations:

$$
\begin{equation*}
\left(D_{(j=1)}(\theta)\right)_{j}^{k} \mathbf{J}^{j}=D_{R}(\theta)^{\dagger} \mathbf{J}^{k} D_{R}(\theta) \tag{1}
\end{equation*}
$$

where $D_{R}(\theta)=e^{-\mathbf{i} \theta^{i} \mathbf{J}^{i}}$ and $D_{(j=1)}(\theta)=e^{-\mathbf{i} \theta^{i} J_{(j=1)}^{i}}$, with $\left(J_{(j=1)}^{i}\right)_{k}^{j}=-\mathbf{i} \epsilon^{i j k}$. Show that to leading nontrivial order in θ (about $\theta=0$) this is equivalent to the so(3) Lie algebra,

$$
\begin{equation*}
\left[\mathbf{J}^{i}, \mathbf{J}^{j}\right]=\mathbf{i} \epsilon^{i j k} \mathbf{J}^{k} \tag{2}
\end{equation*}
$$

(b) Starting from the form of the generators in the vector ($\operatorname{spin} 1$) representation,

$$
\begin{equation*}
\left(\mathbf{J}^{i}\right)_{k}^{j}=-\mathbf{i} \epsilon^{i j k} \tag{3}
\end{equation*}
$$

(with $\epsilon^{123}=1$) construct the matrix realizing a rotation by angle θ about the z axis on a vector.
(c) Here let's show that the equation

$$
\begin{equation*}
\left[J^{i}, K^{j}\right]=\mathbf{i} \epsilon^{i j k} K^{k} \tag{4}
\end{equation*}
$$

can really be interpreted as the statement that " K is a vector". Let's just think about rotations about one axis \hat{n}. Suppose J^{i} and K^{k} here are operators acting on the representation R. Let

$$
\begin{equation*}
K(s)^{k} \equiv \hat{D}_{R}(s)^{\dagger} K^{k} \hat{D}_{R}(s) \tag{5}
\end{equation*}
$$

(note that k here is an index, not a power) where $\hat{D}_{R}(s) \equiv e^{-\mathbf{i} s \hat{n} \cdot \vec{J}}$, so s parametrizes the angle of rotation. Show that (6) implies that $K(s)$ satisfies the ODE

$$
\begin{equation*}
\partial_{s} K(s)^{k}=\epsilon^{k i l} n^{i} K(s)^{l} \tag{6}
\end{equation*}
$$

with initial condition $K(0)^{k}=K^{k}$.
Using uniqueness theorems about solutions of linear ODEs that

$$
\begin{equation*}
K(s)^{k}=\left(D_{(j=1)}(s \hat{n})\right)^{k}{ }_{j} K^{j}, \tag{7}
\end{equation*}
$$

where $\left(D_{(j=1)}(s \hat{n})\right)^{k}{ }_{j}$ are the matrix elements of the spin one representation of this rotation.
2. Lorentz algebra in $D=3+1$.
(a) Check the algebra satisfied by rotations and boosts

$$
\begin{equation*}
\left[J^{i}, J^{j}\right]=\mathbf{i} \epsilon^{i j k} J^{k}, \quad\left[J^{i}, K^{j}\right]=\mathbf{i} \epsilon^{i j k} K^{k}, \quad\left[K^{i}, K^{j}\right]=-\mathbf{i} \epsilon^{i j k} J^{k} \tag{8}
\end{equation*}
$$

using the explicit matrices in the vector representation given in lecture, namely

$$
J^{i}=\left(\begin{array}{ll}
0 & \tag{9}\\
& \mathbf{J}^{i}
\end{array}\right)
$$

(where the 3×3 matrix $\mathbf{J}^{\mathbf{i}}$ is $\left(\mathbf{J}^{i}\right)_{k}^{j}=-\mathbf{i} \epsilon^{i j k}$) and

$$
\begin{equation*}
\left(K^{i}\right)^{j}{ }_{0}=\mathbf{i} \delta_{j}^{i}=\left(K^{i}\right)^{0}{ }_{j} \tag{10}
\end{equation*}
$$

and all other components zero.
For this purpose, I think typing them into Mathematica and writing $K . J-$ $J . K$ etc.... is perfectly acceptable.
(b) Check that in terms of the antisymmetric tensor of operators

$$
J^{\mu \nu}= \begin{cases}\epsilon^{i j k} J^{k}, & \mu \nu=i j \\ K^{i}, & \mu \nu=0 i\end{cases}
$$

(11) can be rewritten as

$$
\begin{equation*}
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=\mathbf{i}\left(\eta^{\nu \rho} J^{\mu \sigma}+\eta^{\mu \sigma} J^{\nu \rho}-(\mu \leftrightarrow \nu)\right) \tag{11}
\end{equation*}
$$

which is the form of the so $(d, 1)$ Lie algebra for general d. Make sure you take advantage of symmetries to avoid working too hard.
(c) Show that in $D=3+1$, (11) is equivalent to $\operatorname{su}(2)_{L} \times \operatorname{su}(2)_{R}$:

$$
\left[J_{+}^{i}, J_{-}^{j}\right]=0, \quad\left[J_{ \pm}^{i}, J_{ \pm}^{j}\right]=\mathbf{i} \epsilon^{i j k} J_{ \pm}^{k}
$$

in terms of

$$
J_{ \pm}^{i} \equiv \frac{1}{2}\left(J^{i} \pm \mathbf{i} K^{i}\right)
$$

(d) The Shayan-Arani operator. [Bonus problem] Consider the object $C \equiv$ $\vec{K} \cdot \vec{J}$ that Shasha asked about during lecture. During lecture I said that it's rotation invariant, but I thought that it might not be invariant under the full Lorentz group.
Show that in fact it is invariant under the full Lorentz group (i.e. $[\vec{K}, C]=$ $0,[\vec{J}, C]=0)$. So it is in fact a Casimir for the Lorentz group. That is, in any irrep it has to be proportional to the identity operator. It will be some function of the quantum numbers j_{L} and j_{R}. Find that function by relating it to other Casimirs and/or computing it in some familiar representations.

3. A representation of the Clifford algebra gives a representation of Lorentz.

[Bonus problem] Show the following: Given a collection of $k \times k$ matrices satisfying $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$ (the Clifford algebra, with $\mu, \nu=0 . . d$), we can make a k-dimensional representation of $S O(1, d)$ with generators

$$
J^{\mu \nu}=\frac{\mathbf{i}}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

As an intermediate step, it is helpful to show that

$$
\left[J^{\mu \nu}, \gamma^{\rho}\right] \propto\left(\gamma^{\mu} \eta^{\nu \rho}-\gamma^{\nu} \eta^{\rho \mu}\right)
$$

Convince yourself that this last equation says that γ^{ρ} transforms as a four-vector, i.e.

$$
\left[\gamma^{\rho}, J_{\text {Dirac }}^{\mu \nu}\right]=\left(J_{\text {vector }}^{\mu \nu}\right)^{\rho}{ }_{\sigma} \gamma^{\sigma} .
$$

4. Bispinors.

(a) Show that any product of gamma matrices between two spinors

$$
\begin{equation*}
V^{\mu_{1} \cdots \mu_{n}} \equiv \bar{\Psi} \gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}} \Psi \tag{12}
\end{equation*}
$$

is a tensor, in the sense that

$$
\begin{equation*}
V^{\mu_{1} \cdots \mu_{n}} \mapsto \Lambda_{\nu_{1}}^{\mu_{1}} \cdots \Lambda_{\nu_{n}}^{\mu_{n}} V^{\nu_{1} \cdots \nu_{n}} . \tag{13}
\end{equation*}
$$

(A tensor is defined to be an object that transforms this way under Lorentz transformations.)
(b) Let $\gamma^{\mu \nu} \equiv \frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ be just the antisymmetric bit, and similarly for more indices. Show that any bispinor $\Gamma_{a b} \bar{\Psi}_{a} \Psi_{b}$ can be decomposed as a sum of these tensors: $\sum_{n} A_{\mu_{1} \cdots \mu_{n}} \bar{\Psi} \gamma^{\mu_{1} \cdots \mu_{n}} \Psi$, where the A s are totally antisymmetric.

5. Gamma matrices in other dimensions.

(a) Find a collection of D matrices satisfying the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=$ $2 \eta^{\mu \nu}$ in $D=2$. Are they the smallest possible?
(b) Find a collection of D matrices satisfying the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=$ $2 \eta^{\mu \nu}$ in $D=3$. Are they the smallest possible?
(c) Find a collection of D matrices satisfying the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=$ $2 \eta^{\mu \nu}$ in $D=5$. Are they the smallest possible?
(d) [bonus problem] Find a collection of D matrices satisfying the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$ in $D=6$, or any higher dimension. Are they the smallest possible?

The following problems are about discrete symmetries of scalar field theories. They are a useful warmup to the discussion of discrete symmetries of the Dirac fermion.

6. Brain warmer: \mathbb{Z}_{2} symmetry of real scalar field theory.

What does the operator

$$
U \equiv e^{\mathbf{i} \pi \sum_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}}
$$

do to the real scalar field

$$
\phi(x) \rightarrow \phi^{\prime}(x)=U \phi(x) U^{\dagger}
$$

whose ladder operators are $\mathbf{a}, \mathbf{a}^{\dagger}$?
For which Lagrangians is this a symmetry?
7. Charge conjugation in complex scalar field theory. [Bonus problem]

Consider again a free complex Klein-Gordon field Φ. Define a discrete symmetry operation (charge conjugation) C, by

$$
\Phi(x) \mapsto C \Phi(x) C^{-1}=\eta_{c} \Phi^{\dagger}(x)
$$

where C is a unitary operator, and η_{c} is an arbitrary phase factor. Assume that the vacuum is invariant under charge conjugation: $C|0\rangle=|0\rangle$.
(a) Show that the free lagrangian is invariant under C, but the particle number current j^{μ} changes sign.
(b) Show that the annihilation operators satisfy

$$
C \mathbf{a}_{k} C^{-1}=\eta_{c} \mathbf{b}_{k}, \quad C \mathbf{b}_{k} C^{-1}=\eta_{c}^{\star} \mathbf{a}_{k}
$$

and hence show that C interchanges particle and antiparticle states, up to a phase.
8. Parity symmetry of scalar field theory. [Bonus problem]

Under the parity transformation

$$
\vec{x} \mapsto \vec{x}^{\prime}=-\vec{x}
$$

a real Klein-Gordon transforms as

$$
\begin{equation*}
\phi(t, \vec{x}) \mapsto P \phi(t, x) P^{-1}=\eta_{p} \phi(t,-\vec{x}) \tag{14}
\end{equation*}
$$

where P is unitary and $\eta_{P}= \pm 1$ is the intrinsic parity of the field ϕ. Again assume $P|0\rangle=|0\rangle$.
(a) Show that the parity transformation preserves the free Lagrangian (though not the Lagrangian density), for both values of η_{P}.
(b) Show that an arbitrary n-particle state transforms as

$$
P\left|\vec{k}_{1}, \cdots \vec{k}_{n}\right\rangle=\eta_{P}^{n}\left|-\vec{k}_{1}, \cdots,-\vec{k}_{n}\right\rangle .
$$

(c) Here we give an explicit realization of the parity operator. Let

$$
P_{1} \equiv e^{-\mathbf{i} \frac{\pi}{2} \sum_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}}, \quad P_{2} \equiv e^{\mathbf{i} \eta_{p} \frac{\pi}{2} \sum_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{-k}} .
$$

Show that

$$
P_{1} \mathbf{a}_{k} P_{1}^{-1}=\mathbf{i} \mathbf{a}_{k}, \quad P_{2} \mathbf{a}_{k} P_{2}^{-1}=-\mathbf{i} \eta_{p} \mathbf{a}_{-k}
$$

Hint: Use the following version of the Campbell-Baker-Hausdorff formula

$$
e^{\mathbf{i} \alpha A} B e^{-\mathbf{i} \alpha A}=\sum_{n=0}^{\infty} \frac{(\mathbf{i} \alpha)^{n}}{n!} B_{n}
$$

where $B_{0} \equiv B$ and $B_{n}=\left[A, B_{n-1}\right]$ for $n=1,2 \ldots \ldots$
Show that $P \equiv P_{1} P_{2}$ is unitary, and satisfies (24).
(d) Action on the current of a complex scalar field. Consider now a complex scalar field. Using the results from problems 7 and the preceding parts of 8 , find the action of parity on the particle current $j^{\mu} \mapsto P j^{\mu} P^{-1}$. (You'll have to extend the action of P from the case of a real field to the complex case.)

