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1. Brain warmers on SO(3).

(a) Consider the statement that the rotation generators transform as a vector

under rotations: (
D(j=1)(θ)

)k
j
Jj = DR(θ)†JkDR(θ), (1)

where DR(θ) = e−iθ
iJi and D(j=1)(θ) = e−iθ

iJi
(j=1) , with (J i(j=1))

j
k = −iεijk.

Show that to leading nontrivial order in θ (about θ = 0) this is equivalent

to the so(3) Lie algebra,

[Ji,Jj] = iεijkJk. (2)

(b) Starting from the form of the generators in the vector (spin 1) representation,

(Ji)jk = −iεijk (3)

(with ε123 = 1) construct the matrix realizing a rotation by angle θ about

the z axis on a vector.

(c) Here let’s show that the equation

[J i, Kj] = iεijkKk (4)

can really be interpreted as the statement that “K is a vector”. Let’s just

think about rotations about one axis n̂. Suppose J i and Kk here are oper-

ators acting on the representation R. Let

K(s)k ≡ D̂R(s)†KkD̂R(s) (5)

(note that k here is an index, not a power) where D̂R(s) ≡ e−isn̂·
~J , so s

parametrizes the angle of rotation. Show that (6) implies that K(s) satisfies

the ODE

∂sK(s)k = εkilniK(s)l (6)

with initial condition K(0)k = Kk.

Using uniqueness theorems about solutions of linear ODEs that

K(s)k =
(
D(j=1)(sn̂)

)k
jK

j, (7)

where
(
D(j=1)(sn̂)

)k
j are the matrix elements of the spin one representation

of this rotation.
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2. Lorentz algebra in D = 3 + 1.

(a) Check the algebra satisfied by rotations and boosts

[J i, J j] = iεijkJk, [J i, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk (8)

using the explicit matrices in the vector representation given in lecture,

namely

J i =

(
0

Ji

)
(9)

(where the 3× 3 matrix Ji is (Ji)jk = −iεijk) and(
Ki
)j

0 = iδij =
(
Ki
)0

j (10)

and all other components zero.

For this purpose, I think typing them into Mathematica and writing K.J −
J.K etc.... is perfectly acceptable.

(b) Check that in terms of the antisymmetric tensor of operators

Jµν =

{
εijkJk, µν = ij

Ki, µν = 0i
,

(11) can be rewritten as

[Jµν , Jρσ] = i (ηνρJµσ + ηµσJνρ − (µ↔ ν)) , (11)

which is the form of the so(d, 1) Lie algebra for general d. Make sure you

take advantage of symmetries to avoid working too hard.

(c) Show that in D = 3 + 1, (11) is equivalent to su(2)L × su(2)R:

[J i+, J
j
−] = 0, [J i±, J

j
±] = iεijkJk±

in terms of

J i± ≡
1

2
(J i ± iKi).

(d) The Shayan-Arani operator. [Bonus problem] Consider the object C ≡
~K · ~J that Shasha asked about during lecture. During lecture I said that

it’s rotation invariant, but I thought that it might not be invariant under

the full Lorentz group.

Show that in fact it is invariant under the full Lorentz group (i.e. [ ~K,C] =

0, [ ~J, C] = 0). So it is in fact a Casimir for the Lorentz group. That is, in

any irrep it has to be proportional to the identity operator. It will be some

function of the quantum numbers jL and jR. Find that function by relating

it to other Casimirs and/or computing it in some familiar representations.
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3. A representation of the Clifford algebra gives a representation of Lorentz.

[Bonus problem] Show the following: Given a collection of k × k matrices sat-

isfying {γµ, γν} = 2ηµν (the Clifford algebra, with µ, ν = 0..d), we can make a

k-dimensional representation of SO(1, d) with generators

Jµν =
i

4
[γµ, γν ].

As an intermediate step, it is helpful to show that

[Jµν , γρ] ∝ (γµηνρ − γνηρµ) .

Convince yourself that this last equation says that γρ transforms as a four-vector,

i.e.

[γρ, JµνDirac] = (Jµνvector)
ρ
σγ

σ.

4. Bispinors.

(a) Show that any product of gamma matrices between two spinors

V µ1···µn ≡ Ψ̄γµ1 · · · γµnΨ (12)

is a tensor, in the sense that

V µ1···µn 7→ Λµ1
ν1 · · ·Λµn

νnV
ν1···νn . (13)

(A tensor is defined to be an object that transforms this way under Lorentz

transformations.)

(b) Let γµν ≡ 1
2
[γµ, γν ] be just the antisymmetric bit, and similarly for more

indices. Show that any bispinor ΓabΨ̄aΨb can be decomposed as a sum of

these tensors:
∑

nAµ1···µnΨ̄γµ1···µnΨ, where theAs are totally antisymmetric.

5. Gamma matrices in other dimensions.

(a) Find a collection of D matrices satisfying the Clifford algebra {γµ, γν} =

2ηµν in D = 2. Are they the smallest possible?

(b) Find a collection of D matrices satisfying the Clifford algebra {γµ, γν} =

2ηµν in D = 3. Are they the smallest possible?

(c) Find a collection of D matrices satisfying the Clifford algebra {γµ, γν} =

2ηµν in D = 5. Are they the smallest possible?

(d) [bonus problem] Find a collection of D matrices satisfying the Clifford al-

gebra {γµ, γν} = 2ηµν in D = 6, or any higher dimension. Are they the

smallest possible?
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The following problems are about discrete symmetries of scalar field theories. They

are a useful warmup to the discussion of discrete symmetries of the Dirac fermion.

6. Brain warmer: Z2 symmetry of real scalar field theory.

What does the operator

U ≡ eiπ
∑
k a
†
kak

do to the real scalar field

φ(x)→ φ′(x) = Uφ(x)U †

whose ladder operators are a, a† ?

For which Lagrangians is this a symmetry?

7. Charge conjugation in complex scalar field theory. [Bonus problem]

Consider again a free complex Klein-Gordon field Φ. Define a discrete symmetry

operation (charge conjugation) C, by

Φ(x) 7→ CΦ(x)C−1 = ηcΦ
†(x)

where C is a unitary operator, and ηc is an arbitrary phase factor. Assume that

the vacuum is invariant under charge conjugation: C |0〉 = |0〉.

(a) Show that the free lagrangian is invariant under C, but the particle number

current jµ changes sign.

(b) Show that the annihilation operators satisfy

CakC
−1 = ηcbk, CbkC

−1 = η?cak

and hence show that C interchanges particle and antiparticle states, up to

a phase.

8. Parity symmetry of scalar field theory. [Bonus problem]

Under the parity transformation

~x 7→ ~x′ = −~x

a real Klein-Gordon transforms as

φ(t, ~x) 7→ Pφ(t, x)P−1 = ηpφ(t,−~x) (14)

where P is unitary and ηP = ±1 is the intrinsic parity of the field φ. Again

assume P |0〉 = |0〉 .
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(a) Show that the parity transformation preserves the free Lagrangian (though

not the Lagrangian density), for both values of ηP .

(b) Show that an arbitrary n-particle state transforms as

P
∣∣∣~k1, · · ·~kn〉 = ηnP

∣∣∣−~k1, · · · ,−~kn〉 .
(c) Here we give an explicit realization of the parity operator. Let

P1 ≡ e−i
π
2

∑
k a
†
kak , P2 ≡ eiηp

π
2

∑
k a
†
ka−k .

Show that

P1akP
−1
1 = iak, P2akP

−1
2 = −iηpa−k.

Hint: Use the following version of the Campbell-Baker-Hausdorff formula

eiαABe−iαA =
∞∑
n=0

(iα)n

n!
Bn

where B0 ≡ B and Bn = [A,Bn−1] for n = 1, 2.....

Show that P ≡ P1P2 is unitary, and satisfies (24).

(d) Action on the current of a complex scalar field. Consider now a

complex scalar field. Using the results from problems 7 and the preceding

parts of 8, find the action of parity on the particle current jµ 7→ PjµP−1.

(You’ll have to extend the action of P from the case of a real field to the

complex case.)
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