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1. Brain warmers on SO(3).

(a)

Consider the statement that the rotation generators transform as a vector
under rotations:

(D=1 (0))} 3 = Dr(6)'3* Dr(0), (1)

where Dg(0) = ¢ 99" and D(;_1y(0) = e =1 | with (Jgjzl))i = —iek,

Show that to leading nontrivial order in € (about ¢ = 0) this is equivalent
to the so(3) Lie algebra,

[T, 3] = iR J*, (2)
Starting from the form of the generators in the vector (spin 1) representation,

@) = et ®)

(with €23 = 1) construct the matrix realizing a rotation by angle 6 about
the z axis on a vector.
Here let’s show that the equation

[J', K] = ie"* K" (4)

can really be interpreted as the statement that “K is a vector”. Let’s just
think about rotations about one axis 7. Suppose J* and K* here are oper-
ators acting on the representation R. Let
K(s)* = Dp(s) K*Dg(s) (5)
(note that k here is an index, not a power) where Dg(s) = e 577 g0 g
parametrizes the angle of rotation. Show that (6) implies that K (s) satisfies
the ODE
0, K (s)" = éMIn' K (s)! (6)
with initial condition K (0)* = K*.
Using uniqueness theorems about solutions of linear ODEs that
kg
K(s)" = (Dy=1)(sn))" K7, (7)

where (D(jzl)(sﬁ))k ; are the matrix elements of the spin one representation
of this rotation.



2. Lorentz algebra in D = 3 + 1.

()

Check the algebra satisfied by rotations and boosts
[J, 07 =ie% gk [J1 K] = ieF K K KT = —iedf gk (8)

using the explicit matrices in the vector representation given in lecture,

()

(where the 3 x 3 matrix J% is (J)] = —ie¥*) and

namely

i\J s 5i i\ 0
(K)o =105 = (K')", (10)
and all other components zero.
For this purpose, I think typing them into Mathematica and writing K.J —
J.K etc.... is perfectly acceptable.

Check that in terms of the antisymmetric tensor of operators

g _ I =
Ki,  juv=0i

(11) can be rewritten as
9, J7) = R (I 4T (), (1)

which is the form of the so(d, 1) Lie algebra for general d. Make sure you
take advantage of symmetries to avoid working too hard.

Show that in D =3+ 1, (11) is equivalent to su(2);, X su(2)g:

[‘]-ZH ‘]J] =0, [‘]:Zb ‘]:jt] = IGUkJi

in terms of 1

Ty = (1K),

The Shayan-Arani operator. [Bonus problem| Consider the object C' =
K - J that Shasha asked about during lecture. During lecture I said that
it’s rotation invariant, but I thought that it might not be invariant under
the full Lorentz group.

Show that in fact it 4s invariant under the full Lorentz group (i.e. [K,C] =
0,[J,C] = 0). So it is in fact a Casimir for the Lorentz group. That is, in
any irrep it has to be proportional to the identity operator. It will be some
function of the quantum numbers j;, and jg. Find that function by relating
it to other Casimirs and/or computing it in some familiar representations.
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3. A representation of the Clifford algebra gives a representation of Lorentz.
[Bonus problem| Show the following: Given a collection of k£ x k matrices sat-
isfying {v#*,7"} = 2n* (the Clifford algebra, with pu,v = 0..d), we can make a
k-dimensional representation of SO(1,d) with generators

v i v
J = Z[’V”,’V ].

As an intermediate step, it is helpful to show that
[JH7, ) o (Y0 — 4 ")

Convince yourself that this last equation says that «* transforms as a four-vector,
1.€.
s Tt = (T 7

Dirac vector

4. Bispinors.

(a) Show that any product of gamma matrices between two spinors
Vi = Jah Lyl (12)
is a tensor, in the sense that
VHrhin oy AL N YT (13)
(A tensoris defined to be an object that transforms this way under Lorentz

transformations.)

(b) Let v* = %[7“,7”] be just the antisymmetric bit, and similarly for more

indices. Show that any bispinor I'yy U, ¥, can be decomposed as a sum of

these tensors: Y A, ..., Yy* " #" U, where the As are totally antisymmetric.

5. Gamma matrices in other dimensions.

(a) Find a collection of D matrices satisfying the Clifford algebra {y*,7"} =
2" in D = 2. Are they the smallest possible?

(b) Find a collection of D matrices satisfying the Clifford algebra {v*,7"} =
2n* in D = 3. Are they the smallest possible?

(¢) Find a collection of D matrices satisfying the Clifford algebra {v* ~"} =
2n* in D = 5. Are they the smallest possible?

(d) [bonus problem| Find a collection of D matrices satisfying the Clifford al-
gebra {v# 7"} = 2" in D = 6, or any higher dimension. Are they the
smallest possible?



The following problems are about discrete symmetries of scalar field theories. They
are a useful warmup to the discussion of discrete symmetries of the Dirac fermion.

6. Brain warmer: Z, symmetry of real scalar field theory.

What does the operator
U = eiﬂ' >k azak

do to the real scalar field

p(x) = ¢'(z) = Up(z)U'
whose ladder operators are a,a’ ?
For which Lagrangians is this a symmetry?

7. Charge conjugation in complex scalar field theory. [Bonus problem|]

Consider again a free complex Klein-Gordon field ®. Define a discrete symmetry
operation (charge conjugation) C, by

O(z) = CO(2)C = 0D (z)

where C' is a unitary operator, and 7, is an arbitrary phase factor. Assume that
the vacuum is invariant under charge conjugation: C'|0) = |0).

(a) Show that the free lagrangian is invariant under C, but the particle number
current j* changes sign.

(b) Show that the annihilation operators satisfy
Ca,C~' =nby, CbC =nlay

and hence show that C' interchanges particle and antiparticle states, up to
a phase.

8. Parity symmetry of scalar field theory. [Bonus problem]
Under the parity transformation

T T =T
a real Klein-Gordon transforms as

3(t, ) = Po(t, x) P~ = myp(t, —7) (14)

where P is unitary and np = +1 is the intrinsic parity of the field ¢. Again
assume P [0) = |0) .



(a)

(b)

Show that the parity transformation preserves the free Lagrangian (though
not the Lagrangian density), for both values of np.

Show that an arbitrary n-particle state transforms as

-

P k1,~--En>=ﬁ1@ _El"” ’_En>'

Here we give an explicit realization of the parity operator. Let

. + . f
Pl =e 22xd®% P,= iy Leddg,

Show that
PlakPl_l = iak, PgakP2_1 = —inpa_k.

Hint: Use the following version of the Campbell-Baker-Hausdorff formula

oA o —iaA _ — (ia)"
e Be = Z o B,
n=0
where By = B and B, = [A, B,_1] forn =1,2.....
Show that P = P, P, is unitary, and satisfies (24).

Action on the current of a complex scalar field. Consider now a
complex scalar field. Using the results from problems 7 and the preceding
parts of 8, find the action of parity on the particle current j# — Pj*P1L,
(You’ll have to extend the action of P from the case of a real field to the
complex case.)



