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1. Brain-warmers.

(a) Check that

(p · σ) (p · σ̄) = p2.

(b) Use the previous part to show that if

ur(~p) =

(√
p · σξr√
p · σ̄ξr

)
and vr(~p) =

( √
p · σηr

−
√
p · σ̄ηr

)
with p2 = m2 (solutions of the Dirac equation with mass m), then

ūr(~p)us(~p) = 2mξ†rξs and v̄r(~p)vs(~p) = −2mη†rηs

(where ū ≡ u†γ0 as usual).

(c) Show that ūr(~p)vs(~p) = 0 and ur(~p)
†vs(−~p) = 0 but ur(~p)

†vs(~p) 6= 0.

2. Other bases for gamma matrices. [Bonus problem]

Many different bases of gamma matrices are frequently used by humans. You

may read on the internet someone telling you that the gamma matrices are

γ̃0 =

(
12×2 0

0 −12×2

)
, γ̃i =

(
0 σi

−σi 0

)
and think that I have lied to you. This basis is useful for studying the non-

relativistic limit. The Weyl basis which we introduced in lecture instead makes

manifest the reducibility of the Dirac spinor into L plus R Weyl spinors. Find

the unitary matrix U which relates them γ̃µ = UγµU †.

3. Symmetries of the Dirac lagrangian.

(a) Find the Noether currents jµ and jµ5 associated with the transformations

Ψ(x) → e−iαΨ(x) and Ψ(x) → e−iαγ
5
Ψ(x) of a free Dirac field. Show by

explicit calculation that the former is conserved and the latter is conserved

(at least classically) if m = 0.
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(b) Find the conserved currents associated with the Lorentz symmetry Ψ(x) 7→
Λ 1

2
(θ, β)Ψ(Λ−1x) of the Dirac Lagrangian. Show that the conserved charge

takes the form

Jµν =

∫
space

(
J µν

orbital + Ψ†JµνDiracΨ
)

where J µν
orbital has the form it would have for a scalar field, and JµνDirac ≡

i
4
[γµ, γν ] are the matrices satisfying the Lorentz algebra.

Convince yourself that the latter matrix specifies how the current acts in

the one-particle sector.

4. Meson scattering.

Consider the Yukawa theory with fermions, with Lint = −gΨ̄Ψφ, where Ψ is a

Dirac fermion field and φ is a real scalar field.

(a) Draw a Feynman diagram that gives a leading contribution to the scattering

amplitude for the process φφ→ φφ.

(b) [Bonus problem] Derive the correct sign of the amplitude by considering the

relevant matrix elements of powers of the interaction hamiltonian.

(c) Evaluate the diagram in terms of a spinor trace and a momentum integral.

Do not do the momentum integral. Suppose that the integral is cut off at

large k by some cutoff Λ. Estimate the dependence on Λ.

5. The magnetic moment of a Dirac fermion.

In this problem we consider the hamiltonian density

hI = qΨ̄γµΨAµ .

This describes a local, Lorentz invariant, and gauge invariant interaction between

a Dirac fermion field Ψ and a vector potential Aµ. In this problem, we will treat

the vector potential, representing the electromagnetic field, as a fixed, classical

background field.

Define single-particle states of the Dirac field by 〈0|Ψ(x) |~p, s〉 = e−ipxus(p). We

wish to show that these particles have a magnetic dipole moment, in the sense that

in their rest frame, their (single-particle) hamiltonian has a term hNR 3 µB ~S · ~B
where ~S = 1

2
~σ is the particle’s spin operator.

(a) q is a real number. What is required of Aµ for HI =
∫
d3xhI to be hermitian?

(b) [Bonus problem] How must Aµ transform under parity P and charge con-

jugation C in order for HI to be invariant? (To answer this, you’ll have to
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find out how the spinor bilinear transforms, e.g. from Peskin.) How do the

electric and magnetic fields transform? Show that this allows for a magnetic

dipole moment but not an electric dipole moment.

(c) Show that in the non-relativistic limit

ū(p′)γµνu′(p)Fµν = aξ†σ · ~Bξ′

for some constant a (find a). Recall that γµν ≡ 1
2
[γµ, γν ]. Here u, u′ are

positive-energy solutions of the Dirac equation with mass m and

u
NR→
√
m(ξ, ξ), u′

NR→
√
m(ξ′, ξ′)

in the non-relativistic limit.

(d) Suppose that Aµ describes a magnetic field ~B that is uniform in space and

time.

Show that in the non-relativistic limit

〈~p′, s′|HI |~p, s〉 = /δ
3

(~p− ~p′)h(ξ, ξ′, ~B) + ...

where ... is terms independent of the spin. Find the function h(ξ, ξ′, ~B).

You may wish to use the Gordon identity. Rewrite the result in terms

of single-particle states with non-relativistic normalization (i.e. 〈~p|~p′〉NR =
/δ
3
(p − p′)). Interpret h as a non-relativistic hamiltonian term saying that

the gyromagnetic ratio of the electron is −g |q|
2m

with g = 2.

(e) [optional] How does the result change if we add the term

∆H =
c

M
Ψ̄Fµν [γ

µ, γν ]Ψ ?

6. Non-relativistic interactions from QFT.

(a) Coulomb potential.

Derive from QED that the force between non-relativistic electrons is a re-

pulsive 1/r2 force law!

(b) Pseudoscalar Yukawa theory.

Consider the theory of a massive Dirac fermion Ψ and a massive pseudoscalar

ϕ interacting via the term

V5 ≡ g5Ψ̄γ
5Ψϕ.

Convince yourself that this theory is parity invariant (for some assignment

of the action of parity on the fields).
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List the Feynman rules.

Draw and evaluate the diagrams contributing to ΨΨ → ΨΨ scattering at

leading order in g5.

Consider the non-relativistic limit, m� |~p| and find the effective interaction

hamiltonian. If you happen to find zero for the leading term, then it’s not

the leading term.

7. Equivalent photon approximation. [Bonus problem] Consider a process in

which very-high-energy electrons scatter off a target. At leading order in α, the

electron line is connected to the rest of the diagram by a single photon propagator.

If the initial and final energies of the electron are E and E ′, the photon will carry

momentum q with q2 = −2EE ′(1−cos θ) (ignoring the electron mass m� E). In

the limit of forward scattering (θ → 0), we have q2 → 0, so the photon approaches

its mass shell. In this problem, we ask: To what extent can we treat it as a real

photon?

(a) The matrix element for the scattering process can be written as

M = −ieū(p′)γµu(p)
−iηµν
q2
M̂ν(q)

where M̂ν represents the coupling of the virtual photon to the target. Let

q = (q0, ~q) and define q̃ = (q0,−~q). The contribution to the amplitude from

the electron line can be parametrized as

ū(p′)γµu(p) = Aqµ +Bq̃µ + Cεµ1 +Dεµ2

where εα are unit vectors transverse to ~q. Show that B is at most of order

θ2 (dot it with q), so we can ignore it at leading order in an expansion about

forward scattering. Why do we not care about the coefficient A?

(b) Working in the frame with p = (E, 0, 0, E), compute

ū(p′)γ · εαu(p)

explicitly using massless electrons, where ū and u are spinors of definite

helicity, and εα=‖,⊥ are unit vectors parallel and perpendicular to the plane

of scattering. Keep only terms through order θ. Note that for ε‖, the (small)

3̂ component matters.

(c) Now write the expression for the electron scattering cross section, in terms

of |M̂µ|2 and the integral over phase space of the target. This expression

must be integrated over the final electron momentum ~p′. The integral over

p3
′

is an integral over the energy loss of the electron. Show that the integral

over p′⊥ diverges logarithmically as p′⊥ or θ → 0.
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(d) The divergence as θ → 0 is regulated by the electron mass (which we’ve

ignored above). Show that reintroducing the electron mass in the expression

q2 = −2(EE ′ − pp′ cos θ) + 2m2

cuts off the divergence and gives a factor of log (s/m2) in its place.

(e) Assembling all the factors, and assuming that the target cross sections are in-

dependent of photon polarization, show that the largest part of the electron-

target cross section is given by considering the electron to be the source of

a beam of real photons with energy distribution given by

Nγ(x)dx =
dx

x

α

2π
(1 + (1− x)2) log

s

m2

where x ≡ Eγ/E. This is the Weiszäcker-Williams equivalent photon ap-

proximation. It is a precursor to the theory of jets and partons in QCD.

8. Electron-positron scattering. [Bonus problem]

Draw and evaluate the two diagrams that contribute to e+e− → e+e− (Bhabha)

scattering at tree level in QED. Be careful about the relative sign of their contri-

butions.

Compare with the case of e+e− → µ+µ− and with e−e− → e−e−.

9. Supersymmetry. [Bonus problem] A continuous symmetry that mixes bosons

and fermions is called supersymmetry.

(a) The simplest example of a supersymmetric field theory is the theory of a

free complex boson and a free Weyl fermion, with Lagrangian is

L = ∂µφ
?∂µφ+ χ†iσ̄µ∂µχ+ F ?F.

Here F is an auxiliary field whose purpose is to make the supersymmetry

transformations look nice. Show that the action is invariant under

δφ = −iεTσ2χ, δχ = εF + σ · ∂φσ2ε?, δF = −iε†σ̄ · ∂χ (1)

where the symmetry parameter ε is a 2-component spinor of Grassmann

numbers.

(b) Show that the term

∆L =

(
mφF +

1

2
imχTσ2χ

)
+ h.c.

is also invariant under the transformation (1). Eliminate F from the full

Lagrangian L + ∆L by solving its equations of motion, and show that the

fermion and boson fields are given the same mass.
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(c) We can include supersymmetric interactions as well. Show that the following

field theory is supersymmetric:

L = ∂µφ
?
i∂

µφi + χ†i iσ̄ · ∂χi + F ?
i Fi +

(
Fi∂φiW +

i

2
∂φi∂φjWχTi σ

2χj + h.c.

)
where i = 1..n and W = W (φ) is an arbitrary function of the φi, called the

superpotential. For the simple case n = 1 and W = gφ3/3 write out the field

equations for φ and χ after eliminating F .
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