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0.1 Introductory remarks

Quantum field theory (QFT) is the quantum mechanics of extensive degrees of freedom.

What I mean by this is that at each point of space, there’s some stuff that can wiggle.

Such a collection of stuff is called a field, and QFT really is just the quantum theory

of fields.

It’s not surprising that QFT is so useful, since this situation happens all over the

place. Some examples of ‘stuff’ are: the atoms in a solid, or the electrons in those

atoms, or the spins of those electrons. A less obvious, but more visible, example is the

electromagnetic field, even in vacuum. More examples are provided by other excitations

of the vacuum, and it will be our job here to understand those very electrons and atoms

that make up a solid in these terms. The vacuum has other less-long-lasting excitations

which are described by the Standard Model of particle physics, an important and

overwhelmingly successful example of a QFT.

Some examples of QFT are Lorentz invariant (‘relativistic’). That’s a nice simplifi-

cation when it happens. Indeed this seems to happen in particle physics. We’re going

to focus on this case for most of this quarter. Still I would like to emphasize: though

some of the most successful applications of QFT are in the domain of high energy

particle physics, this is not a class on that subject, and I will look for opportunities to

emphasize the universality of QFT.

A consequence of combining quantum mechanics with special relativity is that the

number of particles isn’t fixed. That is: there are processes where the number of

particles changes in time. Later on (in (3.1)), we’ll understand in what sense it’s a

necessary consequence of Lorentz symmetry. The converse is false: particle production

can and does happen all the time in non-relativistic situations. This business of particle

production is a crucial point of departure and motivation for QFT, worth emphasizing,

so let me stop and emphasize it.

Few-particle QM. In classes with the title ‘Quantum Mechanics’, we generally

study quantum systems where the Hilbert space H1 holds states of a single particle (or

sometimes a fixed small number of them), which are rays in H1.

The observables of such a system are represented by hermitian operators acting on

H1. For example, the particle has a position ~x and a momentum ~p each of which is a

d-vector of operators (for a particle in d space dimensions). The particle could be, for

example, an electron (in which case it also has an inherent two-valuedness called spin)

or a photon (in which case it also has an inherent two-valuedness called polarization).

Time evolution is generated by a Hamiltonian H which is made from the position

and momentum (and whatever internal degrees of freedom the particle has), in the
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sense that i~∂t |ψ〉 = H |ψ〉. Finally, the fourth (most ersatz) axiom of QM regards

measurement: when measuring an observable A in a state |ψ〉 ∈ H, we should decom-

pose the state in the eigenbasis of A: A |a〉 = a |a〉, |ψ〉 =
∑

a |a〉〈a|ψ〉; the probability

to get the answer a is | 〈a|ψ〉 |2.

By the way: The components of the state vector in the position basis 〈~x|ψ〉 = ψ(~x)

is a function of space, the wavefunction. This looks like a field. It is not what we mean

by a field in QFT. Meaningless phrases like ‘second quantization’ may conspire to try

to confuse you about this.

An important point I want to convey (as in the first sentence above) is that a QFT

is an ordinary quantum-mechanical system, obeying these same axioms, but with a

different Hilbert space, involving a lot more degrees of freedom (dofs).

Now suppose you want to describe quantumly the emission of a photon from an

atom with an excited electron. Surely this is something for which we need QM. But

it’s not something that can happen within H1, since the number of particles changes

during the process. How do you do it?

In the first section of this course we’ll follow an organic route to discovering an

answer to this question. This will have the advantage of making it manifest that the

four axioms of QM just reviewed are still true in QFT. It will de-emphasize the role of

Lorentz symmetry; in fact it will explicitly break it. Actually, Lorentz symmetry will

emerge on its own!

‘Divergences’. Another intrinsic and famous feature of QFT discernible from the

definition I gave above is its flirtation with infinity. I said that there is ‘stuff at each

point of space’: how much stuff is that? Well, there are two senses in which ‘the

number of points of space’ is infinite: (1) space can go on forever (the infrared (IR)),

and (2) in the continuum, in between any two points of space there are more points

(the ultraviolet (UV)). The former may be familiar from statistical mechanics, where

it is associated with the thermodynamic limit, which is where the interesting things

happen. This limit is not the origin of the famous ‘divergences’ in QFT.

Every QFT is an Effective Field Theory. In fact, the origin of the famous

‘divergences’ is hubris, of trying to use a tool where it is not meant to be used. One

lesson I want to emphasize is that every QFT has a regime of usefulness. A QFT which

is not meant to describe everything in the world down to arbitrarily short distances is

called an Effective Field Theory (EFT). Some QFTs have the decency to tell us when

they are wrong (they are called ‘non-renormalizable’).

Weak coupling versus strong coupling. Before getting into it, I want to ad-
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vertise the existence of an important dichotomy. This quarter, we’re going to study a

number of important and physically-relevant quantum field theories quite successfully.

This success can be attributed to the fact that these theories are weakly-coupled. As

we’ll see, this means that we can understand them by starting from a large (very large)

collection of springs, and doing perturbation theory. To quote from Brian Skinner’s

great description of his own experience of learning this aspect of quantum field theory:

“So is the universe made of tiny springs...?” Yes, younger Brian, that is exactly what

we are saying.

Except: not every quantum field theory is usefully described by this machinery.

If the tiny springs are coupled to each other too strongly, then this starting point

isn’t so helpful for describing their groundstate and low-lying excitations. Among

the excitations of our vacuum, those that participate in the accurately-named Strong

Interactions have this property; so do lots of other quantum field theories that arise

in other ways, such as in condensed matter physics. What I mean by “this starting

point isn’t so helpful” is that the groundstate (the vacuum) may not be adiabatically

related to that of the free springs. The multiplicity of phases of matter is reflected in

the phases of QFT. Understanding this will be a job for the later quarters of the QFT

sequence. Understanding the simple cases well is a necessary first step.

Sources and acknowledgement. The material in these notes is collected from

many places, among which I should mention in particular the following:

Peskin and Schroeder, An introduction to quantum field theory (Wiley)

Zee, Quantum Field Theory in a Nutshell (Princeton, 2d Edition)

Le Bellac, Quantum Physics (Cambridge)

Schwartz, Quantum field theory and the standard model (Cambridge)

David Tong’s lecture notes

Many other bits of wisdom come from the Berkeley QFT course of Prof. Lawrence

Hall.

I also recommend the new book:

Fradkin, Quantum Field Theory: An Integrated Approach (Princeton)

which takes a similar perspective to mine.
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0.2 Conventions

Following most QFT books, I am going to use the + − −− signature convention for

the Minkowski metric. I am used to the other convention, where time is the weird one,

so I’ll need your help checking my signs. More explicitly, denoting a small spacetime

displacement as dxµ ≡ (dt, d~x)µ, the Lorentz-invariant distance is:

ds2 = +dt2 − d~x · d~x = ηµνdx
µdxν with ηµν = ηµν =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


µν

.

(spacelike is negative). We will also write ∂µ ≡ ∂
∂xµ

=
(
∂t, ~∇x

)µ
, and ∂µ ≡ ηµν∂ν . I’ll

use µ, ν... for Lorentz indices, and i, k, ... for spatial indices.

D = d+ 1 is the number of dimensions of spacetime. The convention that repeated

indices are summed is always in effect unless otherwise indicated.

≡ means ‘equals by definition’. A
!

= B means we are demanding that A = B.

A
?
= B means A probably doesn’t equal B.

A consequence of the fact that english and math are written from left to right is

that time goes to the left.

A useful generalization of the shorthand ~ ≡ h
2π

is

d̄k ≡ dk

2π
.

I will also write /δ
d
(q) ≡ (2π)dδ(d)(q). I will try to be consistent about writing Fourier

transforms as ∫
ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

WLOG ≡ without loss of generality. IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts. WLOG ≡ without loss of generality.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

+h.c. ≡ plus hermitian conjugate.

We work in units where ~ and the speed of light, c, and Boltzmann’s constant, kB,

are equal to one unless otherwise noted. When I say ‘Peskin’ I usually mean ‘Peskin

& Schroeder’.

Please email me if you find typos or errors or violations of the rules above.
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1 From particles to fields to particles again
In modern

physics, when

I hear the

word ‘particle’

I reach for

my Fourier

analyzer...

– J. Ziman,

Electrons and Phonons.

Here is a way to discover QFT starting with some prosaic ingredients. Besides the

advantages mentioned above, it will allow us to check that we are on the right track

with well-understood experiments.

1.1 Quantum sound: Phonons

Let’s think about a crystalline solid. The specific heat of solids (how much do you have

to heat it up to change its internal energy by a given amount) was a mystery before QM.

The first decent (QM) model was due to Einstein, where he supposed that the position

of each atom is a (independent) quantum harmonic oscillator with frequency ω. This

correctly predicts that the specific heat decreases as the temperature is lowered, but

is very crude. Obviously the atoms interact: that’s why they arrange themselves in a

nice crystal pattern, and that’s why there are sound waves, as we will see. By treating

the elasticity of the solid quantum mechanically, we are going to discover quantum

field theory. One immediate benefit of this will be a framework for quantum mechanics

where particles can be created and annihilated.

What holds the atoms in a solid in place? Their interactions with their neighbors.

Here we use two pieces of physics input: these interactions are translation invariant, and

so only depend on the differences of positions V (qi− qj), and they decay with distance,

so we won’t go too far wrong only considering interactions between neighbors.

As a more accurate toy model of a one-dimensional crystalline solid, let’s consider

a linear chain of particles of mass m, each connected to its neighbors by springs with

spring constant κ. When in equilibrium, the masses form a regular one-dimensional

crystal lattice (equally spaced mass points). Now let qn denote the displacement of the

nth mass from its equilibrium position xn and let pn be the corresponding momentum.

Assume there are N masses and (for simplicity) impose periodic boundary conditions:

qn+N = qn. The equilibrium positions themselves are

xn = na, n = 1, 2...N
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where a is the lattice spacing.

The Hamiltonian for the collection of particles is:

H =
N∑
n=1

(
p2
n

2m
+

1

2
κ (qn − qn−1)2

)
+ λq4. (1.1)

Notice that this system is an ordinary QM system, made of particles. In particular,

the whole story below will take place within the fixed Hilbert space of the positions of

the N particles.

I’ve included a heuristic token anharmonic term λq4 to remind us that we are

leaving stuff out; for example we might worry whether we could use this model to

describe melting. A more precise form would be something like
∑

j=2 λj
∑

n

(
qn−qn−1

a

)j
,

which describes the next terms in the Taylor expansion of some potential V (qn− qn−1)

about the equilibrium configuration. If the springs are stiff, then the positions will not

want to depart from their equilibrium values (qn − qn−1 � a) and, even if the λj are

all comparable, it might be a good approximation to ignore such terms. This partly

explains the ubiquity of harmonic oscillators in discussions of physics1. By the way, the

fact that a solid will suddenly melt if you heat it up or reduce the pressure sufficiently

is an indication of what I was saying earlier about the multiplicity of phases of matter

reflecting the multiplicity of phenomena in QFT – in a regime where the solid melts,

our starting point here in terms of harmonic oscillators will emphatically not be a good

description!

Now we’ll just set λ = 0. (It will be a little while before we turn back on the

interactions resulting from nonzero λ; bear with me.) This hamiltonian above describes

a collection of coupled harmonic oscillators, with a matrix of spring constants V =

κabqaqb. If we diagonalize the matrix of spring constants (which is a real symmetric

matrix and so has real eigenvalues), we will have a description in terms of decoupled

oscillators, called normal modes.

1The rest of the explanation is that it’s the only system we can solve.
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Since our system has (discrete) translation invariance, these modes are labelled by

a wavenumber k2, i.e. the matrix of spring constants κab is diagonalized by Fourier

transformation:

qk =
1√
N

N∑
n=1

e−ikxnqn, pk =
1√
N

N∑
n=1

e−ikxnpn, (1.3)

(Notice that in the previous expressions I didn’t use boldface; that’s because this step is

really just classical physics. Note the awkward (but in field theory, inevitable) fact that

we’ll have (field) momentum operators pk labelled by a wavenumber aka momentum.)

The reason the Fourier kernel eikx appears here is that it diagonalizes the translation

operator T defined by Tf(x) = f(x+ a):

Teikx ≡ eik(x+a) = eikaeikx.

In case this expression seems at all mysterious, note that for our discrete, finite chain,

T is represented by the matrix

Tnm =


0 1

0 0 1

0 0 1
. . .

1 0 0


nm

.

It might also help to introduce an auxiliary quantum system to think about this linear

algebra problem: label the (position) basis states by |n〉 , n = 0..N − 1 (with the

argument of the ket understood mod N). Then the translation operator is

T =
∑

n |n− 1〉〈n|. Its eigenvectors are |k〉 ≡ 1√
N

∑N−1
n=0 e

ikan |n〉.

Regulators: Here we have our first meaningful encounter with the two ways in

which divergences arise in field theory. Here, because N is finite, k takes discrete values

(1 = eikNa); this is a long-wavelength “IR” regulator. Because of the lattice structure,

k is periodic (only eikan, n ∈ Z appears): k ≡ k + 2π/a; this is a short-distance “UV”

regulator. The range of k can be taken to be

0 ≤ k ≤ 2π(N − 1)

Na
.

2The inverse transformation is:

qn =
1√
N

2π/a∑
k>0

eikxnqk, pn =
1√
N

2π/a∑
k>0

eikxnpk. (1.2)
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Because of the periodicity in k, we can equivalently label the set of wavenumbers by3:

0 < k ≤ 2π

a
or − π

a
< k ≤ π

a
. (1.4)

That is, because of the lattice spacing, there is a largest possible k, and a smallest

possible wavelength (which is just the lattice spacing a itself).

Summary: Because the system is in a box (periodic), k-space is discrete. Because

the system is on a lattice, k-space is periodic. There are N oscillator modes altogether.

The transformation from real space (modes labelled by n) to Fourier space (modes

labelled by k) is an N ×N unitary matrix.

The whole hamiltonian is a bunch of decoupled oscillators, labelled by these funny

wave numbers4:

H =
∑
k

(
pkp−k

2m
+

1

2
mω2

kqkq−k

)
(1.5)

where the frequency of the mode labelled k is

ωk ≡ 2

√
κ

m
sin
|k|a

2
. (1.6)

Why might we care about this frequency in (1.6)? For one thing, consider the

Heisenberg (or Hamilton) equation of motion for the deviation of one spring:

i∂tqn = [qn,H] = i
pn
m
, i∂tpn = [pn,H].

Combining these gives:

mq̈n = −κ ((qn − qn−1) + (qn − qn+1)) = −κ (2qn − qn−1 − qn+1) .

In terms of the Fourier-mode operators:

mq̈k = −κ (2− 2 cos ka) qk .

Plugging in a Fourier ansatz in time qk(t) =
∑

ω e
−iωtqk,ω turns this into a com-

pletely algebraic equation (i.e. no derivatives) which says ω2 = ω2
k =

(
4κ
m

)
sin2 |k|a

2
for

3This range of independent values of the wavenumber in a lattice model is called the Brillouin

zone. There is some convention for choosing a fundamental domain which prefers the last one but I

haven’t found a reason to care about this.
4Note that qn = q?n implies that qk = q?−k (and similarly for ps), so the expression (1.5) is nice and

hermitian.
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the allowed modes. We see that (the classical version of) this system describes waves:

0 =
(
ω2 − ω2

k

)
qk,ω

k�2π/a
'

(
ω2 − v2

sk
2
)
qk,ω. (1.7)

The result for small k is the Fourier transform of the wave equation:(
∂2
t − v2

s∂
2
x

)
q(x, t) = 0 . (1.8)

vs is the speed of propagation of the waves, in this case the speed of sound. Comparing

to the dispersion relation (1.6), we have found

vs =
∂ωk
∂k
|k→0 = a

√
κ

m
.

The wave looks something like this:

These are sound waves. So the story I am telling is a quantization of sound waves.

Soon we will understand quantization of electromagnetic (EM) waves, too. (Note

however that it is bad practice to use ‘quantize’ as a verb meaning some operation we

do on a classical system. Really the arrow goes the other way: classical mechanics is

a crude approximation to quantum mechanics. There can even be different quantum

systems with the same classical limit.)

[End of Lecture 1]

Another way to derive the equations of motion is by varying the action:

S[q] =

∫
dtL, L =

∑
n

pnq̇n −H =
1

2

∑
n

mq̇2
n −

1

2
κn`qnq`. (1.9)

0 =
δS

δqn(t)
= −mq̈n − κn`q`.
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By the way, you may have learned some other ways to think about the Lagrange

equations of motion. Forget them and use functional derivatives. The only thing you

need to know is
δq`(s)

δqn(t)
= δn`δ(t− s) (1.10)

which says different degrees of freedom are independent. This is just the continuum

limit in time of the statement
∂q`α
∂qnβ

= δ`nδαβ

that the values of the function at different times and places are independent. Here

q`α ≡ q`(tα) and these are just ordinary partial derivatives.

We can put back the terms in the long-wavelength expansion (1.7) that we left out

in the wave equation in (1.7). If the next correction is of the form ω2
k = v2

sk
2 +gk4 +· · · ,

then the corresponding wave equation is instead(
∂2
t − v2

s∂
2
x + g∂4

x + · · ·
)
q(x, t) = 0. (1.11)

Notice that by dimensional analysis, since the ∂4
xq has two more derivatives than the

∂2
xq term, g/v2

s must have units of length2. What length scale is it that suppresses the

higher-derivative terms? The (tiny!) lattice spacing. More about the long-wavelength

expansion below.

What action produces this wave equation as its equation of motion?

S[q] =

∫
dt

∫
dx

(
1

2
(∂tq)

2 − 1

2
v2
s(∂xq)

2 +
g

2
(∂2
xq)

2 + · · ·
)
. (1.12)

Here the independent variable that we must vary to get the equations of motion5

(0 = δS[q]
δq(x,t)

, which is (1.11)) is q(x, t), a field. Thus, we have seen field theory emerge

from this lattice model of particles connected by springs.

Here is a slight generalization, by way of recap. Consider the slightly more general

class of (still quadratic) Hamiltonians

H =
∑
n

p2
n

2mn

+
1

2

∑
nm

κnmqnqm.

5To derive (1.11) from this action, you’ll need to use the basic fact δq(x,t)
δq(y,t) = δ(x− y)δ(t− s) (plus

ordinary calculus); this is the continuum limit in space of the relation (1.10).
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We allowed the masses to vary, and we made a whole matrix of spring constants. Notice

that only the symmetric part 1
2

(κnm + κmn) of this matrix appears in the Hamiltonian.

Also κ must be real so that H is hermitian. To simplify our lives we can redefine

variables

Qn ≡
√
mnqn, Pn = pn/

√
mn, Vnm ≡

κnm√
mnmm

in terms of which

H =
1

2

(∑
n

P 2
n +

∑
nm

VnmQnQm

)
.

Notice that [qn, pm] = iδnm ⇔ [Qn, Pn] = iδnm.

Now since Vnm is a symmetric matrix, and hence hermitian, it can be diagonalized.

That is, we can find an N ×N unitary matrix U so that UV U † is a diagonal matrix:∑
nm

UαnVnm
(
U †
)
mβ

= δαβω
2
α (1.13)

where I assumed that all the eigenvalues of V are positive – otherwise the system would

be unstable. U is unitary means:∑
n

Uαn
(
U †
)
nβ

= δαβ,
∑
α

(
U †
)
nβ
Uβm = δnm. (1.14)

To take advantage of this, we make the change of variables to the normal modes

Q̃α =
∑
n

UαnQn.

Multiplying the BHS of this equation by U †, we have the inverse relation

Qn =
∑
α

(
U †
)
nα
Q̃α.

Notice that Qn = Q†n is hermitian. This means

Qn = Q†n =
∑
n

(
U †
)?
nα
Q̃†α =

∑
n

(
UT
)
nα
Q̃†α =

∑
n

Q̃†αUαn.

Similarly, we define P̃α =
∑

n UαnPn.

Now let’s look at what this does to the terms in H (this first equation is sometimes

called Parsival’s Theorem):∑
n

P 2
n =

∑
n

P †nPm =
∑
αβ

∑
n

Uαn
(
U †
)
nβ︸ ︷︷ ︸

(1.14)
= δαβ

P̃ †αP̃β =
∑
α

P̃ †αP̃α.
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∑
nm

VnmQnQm =
∑
nm

VnmQ
†
nQm =

∑
αβ

∑
nm

UαnVnm
(
U †
)
mβ︸ ︷︷ ︸

(1.13)
= δαβω2

α

Q̃†αQ̃β =
∑
α

ω2
αQ̃
†
αQ̃α.

The special case we considered earlier, κnm =
(

1
2
(T + T T )− 1

)
nm

, where each mass

is only connected to its two neighbors, is special in three ways:

1. First, it is local in the sense that only nearby springs couple to each other, so κnm
is only nonzero when n and m are close together.

2. Second, it has discrete translation invariance, that is, it is invariant under

(Qn, Pn) → (Qn+1, Pn+1). This is just because κnm does not depend explicitly

on n and m. Because of the latter property, the normal modes are plane waves,

Ukn = eikna/
√
N which has the consequences that

(
U †
)
kn

= U−k,n and hence that

Q†k = Q−k.

3. Finally, it has a certain additional symmetry that also has a right to be called

translation invariance from the microscopic point of view. This is the symmetry

under qn → qn + ε, which shifts each mass by the same, arbitrary amount. This

doesn’t stretch the springs at all, and so is a symmetry of H. More precisely, this

symmetry arises because the potential depends on qn only through differences,

V = V (qn − qm).

Notice that the transformation on the field qn is non-linear, in the sense that

the field shifts under the symmetry (as opposed to a linear transformation like

q → Rq). This is related to the fact that the transformation takes one minimum-

energy configuration to another; in this sense, the symmetry is said to be spon-

taneously broken. An important general consequence of a non-linearly realized

continuous symmetry is the presence of a massless mode, a Goldstone mode.

We’ve already seen that there is such a massless mode in this system. This is an

example of Goldstone’s theorem. It’s a bit mysterious in this example, but will

become clearer later.

QM. So far the fact that quantumly [qn,pn′ ] = i~δnn′1 hasn’t really mattered in

our analysis (go back and check – we could have derived the wave equation classically)6.

For the Fourier modes, this implies the commutator

[qk,pk′ ] =
∑
n,n′

UknUk′n′ [qn,pn′ ] = i~1
∑
n

UknUk′n = i~δk,−k′1.

6In case you are rusty, or forget the numerical factors like I do, here is a concise summary of the
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(In the previous expression I called Ukn = 1√
N
e−ikxn the unitary matrix realizing the

discrete Fourier kernel.)

To make the final step to decouple the modes with k and −k, introduce the anni-

hilation and creation operators7

For k 6= 0: qk =

√
~

2mωk

(
ak + a†−k

)
, pk =

1

i

√
~mωk

2

(
ak − a†−k

)
. (1.15)

They satisfy

[ak, a
†
k′ ] = δkk′1.

In terms of these, the hamiltonian is

H =
∑
k

~ωk
(

a†kak +
1

2

)
+

p2
0

2m

operator solution of the quantum harmonic oscillator:

H =
p2

2m
+

1

2
mω2q2 =

~ω
2

(
P2 + Q2

)
= ~ω

(
a†a +

1

2

)
with

a ≡ 1√
2

(Q + iP) , a† ≡ 1√
2

(Q− iP) .

Here I’ve defined these new operators to hide the annoying factors:

Q ≡
(mω

~

)1/2

q, P ≡
(

1

m~ω

)1/2

p.

[q,p] = i~1 ⇐⇒ [Q,P] = i~1 ⇐⇒ [a,a†] = 1.

The number operator N ≡ a†a satisfies

[N,a] = −a, [N,a†] = +a† .

So a and a† are lowering and raising operators for the number operator. The eigenvalues of the number

operator have to be positive, since

0 ≤ ||a |n〉 ||2 = 〈n|a†a |n〉 = 〈n|N |n〉 = n 〈n|n〉

which means that for n = 0 we have a |n = 0〉 = 0. If it isn’t zero (i.e. if n ≥ 1), a |n〉 is also an

eigenvector of N with eigenvalue n− 1. It has to stop somewhere! So the eigenstates of N (and hence

of H = ~ω
(
N + 1

2

)
are

|0〉 , |1〉 ≡ a† |0〉 , ..., |n〉 = cn
(
a†
)n |0〉 ...

where we must choose cn to normalize these states. The answer that gives 〈n|n〉 = 1 is cn = 1√
n!

.
7You might notice that when k = 0, ωk = 0. This last step applies to the modes with ωk 6= 0,

hence k 6= 0. The ‘zero-mode’ must be treated specially. It is neglected in many treatments of this

topic but actually has a lot of physics in it. If you are curious see this discussion, page 11.
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– it is a sum of decoupled oscillators, and a free particle describing the center-of-mass.

The discovery of Fock space. The groundstate is

|0〉 ≡ |0〉osc ⊗ |p0 = 0〉 , where ak |0〉osc = 0, ∀ k, and p0 |p0〉 = p0 |p0〉 .

We know this is the groundstate because H is a constant plus a bunch of squares, and

the squares all annihilate this state.

An excitation above the groundstate by the creation operator with wavenumber k

a†k |0〉 ∝ |one phonon with momentum ~k〉 (1.16)

has energy ~ωk above the groundstate. (This is an eigenstate because [Nk, a
†
k] = a†k,

where Nk = a†kak.) The excitation is called a phonon with momentum ~k.8 This is

what in undergrad QM we would have called “|k〉”; we can make a state with one

phonon in a position eigenstate by taking superpositions:

|one phonon at position x〉 =
∑
k

eikx |one phonon with momentum ~k〉 ∼
∑
k

eikxa†k |0〉 .

This is the state that in single-particle QM we would have called “|x〉”.9

The number operator (of the SHO with label k) Nk ≡ a†kak counts the number of

phonons with momentum k. The ground state is the state with no phonons – for this

reason we could also call it the ‘vacuum’. We can also make a state with two phonons:

|k, k′〉 = a†ka
†
k′ |0〉

whose energy above the groundstate is

E − E0 = ωk + ωk′ . (1.17)

Note that all these states have non-negative energy.

So this construction allows us to describe situations where the number of particles

N =
∑

k Nk can vary! That is, we can now describe dynamical processes in which the

number of particles changes. Let me emphasize: In QM, we would describe the Hilbert

space of two (distinguishable) particles as a tensor product of the Hilbert space of each.

8I put ‘proportional to’ rather than ‘equal’ in (1.16) because there can be a k-dependent normal-

ization factor. We’ll see soon that Lorentz symmetry prefers a particular normalization here which

we will adopt.
9For now, the fact that |k〉 and |x〉 are related by a Fourier transform will have to serve for evidence

that ~k is the momentum of the particle we’ve just discovered. Later we will show that indeed the

state a†k |0〉 has momentum ~k above the groundstate.
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How can we act with an operator that enlarges the hilbert space?? We just figured out

how to do it.

We can specify basis states for this Hilbert space(
a†k1

)nk1 (
a†k2

)nk2 · · · |0〉 = |{nk1 , nk2 , ...}〉

by a collection of occupation numbers nk, eigenvalues of the number operator for each

normal mode (and the center-of-mass momentum p0).

Notice that in this description it is manifest that a phonon has no identity. We

only keep track of how many of them there are and what is their wavenumber. They

cannot be distinguished. Also notice that we can have as many we want in the same

mode – nk can be any non-negative integer. These are an example of bosons. (Further

evidence for this is that a†ka
†
k′ = a†k′a

†
k.)

Lessons from the hard work of the first two lectures:

• Starting from a collection of particles, we chained them together, and made a

field; treating this system quantumly, we found a new set of particles. The new

particles (the normal modes) are collective excitations: their properties can be

very different from those of the constituent particles. For example, the constituent

particles have dispersion relation E(p) = p2

2m
, but the phonons have dispersion

relation E(p) = ~ωp
p�h/a∼ vs|p|.

And the constituent particles are distinguishable by their locations, but phonons

are indistinguishable from each other. The state of such indistinguishable par-

ticles is determined merely by specifying a collection of positions (or momenta)

and of spin states – we don’t need to say which is which (and in fact, we cannot).

• Notice that there are some energies where there aren’t any phonon states. In

particular, the function (1.6) has a maximum. More generally, in a system with

discrete translation invariance, there are bands of allowed energies. In the con-

tinuum limit (roughly a→ 0 with the correct quantities held fixed), to which we

devolve soon, this maximum (which occurs at k = π
a
) goes off to the sky.

• Lorentz invariance can emerge. The dispersion relation for the long-wavelength

(ka� 1) sound mode was ω2 = v2~k2. This is the fourier transform of

(∂2
t − v2~∇2)φ(x) = ∂µ∂

µφ(x) = 0, (1.18)

a wave equation with Lorentz symmetry (if v is the speed appearing in the

Minkowski metric). To get (1.18), we had to ignore the O(a4k4) terms in the

long-wavelength expansion of the dispersion relation, 2(1− cos(ka)). The lattice
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breaks Lorentz symmetry, but its effects go away for ka � 1. This point might

make you think that the Lorentz symmetry which is so precious to us in particle

physics could emerge in a similar way, but with a much smaller a than the lattice

spacing in solids. There are strong constraints on how small this can be (e.g. this

well-appreciated paper) so it is very useful to treat it as a fundamental principle.

• When N < ∞, everything is completely finite. And yet we see that at low

energies the system is well-described by a quantum field theory. Even in the

thermodynamic limit, N → ∞ with fixed a, there is a maximum possible ωk
(and a maximum possible k) for each phonon. This is a well-regulated QFT.

Observe the tension between the non-symmetric, safe lattice and the symmetric,

dangerous continuum.

[End of Lecture 2]

Phonons are real: heat capacity of (insulating) solids. The simplest demon-

stration that phonons are real is the dramatic decrease at low temperatures of the heat

capacity of insulating solids. At high temperatures, the equipartition theorem of clas-

sical thermodynamics correctly predicts that the energy of the solid from the lattice

vibrations should be T times the number of atoms, so the heat capacity, CV = ∂TE

should be independent of T .

At low temperatures T < ΘD, this is wrong. ΘD is the tem-

perature scale associated with the frequencies of the lattice

vibrations (say the maximum of the curve ωk above). The

resolution lies in the thermal energy of a quantum harmonic

oscillator for T < ω, the energy goes to a constant 1
2
~ω,

independent of T :

So the heat capacity (the slope of this curve) goes to zero as T → 010.

Phonons are real: the Mössbauer effect. Here is another dramatic conse-

quence of the quantization of the lattice vibrations of solids, known as the Mössbauer

effect, first described in words. The nuclei of the atoms in a solid have various en-

ergy levels; when hit with a γ-ray photon, these nuclei can experience transitions from

the groundstate to some excited energy level. If an excited nucleus somewhere in

the lattice gets hit by a very energetic photon (a γ-ray) of some very specific energy

10More precisely, the energy in thermal equilibrium of our collection of springs is

∑
k

ωk
eωk/T − 1

L→∞,T�ΘD
=

∫
d̄dk

vsk

evsk/T − 1
=
T d+1

vd−1
s

∫
d̄dq

q

eq − 1
, q ≡ vsk/T.

So the heat capacity is CV ∼ T d → 0 as T → 0.
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Eγ = ∆E ≡ Eexcited − E0, the nucleus can absorb and re-emit that photon. The

resulting sharp resonant absorption lines at Eγ = ∆E are indeed observed.

This sounds simple, but here is a mystery about this, depicted in the comic strip

below: Consider a nucleus alone in space in the excited state, after it gets hit by a

photon. The photon carried a momentum pγ = Eγ/c. Momentum is conserved, and

it must be made up by some recoil of the absorbing nucleus. This means that not all

of the energy of the photon can go into exciting the nucleus. When it emits a photon

again, it needn’t do so in the same direction. This means that the nucleus remains in

motion with momentum ∆~p = ~p1 − ~p2. But if some of its energy ∆E = Eexcited − E0

goes to kinetic energy of recoil, not all of that energy can go to the final photon, and

the emitted photon energy will be less than Eγ by Erecoil = ∆p2

2M
. This can be as big as

Emax
recoil = (2~p)2

2M
= (2Eγ/c)2

2M
(in the case of scattering by angle π). So instead of a sharp

absorption line, it seems that we should see a broad bump of width (Eγ/c)2

M
. But we do

see a sharp line when scattering off a solid!

The solution of the puzzle is phonons: for a nucleus in a lattice to recoil requires

that the springs are stretched – it must excite a lattice vibration, it must create some

phonons. But there is a nonzero probability for it to create zero phonons. In this case,

the momentum conservation is made up by an acceleration of the whole solid, which is

very massive (its mass is NM where N is the number of nuclei!), and therefore does

not recoil very much at all (it loses only energy
p2γ

2NM
)11.

11Let’s see this in terms of our solution in terms of Fourier modes. Periodic boundary conditions

and demanding that the particles are identical says that |{qn}〉 ≡ |{qn + a}〉 are the same state. In

terms of the k = 0 mode, this is

q0 =
1√
N

N∑
n=1

qne
−i0xn ≡ 1√

N

(
N∑
n=1

qn +Na

)
, i .e. q0 ≡ q0 +

√
Na.
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This allows for very sharp resonance lines. In turn, this effect

has allowed for some very high-precision measurements. The

different widths in these cartoon absorption spectra don’t

do justice to the relative factor of N . An essentially similar

effect makes it possible to get precise peaks from scattering

of X-rays off of a solid (Bragg scattering) – there is a finite

amplitude for the scattering to occur without exciting any

phonons.

This is actually a remarkable thing: although solids seem ordinary to us because

we encounter them frequently, the rigidity of solids is a quantum mechanical emergent

phenomenon. You can elastically scatter photons off of a solid only because the atoms

making up the solid participate in this collective behavior wherein the whole solid acts

like a single quantum object!

Interactions. We now pause the celebration to point out some limitations of this

analysis. Many aspects of the above discussion are special to the fact that our Hamilto-

nian was quadratic in the canonical operators q, p. Certainly our ability to completely

solve the system is. In particular, the additivity of the energy of the excitations (1.17)

is an artifact of this limit where the Hamiltonian is quadratic.

Notice that the number of phonons of each momentum Nk ≡ a†kak is conserved for

each k (i.e. commutes with H). This is a lot of symmetry! But if we add generic cubic

and quartic terms in q (or if we couple our atoms to the photon field) even the total

number of phonons
∑

k Nk will no longer be a conserved quantity12. So a description

This means that the wavefunction for the zeromode must satisfy

eip0q0 = eip0(q0+
√
Na) =⇒ p0 ∈

2πZ√
Na

and the first excited state has energy

p2
0

2m
|p0= 2π√

Na
=

1

2

1

Nm

(
2π

a

)2

.

The factor of 1
Nm is the suppression by the mass of the whole solid. (Recall that N ∼ 1024.)

12Note that it is possible to make a non-quadratic action for conserved particles, but this requires

adding more degrees of freedom – the required U(1) symmetry must act something like

(q1, q2)→ (cos θq1, sin θq2).

We can reorganize this as a complex field Φ = q1 + iq2 on which the symmetry acts by Φ→ eiθΦ.
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of such particles that forced us to fix their number wouldn’t be so great.

For example, think about expanding a general cubic term
∑

nml λnmlqnqmql in os-

cillators. It has terms like

a†k1a
†
k2
a†k3 , a†k1a

†
k2
ak3 , a†k1ak2ak3 , ak1ak2ak3

all of which change the number of phonons. A quartic term will also contain terms

like a†a†aa which preserve the number of phonons, but describe an interaction between

them, where they exchange momentum.

More generally, I would like to remind you again that not every QFT can be usefully

considered as nearly a bunch of harmonic oscillators. Finding ways to think about the

ones that can’t is an important job for later.

Towards scalar field theory. It is worthwhile to put together the final relation

between the ‘position operator’ and the phonon annihilation and creation operators13:

qn =

√
~
2µ

∑
k

1
√
ωk

(
eikxnak + e−ikxna†k

)
+

1√
N

q0 (1.19)

and the corresponding relation for its canonical conjugate momentum

pn =
µ

i

√
~
2µ

∑
k

√
ωk

(
eikxnak − e−ikxna†k

)
+

1√
N

p0.

The items in red are the ways in which p and q differ; they can all be understood from

the relation p = µq̇ as you will see on the homework. These expressions are formally

identical to the formulae we’ll find below expressing a scalar field in terms of creation

and annihilation operators (such as Peskin eqns. (2.25) and (2.26) ). The stray factors

of µ arise because we didn’t ‘canonically normalize’ our fields and absorb the ms into

the field, e.g. defining φ ≡ √µq would get rid of them. The other difference is because

we still have IR and UV regulators in place, so we have sums instead of integrals.

Path integral reminder in a box. [A useful reference is Zee §I.2] If we use the

path integral description, some of these things (in particular the continuum, sound-

wave limit) are more obvious-seeming.

Let’s remind ourselves how the path integral formulation of QM works for a particle

in one dimension with H = p2

2m
+V (q). The basic statement is the following formula for

the propagator – the amplitude to propagate from position eigenstate |q0〉 to position

eigenstate |q〉 during a time interval t is

〈q| e−iHt |q0〉 =

∫ q(t)=q

q(0)=q0

[dq]ei
∫ t
0 ds ( 1

2
q̇2−V (q)) .

13Note that relative to (1.15), we relabeled the summation variable k → −k in the second term.
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Here [dq] ≡ N
∏Mt

l=1 dq(tl) – the path integral measure is defined by a limiting procedure

(Mt ≡ t
∆t
→ ∞,∆t → 0, t fixed), and N is a normalization factor that always drops

out of physical quantities so I don’t need to tell you what it is.

Recall that the key step in the derivation of this statement is the evaluation of the

propagator for an infinitesimal time step:

〈q2| e−iH∆t |q1〉 = 〈q2| e−i∆t
p2

2m e−i∆tV (q) |q2〉+O(∆t2) .

An integral expression for this involving only numbers (no operators, no states) can be

obtained by inserting resolutions of the identity

1 = 12 =

(∫
d̄p|p〉〈p|

)(∫
dq|q〉〈q|

)
=

∫
d̄p

∫
dq|p〉〈q|eipq

in between the two exponentials. For a more extensive reminder, please see §2.4 of this

document.

Two quick but invaluable applications of the path integral:

1. The path integral explains the origin of the variational principle and the special

role of configurations that solve the equations of motion. They are points of

stationary phase in the path integral, where

0 =
δS

δq(t)
. (1.20)

In case you are not familiar with functional derivatives: From the definition of

the path integral as a limit it should be clear what is meant by this expression.

If we didn’t take the limit, the stationary phase condition is that S is extremized

in every direction qi = q(ti):

0 =
∂S

∂qi
.

The functional derivative in (1.20) means the same thing but looks nicer because

we can pretend everything is smooth rather than discrete. Since qi and qj are

independent variables,

∂qi
∂qj

= δij and therefore
δq(t)

δq(s)
= δ(t− s).

With the help of the chain rule, this is the only functional derivative you need to

know how to take14.

Part of this statement is a discovery of the true role of ~: its job is to make up

the units so that the exponent in eiS[q]/~ is dimensionless.

14If you are not yet comfortable with the machinery of functional derivatives, please work through

pages 2-28 through 2-30 of this document right now.
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2. Above I wrote a formula for the real-time propagator. Euclidean path inte-

grals are also very useful, because they compute ground-state expectation values.

Here’s why:

The vacuum can be prepared by starting in an arbitrary state and acting with

e−TH for some large T , and then normalizing (as usual when discussing path

integrals, it’s best to not worry about the normalization and only ask questions

that don’t depend on it),

|0〉 = N e−HT |any〉 .

To see this, just expand in the energy eigenbasis. This ‘imaginary time evolution

operator’ e−HT has a path integral representation just like the real time operator,

by nearly the same calculation

e−HT =

∫
[Dq]e−

∫ 0
−T dτL(q(τ),q̇(τ))|q(0)〉〈q(−T )|.

Doing the same thing to prepare 〈0|, making a sandwich of f(q) and taking

T →∞ we can forget about the arbitrary states at the end, and we arrive at

〈f(q)〉 ≡ 〈0| f(q) |0〉
〈0|0〉

=
1

Z

∫
[Dq]e−SEf(q(0)) =

1

Z

∫ Mt∏
i

dqi e
−

∑
j L(qj)f(q0)

(1.21)

where Z ≡
∫ ∏

i dqi e
−

∑
j L(qj) (here i, j are discrete time labels) and SE[q] is the

euclidean action. Relative to the real time action, there is an important sign15:

SE[q] =

∫
dτ
(
(∂τq)

2 + V (q)
)
.

This sign makes good sense – it means that configurations with large V are

suppressed in the euclidean path integral.

This trick of using imaginary time evolution to prepare the groundstate is a

crucial one that we will use all the time below16.

In the special case where L is quadratic in q and q̇, this can be written as

Z =

∫ ∏
i

dqi e
−qiDijqj

15By the way, I use square brackets for S[q] to remind myself that S is a functional of q, a machine

that eats functions and spits out numbers – for each function q(τ), S[q] is a number. But in fact my

main point here is that for our purposes there is not such a big difference between a functional and a

function of many variables (the values of the function at a discrete collection of points).
16In lecture, I mentioned that we don’t know how to do imaginary time evolution in the laboratory.

Here is one recent attempt to do it using measurements. A reason to believe that it shouldn’t be

possible to do this efficiently is that it can be used to solve NP complete problems (by encoding their

solution into the groundstate of a Hamiltonian).
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where Dij is the (real, symmetric) matrix which discretizes the action. Repeated

indices are summed. This is a gaussian integral. This is the path integral point

of view on why quadratic terms are special.

This discussion of path integrals has been for a single degree of freedom q. But

as we’ve seen, we can make a field theory by coupling together a collection of

such degrees of freedom qn. The path integral measure for a field theory is just

the product of the measures for each of these qn – it’s just a matter of sticking

more labels on the integration variables.

1.2 Scalar field theory

Scalar field theory in one dimension. [Zee §1.3] The (real-time) path integral for

our collection of oscillators is

Z =

∫
[dq1 · · · dqN ]eiS[q]

with S[q] =
∫
dt
(∑

n
1
2
mnq̇

2
n − V ({q})

)
≡
∫
dtL(q, q̇). The potential is V ({q}) =∑

n
1
2
κ (qn+1 − qn)2 . Now suppose we have poor eyesight and can’t resolve the indi-

vidual atoms in the chain; rather we’re only interested in the long-wavelength (small-

wavenumber) physics. Sometimes this is described as taking a continuum limit, a →
0, N →∞. Basically the only thing we need is to think of qn = q(x = na) as defining a

smooth function: [Note that the continuum field

is often called φ(x) instead of q(x) for some reason. At least the letters q(x) and φ(x)

look similar.]

By Taylor expanding q(xn−1) about q(xn), we have

(qn − qn−1)2 ' a2 (∂xq)
2 |x=na, a

∑
n

f(qn) '
∫
dxf(q(x)).

The path integral becomes:

Z =

∫
[dq]eiS[q]

with [dq] now representing an integral over all configurations q(t, x) (defined by this

limit) and

S[q] =

∫
dt

∫
dx

1

2

(
µ (∂tq)

2 − µv2
s (∂xq)

2 − rq2 − uq4 − ...
)
≡
∫
dt

∫
dxL (1.22)
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where I’ve introduced some parameters µ, vs, r, u determined from m,κ, a... in some

ways that we needn’t worry about, except to say that they are finite in the continuum

limit. The · · · includes terms like a4 (∂xq)
4 that are small when k � 1

a
, so we ignore

them. L is the Lagrangian density whose integral over space is the Lagrangian L =∫
dxL.

The equation of motion is the stationary phase condition,

0 =
δS

δq(x, t)
= −µq̈ + µv2

s∂
2
xq − rq − 2uq3 − ...

In this expression I have written a functional derivative; with our lattice regulator, it is

simply a(n extremely useful) shorthand notation for the collection of partial derivatives
∂
∂qn

.

From the phonon problem, we automatically found r = u = 0, and the equation

of motion is just the wave equation (1.8). This happened because of the symmetry

qn → qn + ε. This is the operation that translates the whole crystal. It guarantees

low-energy phonons near k = 0 because it means q(x) can only appear in S via its

derivatives. (This is a general property of Goldstone modes; more on this later.)

[End of Lecture 3]

The following will be quite useful for our subsequent discussion of quantum light.

We can construct a hamiltonian from this action by defining a canonical field-momentum

π(x) = ∂L
∂tq

= µ∂tq and doing the Legendre transformation:

H =
∑
n

(pnq̇n − Ln) =

∫
dx (π(x)q̇(x)− L) =

∫
dx

(
π(x)2

2µ
+ µv2

s (∂xq(x))2 + rq2 + uq4 + ...

)
.

(1.23)

(Here in the first step I wrote L ≡
∑

n Ln to emphasize locality.) I emphasize that the

position along the chain x here is just a label on the fields, not a degree of freedom or

a quantum operator. This dramatic shift of perspective is why I am spending time on

this step. (Note that I suppress the dependence of all the fields on t just so it doesn’t

get ugly, not because it isn’t there.)

The field q is called a scalar field because it doesn’t have any indices decorating it.

This is to be distinguished from the Maxwell field, which is a vector field, and which

we’ll discuss next. (Note that vibrations of a crystal in three dimensions actually do

involve vector indices! We omit this complication.)

The lattice spacing a and the size of the box Na in the discussion above are playing

very specific roles in regularizing our 1-dimensional scalar field theory. The lattice

spacing a implies a maximum wavenumber or shortest wavelength and so is called an

“ultraviolet (UV) cutoff”, because the UV is the short-wavelength end of the visible
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light spectrum. The size of the box Na implies a maximum wavelength mode which

fits in the box and so is called an “infrared (IR) cutoff”.

If we also take the infinite volume limit, then the sums over k become integrals. In

this limit we can make the replacement

1

Ld

∑
k

 
∫

d̄dk, Ldδkk′  (2π)dδ(d)(k − k′).

A check of the normalization factors comes from combining these two rules

∀k′, 1 =
∑
k

δk,k′ =

∫
d̄dk(2π)dδ(d)(k − k′).

Continuum (free) scalar field theory in d+ 1 dimensions. These continuum

expressions are easy to generalize to scalar field theory in any number of dimensions.

Let’s do this directly in infinite volume and set µ = 1 by rescaling fields (i.e. φ ≡ √µq).
The action is

S[φ] =

∫
ddxdt

(
1

2
φ̇2 − 1

2
v2
s
~∇φ · ~∇φ− V (φ)

)
. (1.24)

This is almost what we would have found for the long-wavelength (ka� 1) description

of a d-dimensional lattice of masses on springs, like a mattress (except that there would

have been one φ for each direction in which the atoms can wiggle). The equation of

motion is

0 =
δS[φ]

δφ(x)
= −∂2

t φ+ v2
s∇2φ− V ′(φ). (1.25)

For the harmonic case V (φ) = 1
2
m2φ2 we know what we’re doing, and (1.25) is called

the Klein-Gordon equation,

0 =
(
∂µ∂

µ +m2
)
φ. (1.26)

(Notice that I’ve set vs = c = 1 here, and this is where we have committed to a choice

of signature convention; take a look at the conventions page §0.2.). In relativistic

notation, the Lagrangian density is just L = 1
2

(∂µφ∂
µφ−m2φ2). This describes free

continuum real massive relativistic scalar quantum field theory. (Match the adjectives

to the associated features of the lagrangian; collect them all!)

Let’s solve it by canonical methods. The canonical momentum17 is π = ∂L
∂φ̇

= φ̇

and the Hamiltonian (which we can instantly promote to a quantum operator by using

boldface symbols) is then

H =

∫
ddx

(
π(x)2

2
+

1

2
v2
s

(
~∇φ · ~∇φ

)
+

1

2
m2φ2

)
.

17More correctly, π is the canonical momentum density, since L is the Lagrangian density not the

Lagrangian. But everyone always forgets the word ‘density’ in both cases.
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Note that all these terms are positive.

A translation invariant linear problem is solved by Fourier transforms:

φ(x) =

∫
d̄dk ei

~k·~xφk, and π(x) =

∫
d̄dk ei

~k·~xπk. (1.27)

The hamiltonian is then

H =

∫
d̄dk

(
1

2
πkπ−k +

1

2

(
v2
s
~k2 +m2

)
φkφ−k

)
where ~k2 ≡ (−i~k) · (i~k) = ~k · ~k. Just as in (1.5), this is merely a sum of decoupled

oscillators, except for the coupling between wavenumbers k and −k. Comparing with

(1.5), we can read off the normal mode frequencies, aka the dispersion relation:

ω2
k = v2

s
~k2 +m2.

ω = ±ωk is precisely the condition for the Fourier mode ei
~k·~x−iωt to solve the Klein-

Gordon equation (1.26).

We can decouple the modes with wavenumber k and −k as above by introducing

the ladder operators18

φk ≡
√

~
2ωk

(
ak + a†−k

)
, πk ≡

1

i

√
~ωk

2

(
ak − a†−k

)
, [ak, a

†
k′ ] = (2π)dδ(d)(k − k′).

(1.28)

Their commutator follows from [φ(x), π(y)] = iδ(d)(x − y)19. In terms of the ladder

operators,

H =

∫
d̄dk ~ωk

(
a†kak +

1

2
Ld
)
.

Combining the previous two steps (1.27) and (1.28), the field operators are

φ(~x) =

∫
d̄dk

√
~

2ωk

(
ei
~k·~xak + e−i

~k·~xa†k

)
,

π(~x) =
1

i

∫
d̄dk

√
~ωk

2

(
ei
~k·~xak − e−i

~k·~xa†k

)
. (1.29)

The mode expansions (1.29) contain a great deal of information. First notice that

φ is manifestly hermitian. Next, notice that from φ(~x) ≡ φ(~x, 0) by itself we can-

not disentangle ak and a†k, since only the combination ak + a†−k multiplies ei
~k·~x. The

18Beware that the mode operators ak defined here differ by powers of 2π/L from the finite-volume

objects in the previous discussion. These agree with Peskin’s conventions.
19I emphasize that this is really the same equation as our starting point for each ball on springs:

[qn,pn′ ] = i~1δnn′ .
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momentum π contains the other linear combination. However, if we evolve the field

operator in time using the Heisenberg equation (as you did on the HW), we find

φ(~x, t) ≡ eiHtφ(~x)e−iHt =

∫
d̄dk

√
~

2ωk

(
ei
~k·~x−iω~ktak + e−i

~k·~x+iω~kta†k

)
. (1.30)

Indeed we can check that the relation π = φ̇ holds.

Negative frequencies. Notice that the dependence on spacetime is via a sum of

terms of the form:

ei
~k·~x−iω~kt = e−ikµx

µ|k0=ω~k

and their complex conjugates. These are precisely all the solutions to the wave equation

(1.26). For each ~k, there are two solutions to the second order ODE (∂2
t + k2 +

m2)φk(t) = 0, namely eiωt with ω = ±ωk, one with positive frequency and one with

negative frequency. You might have worried that solutions with both signs of the

frequency mean that the world might explode or something (like it would if we tried to

replace the Schrödinger equation for the wavefunction with a Klein-Gordon equation).

This danger is evaded in a beautiful way: the coefficient of the positive frequency

solution with wavenumber ~k is the destruction operator for the mode; the associated

negative frequency term comes with the creation operator for the same mode, as a

consequence of reality of the field φ = φ†. (Some words about antimatter might be

appropriate here, but it will be clearer later when we talk about examples of particles

that are not their own antiparticles.)

‘Momentum’. Finally, in a relativistic system, anything we can say about time

should also be true of space, up to some signs. So the fact that we were able to generate

the time dependence by conjugation with the unitary operator eiHt (as in (1.30)) says

that we should be able to generate the space dependence by conjugating by a unitary

operator of the form e−i
~P·~x. Here ~P is the last in a long list of objects in this section

with a claim to the name ‘momentum’. It is the conserved charge associated with

spatial translation symmetry, the generator of spatial translations. Its form in terms

of the fields will be revealed below when we speak about Noether’s theorem. For now,

let me emphasize that it is distinct from the objects pn, π(x) (which were ‘momenta’ in

the sense of canonical momenta of various excitations) and also from the wavenumbers
~k of various modes, which (when multiplied by ~) are indeed spatial momenta of single

particles. (This statement gives us an expectation for what is the total momentum of

a state of a collection of particles which we will check below in §1.4.) In terms of the

momentum operator, then, we can write

φ(xµ) = eiPµx
µ

φ(0)e−iPµx
µ

with Pµ ≡ (H, ~P)µ.
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1.3 Quantum light: Photons

The quantization of the Maxwell field is logically very similar to the preceding dis-

cussion. There are just a few complications from its several polarizations, and from

the fact that quantum mechanics means that the vector potential is real and necessary

(whereas classically it is just a convenience). This is a quick-and-dirty version of the

story. I mention it here to emphasize that the machinery we are developing applies to

a system you have already thought a lot about!

Maxwell’s equations (with c = 1) are:

εµνρσ∂νFρσ = 0 ~∇ · ~B = 0, ~∇× ~E = −∂t ~B, (1.31)

∂µFµν = 4πjν ~∇ · ~E = 4πρ, ∇× ~B = ∂t ~E + 4π~j (1.32)

(where the familiar electric and magnetic fields are Ei = −F 0i and εijkBk = −F ij).

The first two equations (1.31) can be regarded as constraints on ~E and ~B which mean

that their components are not independent. This is annoying for trying to treat them

quantumly. To get around this we introduce potentials Aµ = (Φ, ~A)µ which determine

the fields by taking derivatives and which automatically solve the constraints (1.31):

Fµν = ∂µAν − ∂νAµ, aka ~E = −~∇Φ− ∂t ~A, ~B = ~∇× ~A.

Potentials related by a gauge transformation

~A→ ~Aλ ≡ ~A− ~∇λ, Φ→ Φλ ≡ Φ + ∂tλ (1.33)

for any function λ(~r, t), give the same ~E, ~B (or Fµν), and must be regarded as different

descriptions of the same physical situation. I emphasize for the first of many times

that the transformation (1.33) is not a symmetry of the Maxwell theory, but rather a

redundancy of our description. There is no such thing as ‘gauge symmetry’.

Nevertheless, the Bohm-Aharonov effect is proof that (some of the information in)
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the potential is real and useful, despite this redundancy202122. [End of Lecture 4]

We can partially remove the gauge redundancy by choosing our potentials to satisfy

Coulomb gauge
~∇ · ~A = 0 .

In the absence of sources ρ = 0 = ~j, we can also set Φ = 0. In this gauge, Ampere’s

law becomes (restoring factors of c for rhetorical drama)

c2~∇×
(
~∇× ~A

)
= c2~∇ ·

(
~∇ · ~A

)
− c2∇2 ~A = −∂2

t
~A, i.e. ∂2

t
~A− c2∇2 ~A = 0 .

This wave equation is different from our scalar wave equation (1.8) in three ways:

• we’re in three spatial dimensions,

• the speed of sound vs has been replaced by the actual speed of light c (which is

good since the waves in question are light-waves),

• the field ~A is a vector field obeying the constraint ~∇ · ~A = 0. In fourier space
~A(x) =

∫
d̄dkei

~k·~x ~A(k) this condition is

0 = ~k · ~A(k)

– the vector field is transverse.

20In case you haven’t seen it before: for a closed curve C, the object∮
C

Aµ(x)dxµ →
∮
C

Aλµ(x)dxµ =

∮
C

Aµ(x)dxµ +

∮
C

∂µλdx
µ︸ ︷︷ ︸

FTC
= 0

(1.34)

is gauge invariant (by the Fundamental Theorem of Calculus), and hence can be physical. Indeed it

is physical: The phase acquired by particle of charge e moving along the path C is eie
∮
C
Aµdx

µ

. This

can be observed in an interference experiment.
21A brief warning about the previous footnote for future experts, please ignore if you’re not in-

terested: actually the allowed gauge transformations are of the form A → A + ig−1dg, where g is a

single-valued function living in the gauge group, which is U(1) (not R, if charge is quantized). This

includes large gauge transformations. For example, if the system lives on a circle with coordinate

θ ≡ θ + 2π, then the allowed functions are of the form gn(θ) = einθ for some n ∈ Z. The variation

of
∮
S1 A under the transformation labelled by n is

∮
S1 A→

∮
S1 A+ i

∮
S1 g

−1
n dgn =

∮
S1 A+ 2πn. The

second term is the winding number of the function gn. But since this is 2π times an integer, the phase

acquired by a particle with integer charge q, eiq
∮
S1 A, is still gauge-invariant.

22In fact, we also don’t know how to formulate quantum mechanics of a charged particle without

the vector potential. So this is another strong motivation to introduce it.
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In this discussion, we are starting from the continuum field

theory description, analogous to (1.22) for the case of sound

waves. If you read Maxwell’s original paper, you will see that

he tried hard to introduce an analog of the balls and springs

for the electromagnetic field, a particular UV completion of

his equations involving various interlocking cogs and gears

(as in the figure at right from his 1861 paper) I actually

don’t understand it; if you do please explain it to me.

An action that gives rise to Maxwell’s equations is

S[A] =

∫
d4x

(
−1

4
FµνF

µν

)
=

∫
d4xLMaxwell. LMaxwell = −1

4
FµνF

µν =
1

2

(
E2 −B2

)
.

(1.35)

Note that we must regard A as the dynamical variable to obtain (1.32) by 0 = δS
δAµ(x)

.

(1.35) is beautifully simple and inevitable: the action should be a Lorentz scalar (mean-

ing that all indices must be contracted using ηµν) and it must be invariant under (1.33).

What other scalar, gauge-invariant quantity can you make out of Aµ? 23

The canonical momentum of A is then ΠAi = ∂LMaxwell

∂Ȧi
= Ei. So the Hamiltonian

is24:

H =
1

2

∫
d3x

(
~E2 + c2 ~B2

)
. (1.37)

Here ~E = −∂t ~A plays the role of field momentum π(x) in (1.23), and ~B = ~∇× ~A plays

the role of the spatial derivative ∂xq. We can immediately this as a quantum system

by analogy with the scalar case, by expanding ~A in terms of a basis of solutions of

the equations of motion and promoting their coefficients to creation and annihilation

23The condition of gauge invariance is easy to solve by writing only functionals of F . A single

Fµν has Lorentz indices on it, which we need to contract if we want a Lorentz scalar. We could try

taking derivatives of it, but we’d need two derivatives to saturate all the indices, and ∂µ∂νFµν = 0 by

antisymmetry of Fµν . So we need at least two F s. There are actually other terms we can consider,

such as

∂ρFµν∂ρF
µν . (1.36)

But notice that this has more derivatives than F 2, and will therefore be less important in the long-

wavelength limit. This doesn’t mean that it is absent, but we will ignore all the other terms for now

and think about them more later. (The brief version is: (1.36) has two more derivatives than the

Maxwell term; dimensional analysis then requires that its coefficient has dimensions of length-squared.

If we’re interested in wavelengths much longer than this length scale then we can ignore (1.36).) The

logic I’ve just described is a simple example of the Effective Field Theory perspective on the world,

one which I hope to proselytize in this course.
24You may also recall that the energy density of a configuration of Maxwell fields is u =

1
2

(
~E2 + ~B2

)
. This result can be obtained either by Legendre transformation of LMaxwell, or from

T 0
0 , the energy momentum tensor, as you’ll see on the HW.
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operators:

~A(~r, t) =

∫
d̄3k

1√
2ωk

∑
s=1,2

(
a~k,s~es(k̂)ei

~k·~r−iωkt + a†~k,s~e
?
s(k̂)e−i

~k·~r+iωkt
)
.

where

[aks, a
†
k′s′ ] = δd(k − k)δss′ . (1.38)

Here we need ω2
k = c2k2 to solve the wave equation. There is a bit more to the Maxwell

equations: The polarization vectors ~e(~k) conspire to make it so that there are only two

independent states for each ~k and they are transverse ~k · ~es(k̂) = 0, so s = 1, 2. The

polarization vectors for a given k can be chosen to satisfy a completeness relation:∑
s

esi(k̂)e?sj(k̂) = δij − k̂ik̂j . (1.39)

This says that they span the plane perpendicular to k̂. We can also choose them to be

normalized: ês(k̂) · ê?s(k̂) = 1.

The field momentum is ~E = −∂t ~A:

~E(~r, t) = i

∫
d̄dk

∑
s=1,2

√
~ωk

2

(
a~k,s~es(k̂)ei

~k·~r−iωkt − a†~k,s~e
?
s(k̂)e−i

~k·~r+iωkt
)

Also, the magnetic field operator is

~B = ~∇× ~A =

∫
d̄dk

∑
s

√
~

2ωk
i~k ×

(
a~k,s~es(k̂)ei

~k·~r−iωkt − a†~k,s~e
?
s(k̂)e−i

~k·~r+iωkt
)

It seems like the canonical commutator should generalize according to

[φ(x), π(x′)] = i~δ(x− x′) ?
 [Ai(~r),Ej(~r

′)]
?
= −i~δ3(~r − ~r′)δij

where i, j = 1..3 are spatial indices. This is not quite true. If we plug in the expressions

above and use (1.38) and (1.39) we find instead

[Ai(~r),Ej(~r
′)] = −i~

∫
d̄3k ei

~k·(~r−~r′)
(
δij − k̂ik̂j

)
Plugging these expressions into the Hamiltonian (1.37), we can write it in terms of

these oscillator modes (which create and annihilate photons). As for the scalar field,

the definitions of these modes were designed to make the Hamiltonian simple:

H =
∑
~k,s

~ωk
(

a†~k,sa~k,s +
1

2
Ld
)
.
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As a small check, note that using this Hamiltonian and the canonical commutator, we

can reproduce Maxwell’s equations:

∂2
t
~A = −∂t ~E = − i

~
[H, ~E] = c2~∇2 ~A.

The last step is a little bit nontrivial.

So the groundstate is the state |0〉 annihilated by all the annihilation operators

a~k,s |0〉 = 0, ∀~k, s. Higher-energy eigenstates of H can be made by creating photons,

e.g. a†~k,s |0〉 is a state with one photon. Like phonons, they are identical bosons.

The vacuum energy is

E0 =
1

2

∑
~k,s

~ωk =
L3

(2π)3

∫
d3k~ck.

The fact that
∑

k is no longer a finite sum might be something to worry about. We

will see below in §1.6 that this vacuum energy has physical consequences.
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Consolidation of understanding.

So far in this chapter, we have studied systems of increasing complexity, all with a

quadratic Hamiltonian: the simple harmonic oscillator, a non-interacting scalar field,

and the EM field in vacuum (i.e. in the absence of charge). All these free field theories

have the same structure, in the following sense.

In the following, ReA ≡ 1
2

(
A + A†

)
as usual. The normalization constant is

N = 1
2

√
~

2mω
.

HSHO =
1

2m
p2 +

1

2
mω2q2 = ~ω

(
a†a +

1

2

)
[q,p] = i~ =⇒ [a, a†] = 1.

q = ReNa, p = mImωNa.

Hscalar =

∫
dx

(
1

2µ
π2 +

1

2
µc2 (∂xφ)2

)
=
∑
k

~ωk
(

a†kak +
1

2

)
[φ(x),π(x′)] = i~δ(x− x′) =⇒ [ak, a

†
k′ ] = i~δ(k − k′).

φ(x) = Re

(∑
k

Nkeikxak

)
, π(x) = µIm

(∑
k

ωkNkeikxak

)
.

HEM =

∫
d3x

(
ε0
2
~E2 +

ε0c
2

2
~B2

)
=
∑
k,s=1,2

~ωk
(

a†ksaks +
1

2

)

[Ai(x),Ej(x
′)] = i~

(
δ3(x− x′)δij − ∂i∂j

1

4π|x− x′|

)
=⇒ [aks, a

†
k′s′ ] = ~δ(k − k′)δss′ .

~A(x) = Re

(∑
k

Nkei
~k·~xaks~es(k̂)

)
, ~E(x) = µIm

(∑
k

ωkNkei
~k·~xaks~es(k̂)

)
.

Note that ~E is the canonical momentum of ~A.

My point here is to emphasize the parallels between these three sets of equations.
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1.4 Lagrangian field theory and symmetries

[Here we fill in the bits of Peskin §2.2 that we missed above.] Let’s consider a classical

field theory in the Lagrangian description. This means that the degrees of freedom

are a set of fields φr(x), where r is a discrete index (for maybe spin or polarization

or flavor), and we specify the dynamics by the classical action. If the world is kind

to us (in this class we assume this), the action is an integral over space and time of a

Lagrangian density

S[φ] ≡
∫
dd+1xL(φ, ∂µφ).

This important assumption is an implementation of locality.

This central object L encodes the field equations, the canonical structure on the

phase space, the Hamiltonian, the symmetries of the theory. We’ve seen basically two

examples so far

LKG =
1

2
∂µφ∂

µφ− 1

2
m2φ2

and

LEM = − 1

4e2
FµνF

µν =
1

2e2

(
E2 −B2

)
with Aµ regarded as the independent degrees of freedom.

A word about units and dimensional analysis: in units with ~ =

c = 1, everything has units of mass to some power, called its mass

dimension. Energy and momentum pµ = ~kµ have mass dimension

+1. The space and time coordinates xµ have mass dimension −1. The

action goes in the exponential of the path integral measure
∫

[Dφ]e
iS
~

and so must be dimensionless. So the Lagrangian density has mass

dimension d + 1. This means that the KG field has mass dimension
d−1

2
(and the mass m has mass dimension 1 (yay!)). In d+ 1 = 3 + 1

dimensions, with the Maxwell action, E ∼ Ȧ, B ∼ ~∇A have mass

dimension 2 and A has mass dimension one (and e is dimensionless).

This is nice because then the covariant derivative ∂µ + Aµ has mass

dimension one. Notice that E2 + B2 has dimension 4 which is good

for an energy per unit volume.

object mass dim.

pµ 1

xµ -1
∂
∂xµ

1

S 0

L d+ 1

φ d−1
2

Aµ 1
~E, ~B, Fµν 2

The equation of motion is

0 =
δS

δφr(x)
.

Note the functional derivative. You can check that in the special case when L depends

only on φ and ∂µφ (and no higher derivatives of φ) this is the same as the Lagrange

EOM

0 =
∂L
∂φr
− ∂µ ∂L

∂(∂µφr)
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(for each r) which I cannot and don’t want to remember. Note that since we are

interested here in the bulk equations of motion, we ignore boundary terms unless we

are interested in field theory on a space with boundary. That is a worthy subject but

an unnecessary complication for now.

What’s special about φ? From the path integral point of view, the field is just an

integration variable. By redefining the field by e.g. φ ≡ 1
D

(χ−B/C), we can make

the KG theory uglier

L = A+Bχ+
1

2
Cχ2 +

1

2
D∂µχ∂µχ+ ....

One way in which φ may be special is if there is a symmetry; for example a Z2 symmetry

φ → −φ would forbid terms with odd powers of φ in the action. Sometimes, its

normalization is meaningful, like in the phonon example where it began its life as the

displacement of the atoms from their equilibrium positions. So you see that we are

not losing generality except in our neglect of interactions, and in our neglect of terms

with more derivatives. The former neglect we will repair little by little in this course,

by doing perturbation theory. The latter is justified well by the renormalization group

philosophy, which is a subject for next quarter.

Canonical field momentum and Hamiltonian. The Hamiltonian viewpoint in

field theory has the great virtue of bringing out the physical degrees of freedom. It

has the great shortcoming that it picks out the time coordinate as special and obscures

Lorentz symmetry.

The canonical field momentum is defined to be

π(x) =
∂L

∂(∂tφ(x))
.

Notice that this expression assumes a local Lagrangian density. π is actually a ‘field

momentum density’ in the sense that the literal canonical momentum is ∂
∂φ̇(x)

L =

ddxπ(x) (as opposed to L). I will often forget to say ‘density’ here.

The hamiltonian is then

H =
∑
n

pnqn − L =

∫
ddx

(∑
r

πr(x)φ̇r(x)− L

)
≡
∫
ddx h.

Noether’s theorem and the Noether method. Yay, symmetries. Why do

physicists love symmetries so much? One reason is that they offer possible resting

places along our never-ending chains of ‘why?’ questions. For example, one answer

(certainly the one given in Weinberg’s text, but just as certainly not the only one) to

the question “Why QFT?” is: quantum mechanics plus Poincaré symmetry.
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They are also helpful for solving physical systems. Continuous symmetries are as-

sociated with conserved currents. Suppose the action is invariant under a continuous

transformation of the fields φ, φ(x) 7→ φ′(x). The invariance of the action is what makes

the transformation a symmetry25. ‘Continuous’ here means we can do the transforma-

tion just a little bit, so that the action is preserved under φ(x) 7→ φ(x)+ε∆φ(x), where

ε is an infinitesimal parameter.

OK, now check out the following slippery maneuver: If the transformation with

constant ε (independent of space and time) is a symmetry, then the variation of the

action with ε = ε(x, t) must be proportional to ∂µε (at least assuming some smoothness

properties of the action), and so that it vanishes ∀φ when ε is constant:

S[φ(x) + ε(x)∆φ(x)]− S[φ(x)] =

∫
ddxdt∂µε(x)jµ

IBP
= −

∫
ddxdtε(x)∂µj

µ . (1.40)

But if the equations of motion are obeyed, then the action is invariant under any

variation, including this one, for arbitrary ε(x). But this means that ∂µj
µ = 0, the

current jµ defined by the first equation in (1.40) is conserved. These words are an

accurate description of the equation ∂µj
µ = 0 (called the continuity equation) because

it means that the charge

QR ≡
∫
R

ddx j0

in some fixed region of space R can only change by leaving the region (assume the

definition of R is independent of time):

∂tQR =

∫
R

ddx ∂tj
0 = −

∫
R

ddx ~∇ ·~j =

∫
∂R

dd−1xn̂ ·~j

where in the last step we used Stokes’ theorem.

This trick with pretending the symmetry-transformation parameter ε depends on

space is called the Noether method. More prosaically, the condition that the action is

invariant means that the Lagrangian density changes by a total derivative (we assume

boundary terms in the action can be ignored):

L(φ′, ∂µφ
′)

symmetry
= L(φ, ∂µφ) + ε∂µJ µ

but on the other hand, by Taylor expansion,

L(φ′, ∂µφ
′)

calculus
= L(φ, ∂µφ) + ε

(
∂L
∂φ

∆φ+
∂L

∂ (∂µφ)
∂µ∆φ

)
25Actually, the action only appears in the path integral in the combination eiS/~. So it is enough

for this object to be invariant. This requires only S 7→ S + 2πn, n ∈ Z. This loophole is sometimes

very important; I hope you will see some examples in later quarters of QFT.

38



IBP
= L(φ, ∂µφ) + ε

∂L∂φ − ∂µ ∂L
∂ (∂µφ)︸ ︷︷ ︸

eom

∆φ+ ε∂µ

(
∂L

∂ (∂µφ)
∆φ

)
.

By combining the previous two equations for L(φ′), we see that on configurations that

satisfy the EOM, 0 = ∂µj
µ with

jµ =
∑
r

∂L
∂ (∂µφr)

∆φr − J µ. (1.41)

Notice that I put back the index r on φr at the last step to emphasize the summation26

There is a converse to the Noether theorem, which is easier to discuss directly in

quantum mechanics. Given a conserved charge Q, that is, a hermitian operator with

[H,Q] = 0, we can make a symmetry transformation of the fields φ by

δφ ≡ iε[Q, φ]. (1.42)

We’ll say that Q generates the symmetry, for the following reason. (1.42) is the in-

finitesimal version of the finite transformation

φ→ φ′ ≡ eiεQφe−iεQ.

The object U ≡ eiεQ is a unitary operator (since Q is hermitian) which represents the

action of the symmetry on the Hilbert space of the QFT. It is a symmetry in the sense

that it commutes with the time evolution operator e−iHt.

Some examples will be useful:

• For example, suppose S[φ] only depends on φ through its derivatives, L(φ, ∂φ) =

L(∂φ). For definiteness, take S[φ] =
∫

1
2
∂µφ∂

µφ. Then there is a shift symmetry

φ → φ′ ≡ φ + ε. Letting ε depend on spacetime, the variation of the action

is S[φ + ε(x)] − S[φ] =
∫
ε∂µ∂

µφ, so the current is jµ = ∂µφ. Let’s check the

converse: Indeed, the charge Q =
∫

space
j0 generates the symmetry in the sense

that for small ε, the variation in the field is

δφ ≡ φ′ − φ = ε = iε[Q, φ]

(if we were doing classical mechanics, we should replace i[Q, φ] with the Poisson

bracket). Using our expression for the current this is

δφ = iε
[ ∫

ddy φ̇(y)︸︷︷︸
=π(y)

, φ(x)
]

= ε

26So far we’ve been doing classical physics. In QM, there is an extra ingredient, namely the path

integral measure. In fact, there are examples of transformations that preserve S, but where [dφ] is

not invariant. This is called an anomaly. More on this in a future quarter of QFT.
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which is indeed true. In this case the finite transformation is again φ→ φ+ ε.

• On the homework you’ve seen an example involving a complex scalar Φ, with

S[Φ,Φ?] that is invariant under Φ → eiεΦ = Φ + iεΦ + O(ε2). This U(1) phase

transformation can be rewritten in terms of the real and imaginary parts as an

SO(2) rotation. The charge can be written as

Q =

∫
ddxj0 =

∫
d̄dp

(
a†pap − b†pbp

)
where the two sets of creation and annihilation operators are associated with

excitations of Φ and Φ† respectively. (That is, make mode expansions of φ1,2 as

we did for a single real scalar field, in terms of mode operators a1,2 respectively.

Then let a ≡ a1 + ia2,b ≡ a1− ia2, up to numerical prefactors that I tried to get

right in the solutions.) So the particles created by a and b have opposite charge

(this is essential given the mode expansion Φk ∼ ak+b†−k) and can be interpreted

as each others’ antiparticles: there can be symmetry-respecting processes where

an a particle and b particle take each other out.

• Consider spacetime translations, xµ → xµ − aµ. This induces a transformation

of the fields by

φ(x) 7→ φ(x+ a) = φ(x) + aν ∂νφ︸︷︷︸
≡∆νφ

+O(a2).

Our transformation parameter is now itself a four-vector, so we’ll get a four-

vector of currents T µν . This will be a symmetry as long as the lagrangian doesn’t

depend explicitly on space and time (so ∂νL = 0) but rather depends on space

and time only via the fields (so 0 6= d
dxν
L chain rule

= ∂νφ
∂L
∂φ

+ ∂µ∂νφ
∂L

∂(∂µφ)
). Let’s use

the prosaic method for this one: the shift in the Lagrangian density also can be

found by Taylor expansion

L(φ(x), ∂φ(x)) 7→ L(φ(x+ a), ∂φ(x+ a))
Taylor

= L+ aµ
d

dxµ
L = L+ aν

d

dxµ
(δµνL) .

So the formula (1.41) gives

T µν =
∂L

∂ (∂µφ)
∂νφ︸︷︷︸
∆νφ

−Lδµν .

For the time translation, the conserved charge T 0
0 gives back the hamiltonian

density h = πφ̇− L obtained by Legendre transformation. [End of Lecture 5]
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The conserved quantity from spatial translations is the momentum carried by the

field, which for the KG field is

Pi =

∫
ddx T 0

i = −
∫
ddx π∂iφ.

For the Maxwell field, this gives the Poynting vector.

There is some ambiguity in the definition of the stress tensor which you’ll study

on the homework.

Let’s check that the expression above for the conserved momentum agrees with

our expectations. In particular, in free field theory the total momentum of the

state
∣∣∣~k1, · · ·~kn

〉
should be just the sum of the momenta of the particles, ~P =∑n

`=1 ~~k` (with interactions the story can be more complicated). Indeed

Pi = −
∫
ddx π∂iφ =

∫
d̄dkkia

†
~k
a~k

agrees with this. (Notice that I used rotation invariance of the vacuum to not

worry about a possible constant term.)

• We can do the same thing for spatial rotations, which act on a scalar field by

φ(xi) 7→ φ(Ri
jx
j). An infinitesimal rotation is of the form Ri

j = δij + ωij where ω

is an antisymmetric matrix (this guarantees that RRT = 1) specifying the plane

and angle of rotation. I’ll leave it as an exercise to repeat the analysis and find

the conserved current(s) associated with rotation invariance.

• Actually we can do the whole Lorentz group in the same manner. It acts on a

scalar field by φ(xµ) 7→ φ(Λµ
νx

ν). We’ll say more about the rest of the Poincaré

group, i.e. boosts, later on.

• Consider a scale transformation, also known as a dilatation:

φ(xµ) 7→ λdφφ(λxµ). (1.43)

Here dφ is a number that can be different for different fields, called the scaling

dimension of the field. Classically, the scaling dimension is the same as the mass

dimension in the table above (D−2
2

for a scalar field φ, 1 for a vector potential Aµ).

A system is scale invariant if it has no intrinsic length scale – no dimensionful

quantities in its definition; an example is the free Maxwell theory. You can study

the associated conserved quantity on the homework. I’ll say a bit more about

scaling symmetry next.

• The study of what is a symmetry of a quantum system of extended dofs is an

active subject. For a taste of recent generalizations, take a look at this recent

review.
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1.5 Naive scale invariance in field theory

The scale transformation plays a special role in our modern understanding of QFT.

This modern understanding of QFT is based on the renormalization group. This is

the idea that we should understand a system with many degrees of freedom scale-by-

scale, allowing for the possibility that our description may change depending on the

resolution of the probes with which we study it. The simplest case, then, is when the

system is the same at all length scales.

[The following discussion comes from the QFT lectures of Marty Halpern.] Consider

a field theory of a scalar field φ in D spacetime dimensions, with an action of the form

S[φ] =

∫
dDx

(
1

2
∂µφ∂

µφ− gφp
)

for some constants p, g. Which value of p makes this scale invariant? One way to assess

this is to ask: when is g dimensionless?

Naive mass dimensions:

[S] = [~] = 0, [x] ≡ −1, [dDx] = −D, [∂] = 1

The kinetic term tells us the engineering dimensions of φ:

0 = [Skinetic] = −D + 2 + 2[φ] =⇒ [φ] =
D − 2

2
.

From the path integral representation, we see that quantum field theory in D = 1

spacetime dimensions is quantum mechanics of a single particle, where the role of the

field is played by the position of the particle.

Then the self-interaction term has dimensions

0 = [Sinteraction] = −D + [g] + p[φ] =⇒ [g] = D − p[φ] = D + p
2−D

2

We expect scale invariance when [g] = 0 which happens when

p = pD ≡
2D

D − 2
,

i.e. the scale invariant scalar-field self-interaction in D spacetime dimensions is φ
2D
D−2 .
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D 1 2 3 4 5 6 ... D ∞
[φ] −1

2
0 1

2
1 3/2 2 ... D−2

2
∞

scale-inv’t p ≡ pD −2 ∞? 6 4 10/3 3 ... 2D
D−2

2

? What is happening in D = 2? The field is dimensionless, and so any power of

φ is naively scale invariant, as are more complicated interactions like gij(φ)∂µφ
i∂µφj,

where the coupling g(φ) is a function of φ. This allows for scale-invariant non-linear

sigma models, where the fields are coordinates on a curved manifold with metric ds2 =

gijdφ
idφj.

So the case of D = 1 says we get a scale invariant theory by putting a particle in a

potential that goes like 1/q2.

In dimensions where we get fractional powers, this isn’t so nice.

Notice that the mass term ∆S =
∫
dDxm

2

2
φ2 gives

0 = −D + 2[m] + 2[φ] =⇒ [m] = 1 ∀D <∞

– it’s a mass, yay.

What are the consequences of this engineering-dimensions calculation in QFT? For

D > 2, an interaction of the form gφp has

[g] = D · pD − p
pD


< 0 when p > pD, non-renormalizable or irrelevant

= 0 when p = pD, renormalizable or marginal

> 0 when p < pD, super-renormalizable or relevant.

(1.44)

Here I’ve given names to the different possibilities. To understand these names, consider

the ‘non-renormalizable’ case. Suppose we calculate in QFT some quantity f (say a

scattering amplitude) with [f ] as its naive dimension, in perturbation theory in g.

This is what we’ll learn to do using Feynman diagrams soon. Even without knowing

anything else, we know the answer will be a series in powers of g:

f =
∞∑
n=0

gncn

with cn independent of g. So

[f ] = n[g] + [cn] =⇒ [cn] = [f ]− n[g]

So if [g] < 0, cn must have more and more powers of some mass (inverse length) as

n increases. What dimensionful quantity makes up the difference? Sometimes it is
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masses or external momenta. But generically, it gets made up by UV divergences (if

everything is infinite, dimensional analysis can fail, nothing is real, I am the walrus).

More usefully, in a meaningful theory with a UV cutoff, ΛUV , the dimensions get

made up by the UV cutoff, which has [ΛUV ] = 1. Generically (i.e. in the absence of

cancellations): cn = c̃n (ΛUV )−n[g], where c̃n is dimensionless, and n[g] < 0 – it’s higher

and higher powers of the cutoff at each order in perturbation theory. This is how

non-renormalizable theories got a bad reputation.

Now consider the renormalizable (classically scale invariant) case: Here, [cn] = [f ],

for every n, since [g] = 0. But in fact, what you’ll get is something like

cn = c̃n logν(n)

(
ΛUV

ΛIR

)
, (1.45)

where ΛIR is an infrared cutoff or a mass or external momentum, [ΛIR] = 1. This

means that scale invariance is actually broken by quantum effects! More crudely, it is

broken by the presence of the UV cutoff.

In this box, I use some things I haven’t explained yet to illustrate the claim (1.45).

Think of it as a preview. Some classically scale invariant examples (so that m = 0 and

the bare propagator is 1/k2) where you can see that we get logs from loop amplitudes:

φ4 in D = 4: φ6 in D = 3:

φ3 in D = 6: In D = 2, even the propagator for a massless

scalar field has logs:

〈φ(x)φ(0)〉 =

∫
d̄2k

e−ikx

k2
∼ log

|x|
ΛUV

.

The terms involving ‘renormalizable’ in (1.44) are somewhat old-fashioned and come

from a high-energy physics point of view where the short-distance physics is unknown,

and we want to get as far as we can in that direction with our limited knowledge (in

which case the condition ‘renormalizability’ lets us get away with this indefinitely –

it lets us imagine we know everything). The latter terms are natural in the opposite

situation (like condensed matter physics) where we know some basically correct micro-

scopic description but want to know what happens at low energies. Then an operator

like 1
M24φ

28 whose coefficient is suppressed by some large mass scale M is irrelevant

for physics at energies far below that scale. Inversely, an operator like m2φ2 gives a
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mass to the φ particles, and matters very much (is relevant) at energies E < m. In the

marginal case, the quantum corrections have a chance to make a big difference.

1.6 Casimir effect: vacuum energy is real

[A. Zee, Quantum Field Theory in a Nutshell, §I.9] This subsection has two purposes.

One is to show that the
∑

k
1
2
~ωk energy of the vacuum of free fields (such as the

radiation field) is real. Sometimes we can get rid of it by choosing the zero of energy

(which doesn’t matter unless we are studying dynamical gravity). But it is meaningful

if we can vary ω (or the collection of ωs if we have many oscillators as for the radiation

field) and compare the difference.

The other purpose is to give an object lesson in asking the right questions. In

physics, the right question is often a question that can be answered by an experiment,

at least in principle. Sometimes a computer simulation (even an imagined one) can

play the same role. The answers to such questions tend to be well-defined and are less

sensitive to our silly theoretical prejudices, e.g. about what happens to physics at very

short distances.

In the context of the bunch of oscillators making up the radiation field, we can

change the spectrum of frequencies of these oscillators {ωk} by putting it in a box and

varying the size of the box. In particular, two parallel conducting plates separated by

some distance d experience an attractive force from the change in the vacuum energy

of the EM field resulting from their presence. The plates put boundary conditions on

the field, and therefore determine which normal modes are present.

To avoid some complications of E&M that are not essential for our point here, we’re

going to make two simplifications:

• we’re going to solve the problem in 1+1 dimensions

• and we’re going to solve it for a scalar field.

To avoid the problem of changing the boundary conditions outside the plates we

use the following device with three plates:

| ← d→ | ←− L− d −→ |

(We will consider L � d, so we don’t really care about the far right plate.) The

‘perfectly conducting’ plates impose the boundary condition that our scalar field q(x)

vanishes there. The normal modes of the scalar field q(x) in the left cavity are then

qj = sin (jπx/d) , j = 1, 2, ...
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with frequencies ωj = π|j|
d
c. That is, the mode expansion for the scalar field in the left

cavity is

q(x, t) =
∑
j

qj(x)e−iωjtaj + h.c. (1.46)

that is, relative to our previous expression, we must set ak = −a−k to satisfy the

boundary conditions. There is a similar expression for the modes in the right cavity

which we won’t need. We’re going to add up all the 1
2
~ωs for all the modes in both

cavities to get the vacuum energy E0(d); the force on the middle plate is then −∂dE0.

The vacuum energy in the whole region of interest between the outer plates is the

sum of the vacuum energies of the two cavities

E0(d) = f(d) + f(L− d)

where

f(d) =
1

2
~
∞∑
j=1

ωj = ~c
π

2d

∞∑
j=1

j
?!?!!
= ∞.

We have done something wrong. What?

Our crime is hubris: we assumed that we knew what the modes of arbitrarily large

mode number k (arbitrarily short wavelength, arbitrarily high frequency) are doing,

and in particular we assumed that they cared about our silly plates. In fact, no metal

in existence can put boundary conditions on the modes of large enough frequency –

those modes don’t care about d. The reason a conductor puts boundary conditions

on the EM field is that the electrons move around to compensate for an applied field,

but there is a limit on how fast the electrons can move (e.g. the speed of light). The

resulting cutoff frequency is called the plasma frequency but we don’t actually need to

know about all these details. To parametrize our ignorance of what the high-frequency

modes do, we must cut off (or regularize) the contribution of the high-frequency modes.

Let’s call modes with ωj � π/a high frequency, where a is some short time27. Replace

f(d) f(a, d) = ~
π

2d

∞∑
j=1

e−aωj/πj

= −π~
2
∂a

(
∞∑
j=1

e−aj/d

)
︸ ︷︷ ︸

= 1

1−e−a/d
−1

27You can think of a as the time it takes the waves to move by one lattice spacing. If we work

in units where the velocity is c = 1, this is just the lattice spacing. I will do so for the rest of this

discussion.
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= +
π~
2d

ea/d

(ea/d − 1)
2

a�d' ~

 πd

2a2︸︷︷︸
→∞ as a→0

− π

24d
+

πa2

480d3
+ ...

 (1.47)

Answers that don’t depend on a have a chance of being meaningful. The thing we can

measure is the force on the middle plate:

F = −∂dE0 = − (f ′(d)− f ′(L− d))

= −~
(( π

2a2
+

π

24d2
+O(a2)

)
−
(
π

2a2
+

π

24 (L− d)2 +O(a2)

))
a→0
= −π~

24

(
1

d2
− 1

(L− d)2

)
L�d
= − π~c

24d2
(1 +O(d/L)) . (1.48)

This is an attractive force between the plates. (I put the c back in the last line.)

The analogous force between real conducting plates, caused by the change of bound-

ary conditions on the electromagnetic field, has been measured.

An important question is to what extent could we have picked a different cutoff

function (instead of e−πω/a) and gotten the same answer for the physics. This interest-

ing question is answered affirmatively in Zee’s wonderful book, 2d edition, section I.9

(available electronically here!).

For example, we could have regularized the sum by imagining that space is a lattice.

Then we can use our dispersion relation (1.6) in the sum:

ωj = 2

√
κ

m
sin

jπ

N
=

2c

a
sin

jπ

N
, N ≡ d/a ∈ Z, j = 1..N. (1.49)

You’ll have the opportunity on the homework to see whether this reproduces the same

answer as above28.

28In response to my claim that the answers to physics questions will be independent of the regulator,

for reasonable choices of regulator, the following question arises: what happens if we just put a hard

cutoff on the frequency, so that

f(d) f(N, d) ≡ π~c
2d

N∑
j=1

j =
π~c
2d

N(N + 1)

2
.

Section 15.2 of Schwarz’s textbook explains how to extract the correct answer using this regulator.

The key point is that the number of modes N (a) is an integer but (b) it depends on the size of the
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The string theorists will tell you that
∑∞

j=1 j = − 1
12

, and our calculation above

agrees with them in some sense. But what this foolishness means is that if we compute

something that is not dependent on the cutoff we have to get the same answer no

matter what cutoff we use29. Notice that it is crucial to ask the right questions.

A comment about possible physical applications of the calculation we actually did:

you could ask me whether there is such a thing as a Casimir force due to the vacuum

fluctuations of phonons. Certainly it’s true that the boundary of a chunk of solid

puts boundary conditions on the phonon modes, which change when we change the

size of the solid. The problem with the idea that this might produce a measurable

force (which would lead the solid to want to shrink) is that it is hard to distinguish

the ‘phonon vacuum energy’ from the rest of the energy of formation of the solid,

that is, the energy difference between the crystalline configuration of the atoms and

the configuration when they are all infinitely separated. Certainly the latter is not

well-described in the harmonic approximation (λ = 0 in (1.1)).

A few comments about the 3+1 dimensional case of E&M. Assume the size

of the plates is much larger than their separation L. Dimensional analysis shows that

the force per unit area from vacuum fluctuations must be of the form

P = γ
~c
L4

where γ is a numerical number. γ is not zero!

Use periodic boundary conditions in the xy planes (along the plates). The allowed

wave vectors are then

~k =

(
2πnx
Lx

,
2πny
Ly

)
with nx, ny integers.

We have to do a bit of E&M here. Assume the plates are perfect conductors (this

is where the hubris about the high-frequency modes enters). This means that the

transverse component of the electric field must vanish at the surface. Instead of plane

waves in z, we get standing waves: φ(z) ∝ sin (nπz/L) .

cavity. This produces a rapidly oscillating force as d varies, and the wall actually only experiences the

average force.

These same issues arise in using the lattice regulator. See the homework for some hints.
29A point of view from which this equation is true is the following: The Riemann zeta function is

defined (for s in a certain region of the complex plane) to be ζ(s) =
∑∞
j=1

1
js . This sum has a domain

of convergence (which does not include s = −1), but it defines an analytic function in that domain,

and can therefore be analytically continued to a larger domain (for example by finding an integral

representation). The value at s = −1 is ζ(−1) = − 1
12 . This is called zeta-function regularization. If

we use this value in E0 we get the same answer as above.
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The frequencies of the associated standing waves are then

ωn(~k) = c

√
π2n2

L2
+ ~k2, n = 0, 1, 2...

Also, there is only one polarization state for n = 0.

So the zero-point energy is

E0(L) =
~
2

2
′∑
n,~k

ωn(~k)


where it’s useful to define

′∑
n,~k

≡ 1

2

∑
n=0,~k

+
∑
n≥1,~k

Now you can imagine introducing a regulator like the one we used above, and replacing

′∑
n,~k

· 
′∑
n,~k

e−aωn(~k)/π·

and doing the sums and integrals and extracting the small-a (and specifically the a-

independent) behavior.

The answer, γ = − π2

2·5!
, was predicted by Casimir in 1948 and first unambiguously

measured 50 years later.

Comments about the vacuum energy. One conclusion from the above calcu-

lation is that the vacuum energy is very UV sensitive – the biggest contributions come

from the highest-frequency modes. So even small changes in the short-distance physics

makes a big change in E0.

We said earlier that the vacuum energy itself is hard to measure, because what

we measure is energy differences. But vacuum energy, like all kinds of energy and

momentum, gravitates. Positive vacuum energy, when dominant, leads space to inflate,

i.e. to expand in an exponential way in time (see the homework for a demonstration

of this statement). Observations of distant supernovae and of the cosmic microwave

background show that this is happening right now (for the last few billion years).

Partly because of its UV sensitivity, we can’t make a strong prediction for the value

of the vacuum energy density E0 – we simply don’t know what happens at wavelengths

shorter than an inverse TeV or so. Note that our calculation only works for fields

that are well-approximated by balls and springs, i.e. a quadratic lagrangian. This is
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actually true of the degrees of freedom of the Standard Model at the highest energy

scales we know about.

But the observed value of E0 is very small compared to the scales that appear in

particle physics. Our answer is
∫ Λ

d̄3kk ∼ Λ4; if we use Λ ∼ TeV we are wrong by

60 orders of magnitude. So there must be some dramatic cancellation. We don’t have

a good explanation of this. The explanation could be that if the cancellation didn’t

happen, the universe would have expanded too fast for any structure to form, and

so we wouldn’t be here to ask the question. This anthropic explanation led the late

Steven Weinberg (against his own wishes) to predict a nonzero value of the cosmological

constant on the order of the observed value – a decade before the observation. This

kind of reasoning would be disappointing if correct, but cannot be discounted.

[End of Lecture 6]
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2 The path integral makes some things easier

2.1 Fields mediate forces

[Zee §1.3] Consider again our chain of balls on springs. Suppose a giant hand reaches

in and pushes the atom at position xn a little bit. This can be described by adding to

the hamiltonian a term

δV (q) = −Jn(t)qn(t)

which applies a force Jn(t) to the nth atom. The giantness of the hand is reflected in

the fact that we treat Jn(t) as a fixed c-number function – our little chain of balls do

not affect the giant hand.

We can ask, in the presence of such a force, what is the amplitude to go from state

I to state F in time T :

〈F | e−i
∫ T
0 dtH(t) |I〉 =

∫
[Dφ]ei

∫
dtddx( 1

2
(∂φ)2−V (φ)+J(x)φ(x)).

As you see, this is a quantity for which we have a path integral representation. Here’s

a reason to care about this quantity: take the initial and final states to be the ground-

state:

〈0| e−i
∫ T
0 dtH(t) |0〉 ' e−i

∫ T
0 dtEgs(J).

If the time-dependence is slow enough, the answer is obtained by the adiabatic approx-

imation: just add up the instantaneous groundstate energy at each time step. This

is something we might like to know about, for example to compute the force exerted

on the giant hand by our field. Another motivation is that by taking (functional)

derivatives with respect to J(x), we can pull down powers of q(x); so this quantity is

a generating functional for correlation functions of q.

In order to be able to do this path integral, we retreat to the case where the action

is quadratic in φ, so that

L(φ) =
1

2

(
∂µφ∂

µφ−m2φ2
) IBP

= −1

2
φ
(
∂2 +m2

)
φ+ total derivative. (2.1)

Going back to the lattice to make the integrals look slightly less scary, we have

eiW [J ] ≡
∫

[Dφ]ei
∫

(L+Jφ) =

∫ ∞
−∞

Mt,N∏
n,t

dqn,te
i
2
qxAxyqy+iJxqx =

√
(2πi)NMt

detA
e−

i
2
JxA

−1
xy Jy .

Here repeated indices are summed as usual: qxAxyqy =
∑

x,y φ(x)Axyφ(y), etc... So

you can see that the matrix A multiplying the quadratic term in this gaussian integral

is (a discretization of) Axy = −δd+1(x − y) (∂2
x +m2). It is an NMt × NMt matrix.
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Its inverse A−1 satisfies by definition AxzA
−1
zy = δxy, which is (a discretization of) the

differential equation

− (∂2 +m2)D(x− y) = δ(x− y). (2.2)

This equation says that D is a Green’s function for the operator −(∂2 +m2). The fact

that there is no special point in spacetime says A−1
xy = D(x − y) only depends on the

difference of its arguments.

Does this integral actually converge? The integral you’ll study on the homework is

of the form
∫
R dqe

− 1
2
qAq, which surely converges if A is a positive matrix. Actually, this

is overkill – it is enough to replace m2 → m2 − iε to make all the integrals converge.

Here ε is an infinitesimal, which means ε2 = 0 and cε = ε for any positive c. Then each∫
dqnt will have a factor of e−ε

∫
q2nt which suppresses the integrand in the dangerous

large-field region30.

The equation (2.2) is translation-invariant and linear so you should not be surprised

that it is solved by going to Fourier space (in space and time):

D(x) =

∫
d̄d+1k eikµx

µ

Dk, δd+1(x) =

∫
d̄d+1k eikµx

µ

.

in terms of which (2.2) becomes the algebraic equation 1 = (k2 −m2 + iε)Dk. Hence

Dk =
1

k2 −m2 + iε
=⇒ D(x) =

∫
d̄d+1k

eikx

k2 −m2 + iε
. (2.3)

Notice that the shift by ε saves the day here: it keeps the integration contour from

running right over the pole at k2 = m2, by moving slightly in the imaginary direction.

More explicitly, the denominator

k2 −m2 + iε = ω2 − ~k2 −m2 + iε (2.4)

is zero when

ω = ±
√
~k2 +m2 − iε = ± (ωk − iε) , ωk ≡

√
~k2 +m2.

In the second step I Taylor expanded
√
ω2
k − iε =

√
ω2
k − iε

ωk
+

O(ε)2 and used the facts that ωk > 0, and that anything positive

times an infinitesmal is an infinitesimal.

We can then do the ω integral by contours31: if t > 0 (t < 0), we can close the

30You could worry that there could be other ways to make the integral well-defined (there are).

Another thing you might be bothered by is the boundary conditions on the fields and their relation

to the initial and final states. In the next subsection, we’ll say more.
31We are using the Cauchy residue theorem

∮
C
dzf(z) = 2πi

∑
zj

Resz=zjf where zj are the poles of

f . To remember the sign, consider a small circle C0 counterclockwise around the origin and f(z) = 1/z,

so
∮
C0

dz
z = i

∫ 2π

0
dθ = 2πi.
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contour in the UHP (LHP) since the integrand goes like e−Imωt, and the integral equals

the residue of the pole at ω = ±(ωk − iε) (times 2πi):

D(x) = −i

∫
d̄dk

(
θ(t)

e−i(ωkt−
~k·~x)

2ωk
+ θ(−t)e

i(ωkt−~k·~x)

2ωk

)
. (2.5)

Here θ(t) ≡ 1 if t > 0 and 0 otherwise is the Heaviside function. We’ll learn to call this

time-ordered in a moment.

The propagator. Who is D(x), besides some quantity in terms of which we did a

Gaussian integral? As you’ll see on the homework, the inverse matrix can be extracted

via a two-point correlation function:(
A−1

)
ij

=

∫ (∏
dq
)
qiqje

i 1
2
qAq/Z = −i 〈qiqj〉 .

Putting back all the labels, the same manipulations show that

D(x− y) =

∫
[Dφ]φ(x)φ(y)eiS[φ]/Z

?
= −i

〈
0|φ̂(x)φ̂(y)|0

〉
(2.6)

– the amplitude to propagate an excitation created from the vacuum by φ(y) to be

annihilated by φ(x). The propagator, for short.

(Notice that if the system is Lorentz invariant (which starting from (2.1) it is) then

since D(x) is a scalar quantity, it can only depend on x through Lorentz invariants

made from xµ, namely the proper distance x2 = t2 − ~x2, and the sign of t.)

Why the ‘?’ in (2.6)? For one thing, in the expression (2.6), φ(x) and φ(y) are

operators – the order matters. How do I know in which order to write them? (This is

in contrast with the path integral expression
∫

[Dφ]eiS[φ]φ(x)φ(y), where they are just

integration variables, numbers.) To reproduce (2.5) the thing to do is to time-order

them:

D(x− y) = Z−1

∫
[Dφ]eiS[φ]φ(x)φ(y)|m2→m2−iε (2.7)

= 〈0|T φ(x)φ(y)|0〉 ≡ θ(x0 − y0) 〈0|φ(x)φ(y)|0〉+ θ(y0 − x0) 〈0|φ(y)φ(x)|0〉 .

To verify this, plug in the mode expansion (1.29) to see e.g.

〈0|φ(x)φ(y)|0〉 =

∫
d̄dk d̄dq

2
√
ωkωq

e−ikx+iqy 〈0| aka
†
q |0〉 =

∫
d̄dk

2ωk
e−ik(x−y)

(where k0 = ωk, q
0 = ωq to satisfy the KG equation), which reproduces the first term

in (2.5)32.

32The other ways of making the path integral well-defined correspond to other ways of ordering the

φs, and other initial and final states.
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Now why should we care about the propagator? Look again at W [J ]. We’ve learned

that (up to the addition of terms independent of J),

W [J ] = −1

2

∫ ∫
dd+1xdd+1yJ(x)D(x− y)J(y) = −1

2

∫
d̄d+1kJ?k

1

k2 −m2 + iε
Jk.

Here J(x) =
∫

d̄d+1keikxJk, J
?
k = J−k. (The last step is another instance of Parsival’s

theorem, or the statement that Fourier transform maps convolution to multiplication.

Just plug in to check.)

We get to pick J(x). Think of our chain of balls and springs as a 1+1d version of a

mattress. Let’s choose J = J1 + J2 to describe (in Zee’s words) two lumps sitting still

on the mattress: Ja(x) = δ3(x− xa), a = 1, 2. Then Jk =
∫
dx0e−ik

0x0
(
ei
~k·~x1 + ei

~k·~x2
)

.

The interaction between the two lumps mediated by the mattress field φ will then be

described by the J1J2 cross-terms in W [J ]:

W [J ] = 2

∫
x

∫
y

J1(x)D(x− y)J2(y) +

∫ ∫
J1DJ1 +

∫ ∫
J2DJ2 (2.8)

= −2

2

∫
dx0

∫
dy0

∫
d̄k0eik

0(x0−y0)

∫
d̄3k

ei
~k·(~x1−~x2)

k2 −m2 + iε
+ ... (2.9)

= −
∫
dx0

(∫
d̄k02πδ(k0)

)
︸ ︷︷ ︸

=1

∫
d̄3k

ei
~k·(~x1−~x2)

k2 −m2 + iε
+ ... (2.10)

= +

∫
dx0

∫
d̄3k

ei
~k·(~x1−~x2)

~k2 +m2 − iε
+ ... (2.11)

where the ... represent the terms involving J2
1 and J2

2 .

For this choice of J , the Hamiltonian is time-independent, and

eiW = 〈gs| e−iHT |gs〉 = e−iEgs(J)T , (2.12)

where |gs〉 is the groundstate of H(J), with eigenvalue Egs(J). This equality will

become clearer in the next subsection. Therefore (2.12) says W = −Egs(J)T . We

learn that

Egs(J) = −
∫

d̄dk
ei
~k·~r

~k2 +m2

where ~r ≡ ~x1 − ~x2. Notice that we can drop the iε now, because this integrand is

nonsingular for real ~k. In d = 1, there are poles at k = ±im, and for x > 0 (x < 0) we
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can close the contour in the UHP (LHP) for free to get33

Egs(J) = −2πi

2π

e−m|x|

2im
= −e

−m|x|

2m
.

Since x is the separation between the lumps, this means that our field has produced

an attractive force between the lumps

F = −∂xEgs(J) = +
1

2
e−m|x|

which falls off exponentially with the separation between the lumps. The attractive

nature of this force is familiar to anyone who has sat on a bed next to another person.

The range of the potential goes inversely with the mass of the ‘force carrier’ φ. The 3d

version of this potential e−mr

r
(see footnote 33) is called the Yukawa potential.

[End of Lecture 7]

2.2 Euclidean path integral and Wick rotation

[Recommended reading: see Fradkin, chapter 5 for a slightly different perspective on

this story.] Here is a route to defining the path integral that makes clearer what is

going on with the initial and final states. Along the way, we will see that actually it

is the same as the replacement m2 → m2 − iε that we did above in the case of scalar

field theory)

For simplicity, let us focus on a single mode of the field – a single harmonic oscillator

S[q] =
1

2

∫
dt
(
(∂tq)

2 − Ω2q2
)
−
∫
Jq

(where if you like Ω2 = ~k2 +m2 for some fixed k). Consider the replacement τ = it in

the action:

S[q] = −1

2
i

∫
dτ
(
−(∂τq)

2 − Ω2q2
)

+ i

∫
dτJq = +i

∫
dτ

(
1

2

(
(∂τq)

2 + Ω2q2
)

+ Jq

)
.

33For convenience, here’s the integral in 3d:∫
d̄3k

ei
~k·~x

~k2 +M2

y≡cos θ
=

1

(2π)2

∫ ∞
0

k2dk

k2 +M2

∫ 1

−1

dyeikyr︸ ︷︷ ︸
=2 sin kr

kr

=
1

(2π)2r

∫ ∞
−∞

dkk sin kr

k2 +M2

=
1

(2π)2r

(
1

2i

∫ ∞
−∞

dk
keikr

k2 +M2
+ h.c.

)
close contour in UHP for free

=
1

(2π)2r

1

2i
2πi

iMei(iM)r

2iM
· 2 =

e−Mr

4πr
.
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With this replacment, the path integral becomes

ZE[J ] =

∫
[dq]e−

∫
dτ( 1

2((∂τ q)2+Ω2q2)+Jq) =

∫
[dq]e−SE [q]. (2.13)

This is a different integral than before if we regard τ as a real variable. This integrand

suppresses configurations with large q, and large ∂τq, and the integral is therefore

totally well-defined. The euclidean action is34

SE[q] =

∫
dτ

(
1

2

(
(∂τq)

2 + Ω2q2
)

+ Jq

)
=

∫
dτ

(
1

2
q
(
−∂2

τ + Ω2
)
q + Jq

)
where (−∂2

τ + Ω2) is a positive operator (meaning all of its eigenvalues are positive)35.

Call its inverse GE (or G for short), which then, by definition, satisfies(
−∂2

σ + Ω2
)
G(σ, τ) = δ(σ − τ) .

The fact that our system is time-translation invariant means G(σ, τ) = G(σ − τ).

We can solve this equation in fourier space: G(σ) =
∫

d̄ωeiωσGω makes it algebraic:

Gω =
1

ω2 + Ω2

and we have

G(σ) =

∫
d̄ω

eiωσ

ω2 + Ω2
= e−Ω|σ| 1

2Ω
. (2.14)

(This is the same integral we did above, but it will help to say it again. Do it by

residues: the integrand has poles at ω = ±iΩ (see the figure 1 below). The absolute

value of |σ| is crucial, and comes from the fact that the contour at infinity converges

in the upper (lower) half plane for σ > 0 (σ < 0).) The integral is thus completely

34It is called euclidean because the (∂τq)
2 has the same sign as the spatial derivatives (∂xq)

2, so

this is the action we get in euclidean spacetime with metric δµν , rather than ηµν . Exercise: put back

the spatial derivative terms and check that this is the case.
35 An important perspective on the uniqueness of the euclidean Green’s function and the non-

uniqueness of the real-time Green’s function: in euclidean time, the Green’s function is the inverse of

an operator of the form −∂2
τ + Ω2 which is positive (≡ all its eigenvalues are positive) – recall that

−∂2
τ = p̂2 is the square of a hermitian operator. If all the eigenvalues are positive, the operator has

no kernel, so it is completely and unambiguously invertible. If A =
∑
n λn|n〉〈n|, then the inverse is

unambiguously A−1 =
∑
n

1
λn
|n〉〈n| as long as none of the λn = 0. This is why there are no poles on

the axis of the (euclidean) ω integral in (2.14). In real time, in contrast, we are inverting something

like +∂2
t + Ω2 which annihilates modes with ∂t = iΩ (if we were doing QFT in d > 0 + 1 this equation

would be the familiar p2 −m2 = 0). These are called ‘on-shell states’, they are actual states in the

spectrum of the Hamiltonian of the system. So the operator we are trying to invert has a kernel –

it’s not actually invertible on the whole Hilbert space – and this is the source of the ambiguity. In

frequency space, this is reflected in the presence of poles of the integrand on the contour of integration;

the choice of how to negotiate them encodes the choice of Green’s function.
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Figure 1: Poles of the integrand of the ω integral in (2.14).

well-defined with no ambiguity and the result is

ZE[J ] = #
√

detGEe
− 1

2

∫
dτ

∫
dσJ(τ)GE(τ−σ)J(σ). (2.15)

Now we address several questions about this calculation.

1. What does the euclidean path integral compute? It computes ground state

expectation values. Why does the euclidean path integral put the oscillator into its

groundstate? This I explained already during our path integral review in the previous

section: The point in life of the euclidean path integral is to prepare the groundstate

from an arbitrary state:∫
q(β)=q0

[dq]e−S[q] = 〈q0| e−βH |...〉 = ψgs(q0) (2.16)

– the euclidean-time propagator e−βH beats down the amplitude of any excited state

relative to the groundstate, for large enough β.

More slowly: the path integral representation for the real-time propagation ampli-

tude is

〈f | e−iHt |i〉 =

∫
f←i

[dq]ei
∫ t
0 dtL.

On the RHS here, we sum over all paths between i and f in time t (i.e. q(0) = qi, q(t) =

qf ), weighted by a phase ei
∫
dtL. But that means you also know a representation for∑

f

〈f | e−βH |f〉 ≡ tre−βH

– namely, you sum over all periodic paths qi = qf in imaginary time β = it. So:

Z(β) = tre−βH =

∮
[dq]e−

∫ β
0 dτL =

∮
[dq]e−Seucl[q]
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The LHS is the partition function in quantum statistical mechanics. The RHS is the

euclidean functional integral we’ve been using. [For more on this, see Zee §V.2]

The period of imaginary time, β ≡ 1/T , is the inverse temperature. We’ve been

studying the limit as β → ∞. Taking β → ∞ means T → 0, and you’ll agree that at

T = 0 we project onto the groundstate (if there’s more than one groundstate we have

to think more).

2. What is the relationship between the Euclidean path integral we just did and

the real-time path integral that we started with? I claim that the real-time calculation

that keeps the oscillator in its groundstate is the analytic continuation of the one we

did above, where we replace

ωMink = e−i(π/2−ε)ωabove (2.17)

where ε is (a familiar) infinitesimal. In the picture of the euclidean frequency plane

in Fig. 1, this is a rotation by nearly 90 degrees. We don’t want to go all the way to

90 degrees, because then we would hit the poles at ±iΩ. The replacement (2.17) just

means that if we integrate over real ωMink, we rotate the contour in the integral over ω

as follows:

as a result we pick up the same poles at ωabove = ±iΩ as in the euclidean calculation.

Notice that we had better also rotate the argument of the function, σ, at the same

time to maintain convergence, that is:

ωeucl = −iωMink, ωeuclteucl
!

= ωMinktMink =⇒ teucl = +itMink. (2.18)

So the answer to the question at the beginning of this long paragraph is: we are rotating

the contour of integration (in the complex t-plane) in the action integral.

So this is giving us a contour prescription for the real-frequency integral. The

result is the Feynman contour, and it is the same as what we got from m2 → m2 − iε:
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Figure 2: The Feynman contour in the ωMink complex plane.

depending on the sign of the (real) time separation of the two operators (recall that t

is the difference), we close the contour around one pole or the other, giving the time-

ordered propagator. For the case of a free scalar field, the replacement m2 → m2 − iε

had the same effect of rotating the real-frequency contour away from the poles. It is

also the same as shifting the frequency by Ω→ Ω− iε, as indicated in the right part of

Fig. 2. This last prescription works even in a case where there is no m2 term, i.e. for

a massless scalar field.

Notice for future reference that the euclidean action and real-time action are related

by

Seucl[Q] =

∫
dteucl

1

2

((
∂Q

∂teucl

)2

+ Ω2Q2

)
= −iSMink[Q] = −i

∫
dtMink

1

2

((
∂Q

∂tMink

)2

− Ω2Q2

)
.

because of (2.18). This means the path integrand is e−Seucl = eiSMink .

Time-ordering. To summarize the previous discussion: in real time, we must

choose a state, and this means that there are many Green’s functions, not just one:

〈ψ| q(t)q(s) |ψ〉 depends on |ψ〉, unsurprisingly.

But we found a special one, the one that arises by analytic continuation from the

euclidean Green’s function, which is unique (as we discussed in Footnote 35). It is

G(t) = 〈T (q(t)q(0))〉 ,

the time-ordered, or Feynman, Green’s function, and I write the time-ordering symbol

T to emphasize this. I emphasize that from our starting point above, the time ordering

arose because we have to close the contour in the UHP (LHP) for t > 0 (t < 0).

Let’s pursue this one more step. We can define the time-ordered product of more

than two local operators by induction, or equivalently in the obvious way: put them
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in the order of their times. The same argument tells us that the generating functional

for time-ordered correlation functions of q is

Z[J ]iε ≡
∫

[Dq]eiS0|m2→m2−iεe
i
∫
Jq =

〈
ei

∫
Jq
〉

= 〈0| T ei
∫
Jq̂ |0〉 . (2.19)

Here the time-ordered exponential on the RHS is defined by putting each term in its

Taylor expansion in time order. On the LHS we emphasize that the path integral is

defined by the iε prescription, by analytic continuation from the Euclidean integral.

With this prescription, the dependence on the choice of initial and final states in the

path integral goes away, because only the vacuum contributes.

This quantity (2.19) has the picturesque interpretation as the vacuum persistence

amplitude, in the presence of the source J . One reason to care about Z[J ] is that its

derivatives give correlation functions:

〈0|T φ(x1)φ(x2) · · · |0〉 =

(
−i

δ

δJ(x1)

)(
−i

δ

δJ(x1)

)
· · · lnZ[J ]|J=0

– it is a generating functional for such correlators of φs. So we see that in general,

the correlation functions that are computed by this “iε prescription” of Wick rotating

from Euclidean spacetime are time-ordered:

1

Z

∫
[Dφ]eiSm2→m2−iεf(φ) = 〈0|T f(φ)|0〉 .

Causality. In other treatments of this subject, you will see the Feynman contour

motivated by ideas about causality. We’ll discuss this in §3. This was not the logic of

our discussion but it is reassuring that we end up in the same place. Note that even

in 0+1 dimensions there is a useful notion of causality: effects should come after their

causes.

2.3 Feynman diagrams from the path integral

In this subsection we will be brave in one sense and cowardly in another. We’ll be

brave in that we are going to think about actual interactions, terms of higher order

than quadratic in the Lagrangian.

The previous subsection was a sophisticated discussion of QFT in 0+1 dimensions,

since we focussed on a single mode. To help demystify some more of the structure

we’ll discover in QFT, let’s regress even further, and consider the case of QFT in

0 + 0 dimensions. By the path-integral representation, this means ordinary integrals.

If everything is positive, this is probability theory – a very special case of QFT. My
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intention here is to develop some intuition about perturbation theory and Feynman

diagrams in a context where everything is under complete control.

Suppose we want to do the integral

Z(J) =

∫ ∞
−∞

dq e−
1
2
m2q2− g

4!
q4+Jq ≡

∫
dq e−S(q) . (2.20)

It is the path integral for φ4 theory with fewer labels. For g = 0, this is a gaussian

integral which we know how to do. For g 6= 0 it’s not an elementary function of its

arguments. (It’s a function with someone’s name attached to it, which basically just

means that we don’t know how to do the integral despite our best efforts.)

If you like, we are studying the probability distribution P (q) ≡ 1
Z
e−S(q). We’ll be

interested mostly in the moments of the distribution 〈qn〉 =
∫∞
−∞ dqq

nP (q), which are

the analogs of correlation functions.

We can develop a (as we’ll see, non-convergent!) series expansion in g by writing it

as

Z(J) =

∫ ∞
−∞

dq e−
1
2
m2q2+Jq

(
1− g

4!
q4 +

1

2!

(
− g

4!
q4
)2

+ · · ·
)

and integrating term by term. And the term with q4n (that is, the coefficient of
1
n!

(−g
4!

)n
) is∫ ∞

−∞
dq e−

1
2
m2q2+Jqq4n =

(
∂

∂J

)4n ∫ ∞
−∞

dq e−
1
2
m2q2+Jq =

(
∂

∂J

)4n

e
1
2
J 1
m2 J

√
2π

m2
.

So, resumming the exponential series,

Z(J) =

√
2π

m2
e−

g
4!(

∂
∂J )

4

e
1
2
J 1
m2 J . (2.21)

Note the similarity, for g = 0, with our expression for W [J ] in the previous subsections.

Wick’s Theorem is the key ingredient here. I think this is clearer in a slightly

more complicated example. Consider:

Z[J ] ≡
∫ ∏

n=1

dqne
− 1

2
qnAnmqm+Jnqn− g

4!

∑
n q

4
n (2.22)

?
=

∫ ∏
n=1

dqne
− 1

2
qnAnmqm+Jnqn

∞∑
j=0

1

j!

(
−g
4!

)j (∑
n

q4
n

)j

(2.23)
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If we are interested in a particular coefficient in this expansion in g and J , we can use

Wick’s theorem:

1

Z(0)

∫ ∏
dqe−

1
2
qnAnmqmqn1 · · · qnk =

{
0, k odd∑

(contractions) , k even
. (2.24)

What I mean by a contraction is associated with a choice of pairing of the qs in the

integrand; a pair qnqm produces a factor of (A−1)nm. So for example, the simplest case

is the familiar

1

Z(0)

∫ ∏
dqe−

1
2
qnAnmqmqiqj = (A−1)ij = 〈qiqj〉 ≡ 〈ij〉 .

The next one is

1

Z(0)

∫ ∏
dqe−

1
2
qnAnmqmqn1qn2qn3qn4 = 〈12〉 〈34〉+ 〈13〉 〈24〉+ 〈14〉 〈23〉 .

This is the statement that the moments of a gaussian distribution factorize, and are

determined by the covariance A−1 (and the mean, which is zero here if we set J = 0).

For the special case with just one q, this is

1

Z(0)

∫
dqe−

1
2
m2q2q4 =

3

m2

since the three terms are the same.

Here is a proof of Wick’s theorem: by completing the square, the LHS of (2.24) is

1

Z(0)
∂Jn1 · · · ∂Jnk

(√
(2π)N

detA
eJ(A

−1)J/2

)
|J=0 = ∂Jn1 · · · ∂Jnke

J(A−1)J/2|J=0.

But in order to get a nonzero answer here when we set J = 0, we have to choose a

pairing among the ni, and the result is the sum over such pairings (contractions) of

the product of (A−1)ninj for each pairing.

Feynman diagrams. (2.21) is a double expansion in powers of J and powers of

g. This expansion can be described usefully in terms of diagrams. The idea of the

diagrams is to help us keep track of the combinatorics of the Wick contractions. Each

diagram is associated with an amplitude, and I will conflate the two. By the principle

of superposition (the amplitude for something to happen is the sum of the amplitudes

of all possible ways it could have happened), a physical quantity of interest is given by

the sum of the allowed diagrams.
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Here are the Feynman rules for this 0+0 dimensional field theory, say for the par-

tition function: the allowed diagrams are all graphs with 4-valent vertices (“interac-

tions”) and 1-valent vertices (“external lines”). There is a factor of 1/m2 for each edge

(the propagator), and a factor of (−g) for each 4-point vertex (the coupling), and a

factor of J for each external line (the source). There is a further purely numerical

factor which you can figure out, but let’s not worry about it right now.

So for example if we are interested in the contribution going like gJ4 in Z̃(J) ≡
Z(J)/Z(0), it comes from

1

Z(0)

∫
dqe−

1
2
m2q2

(
· · ·+ 1

4!
(Jq)4 + · · ·

)(
1− g

4!
q4 + · · ·

)
and we have to sum over all ways of contracting these 8 qs in the integrand. These

contractions correspond to the following three diagrams:

I emphasize that only the topology of the diagrams matters: you can draw them

however you want preserving the connectivity. It’s useful, however, to put the external

lines in the same place in each diagram, in order to avoid over-counting.

[End of Lecture 8]

A systematic method to draw all the contractions contributing to the term going

like Jng` is to

• first draw n dots (associated with the n Jqs) with one nubbin coming out,

• then draw ` vertices (associated with the ` gq4s) with four nubbins coming out.

• These nubbins represent the factors of q in the integrand 1
Z(0)

∫
dqe−

1
2
m2q2qn+4` ·

Jng` · 1
n!

1
(4!)``!

. Now draw all possible ways of connecting these nubbins by ‘propa-

gators’, that is, lines connecting the nubbins that indicate which qs got contracted

with which in each term on the RHS of Wick’s theorem.

There is a symmetry factor that comes from expanding the exponential: if the

diagram has some symmetry preserving the external labels, the multiplicity of diagrams
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does not completely cancel the 1/n!. Please do not worry about these numerical factors

right now.

As another (simpler and more important) example, consider the analog of the two-

point function when J = 0:

G ≡
〈
q2
〉
|J=0 =

∫
dq q2 e−S(q)∫
dq e−S(q)

= −2
∂

∂m2
logZ(J = 0).

At J = 0, the only external lines arise from the (two) explicit insertions of q, so this is

given by the sum of all diagrams with two external lines. In perturbation theory this

is:

G ' +O(g3)

= m−2

(
1 − 1

2
gm−4 +

2

3
g2m−8 +O(g3)

)
(2.25)

The Feynman diagrams we’re going to draw all the time this quarter are the same

idea, but with more labels. Here is a too-quick preview: Notice that each of the qs in

our integral could come with a label, q → qa. Then each line in our diagram would be

associated with a matrix
(

(m2)
−1
)
ab

which is the inverse of the quadratic term qam
2
abqb

in the action. If our diagrams have loops we get free sums over the label. If that label

is conserved by the interactions, the vertices will have some delta functions. In the case

of translation-invariant field theories we can label lines by the conserved momentum

k. Each comes with a factor of the free propagator i
k2+m2+iε

, each vertex conserves

momentum, so comes with igδD (
∑
k) (2π)D, and we must integrate over momenta on

internal lines
∫

d̄Dk.

2.4 Brief comments about large orders of perturbation theory

• The perturbation series for (2.20) about g = 0 does not converge. How do I know?

One way to see this is to notice that if I made g even infinitesimally negative,

the integral itself would not converge (the potential would be unbounded below),

and Zg=−|ε| is not defined. Therefore Zg as a function of g cannot be analytic in

a neighborhood of g = 0. This argument is due to Dyson, and applies also in

most QFTs. This means there is more to QFT than perturbation theory: the

perturbation series does not define the field theory amplitudes.

The expansion of the exponential in the integrand is clearly convergent for each

q. The place where we went wrong is exchanging the order of integration over q

and summation over n.

64



• The integral actually does have a name – it’s a Bessel function:

Z(J = 0) =
2√
m2

√
ρeρK 1

4
(ρ), ρ ≡ 3m4

4g

(for Re
√
ρ > 0), as Mathematica will tell you. Because we know about Bessel

functions, in this case we can actually figure out what happens at strong coupling,

when g � m4, using the asymptotics of the Bessel function.

• In this case, the perturbation expansion too can be given a closed form expression:

Z(J = 0) '
√

1

m2

∑
n

(−1)n

n!

22n+ 1
2

(4!)n
Γ

(
2n+

1

2

)( g

m4

)n
. (2.26)

• The expansion for G is of the form

G ' m−2

∞∑
n=0

cn

( g

m4

)n
.

When n is large, the coefficients satisfy cn+1
n�1' −2

3
ncn (you can see this by

looking at the coefficients in (2.26)) so that |cn| ∼ n!. Up to order-one factors,

cn here is the number of diagrams with n vertices. This factorial growth of the

number of diagrams is general in QFT and is another way to see that the series

does not converge. It is called an asymptotic series.

• The fact that the coefficients cn grow means that there is a best number of orders

to keep. The errors start getting bigger when cn+1

(
g
m4

)
∼ cn, that is, at order

n ∼ 3m4

2g
. So if you want to evaluate G at a certain value of the coupling, you

should stop at a certain order of the expansion in n.

• I said above that the fact that the perturbation series doesn’t converge means

that it doesn’t define the field theory amplitudes. What does it miss? To answer

this, consider trying to do the integral (2.20) by saddle point (at J = 0 for

simplicity):

0 = S ′(q?) = m2q? +
g

3!
q3
?.

(Note the resemblance to the equations of motion.) This has three solutions:

q? = 0, q? = ±i

√
3!m2

g
.

The expansion about the ‘trivial’ saddle at q? = 0 (where the action is S(q? =

0) = 0) reproduces the perturbation series described above. At the other saddles,

S

(
q? = ±i

√
3!m2

g

)
= −3m4

2g
, (2.27)
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which means their contribution would go like e+ 3m4

2g , which actually would blow

up at weak coupling, g → 0. These saddles are not on the contour of integration

and don’t contribute for small positive g, but more generally (as for example

when m2 < 0), there will be effects that go like e−
a
|g| . This is a function whose

series expansion in g at g = 0 is identically zero. You can never find it by doing

perturbation theory in g about g = 0. The general name for such contributions

is instantons.

• A technique called Borel resummation can sometimes produce a well-defined func-

tion of g from an asymptotic series whose coefficients diverge like n!. The idea is

to make a new series

B(z) ≡
∑
m=0

cm
m!
zm

whose coefficients are ensmallened by n!. Then to get back Z(g) we use the

identity

1 =
1

n!

∫ ∞
0

dze−zzn

and do the Laplace transform of B(z):∫ ∞
0

dzB(z)e−z/g =
∑
m=0

cm

∫∞
0
dze−z/gzm

m!
= g

∞∑
m=0

cmg
m = gZ(g).

This procedure requires both that the series in B(z) converges and that the

Laplace transform can be done. In fact this procedure works in this case.

The fact that the number of diagrams at large order grows like n! is correlated

with the existence of saddle-point contributions to Z(g) that go like e−a/g. This

is because they are both associated with singularities of B(z) at z = a; such

a singularity means the sum of cn
n!
zn must diverge at z = a. (More generally,

non-perturbative effects that go like e−a/g
1/p

(larger if p > 1) are associated

with (faster) growth like (pn)!. For more on this, see this classic work by Steve

Shenker.)

• The function G(g) can be analytically continued in g away from the real axis,

and can in fact be defined on the whole complex g plane. It has a branch cut on

the negative real axis, across which its discontinuity is related to its imaginary

part. The imaginary part goes like e−
a
|g| near the origin and can be computed by

a tunneling calculation like (2.27).

How did we know Z has a branch cut? One way is from the asymptotics of the

Bessel function. But, better, why does Z satisfy the Bessel differential equation
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as a function of the couplings? The answer, as you’ll check on the homework, is

that the Bessel equation is a Schwinger-Dyson equation,

0 =

∫ ∞
−∞

∂

∂q

(
something e−S(q)

)
(2.28)

which results from demanding that we can change integration variables in the

path integral. This equation is true for any choice of ‘anything,’ as long as it

doesn’t grow too fast at large q.

The generalization of (2.28) in field theory is a way to derive True Facts that do

not depend on perturbation theory. For example, for a scalar field:

0 =

∫
[Dφ]

δ

δφ(x)

(
anything eiS[φ]

)
is true as long as ‘anything’ doesn’t grow too fast at large fields. As you’ll

study on the homework, this is the sense in which the equations of motion are

true quantum mechanically: the field φ̂(x) satisfies its equations of motion up to

contact terms, meaning except for when φ(x) collides with some other operator

in the expectation value (like φ̂(y) here).

For a bit more about this, you might look at sections 3 and 4 of this recent paper from

which I got some of the details here. See also the giant book by Zinn-Justin. There is a

deep connection between the large-order behavior of the perturbation series about the

trivial saddle point and the contributions of non-trivial saddle points. The keywords

for this connection are resurgence and trans-series and a starting reference is here.
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3 Lorentz invariance and causality

[Peskin §2.2, 2.3, 2.4] Now we take Lorentz invariance to be an exact symmetry and

see what its consequences are for QFT.

Relativistic normalization of 1-particle states. The Fock space of a real scalar

field is spanned by the states |~p1, · · · ~pn〉 ∝ a†p1 · · · a
†
pn |0〉 where ap |0〉 = 0. Now it is

time to turn that ∝ into an =. Fock space is a direct sum of sectors labelled by the

number of particles:
∑

kNk = 0, 1, 2.... (Without interactions, the hamiltonian is block

diagonal in this decomposition.) In the no-particle sector, it is clear what we should

do: 〈0|0〉 = 1.

A one-particle state is |p〉 ≡ cpa
†
p |0〉. How best to choose cp?

(This discussion is shaded because it contains equations that will not be true in the

normalization we’ll use below. In this regard, beware the section of Peskin called “how

not to quantize the Dirac equation”.) Suppose we choose cp
?
= 1. Then〈

~k
∣∣~p〉 ?

= 〈0| aka
†
p |0〉

ak|0〉=0
= 〈0| [ak, a

†
p] |0〉 = (2π)dδ(d)(~k − ~p) ≡ /δ(~k − ~p).

Suppose the previous equation is true in my rest frame F . Since 1 =
∫

d̄dp/δ(p− k), we

see that d̄dp/δ(p− k) is Lorentz invariant.

To figure out more explicitly the Lorentz transformation properties of the delta

function, we can use

δ(f(x)) =
∑

zeros x0 of f

δ(x− x0)

|f ′(x0)|
.

If another F ′ is obtained by a boost in the x direction, p′µ = Λν
µpν ,

E ′

p′x
p′y
p′z

 =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1



E

px
py
pz

 =⇒

dp′x
dpx

= γ

(
1− β dE

dpx

)
= γ

(
1− βpx

E

)
=

γ

E
(E − βpx) =

E ′

E

where we used E2 = ~p2 +m2 = p2
x + p2

⊥ +m2 and 2E dE
dpx

= 2px and dE
dpx

= px
E

.

So

δ(d)(~p− ~k) =
d̄dp′

d̄dp
δ(d)(~p′ − ~k′) =

dp′x
dpx

δ(d)(~p′ − ~k′) =
E ′

E
δ(d)(~p′ − ~k′). (3.1)

Which means that in F ′ we would have〈
~k′
∣∣~p′〉 ?

=
E ′

E
/δ

(d)
(~p′ − ~k′).
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There is a special frame, it’s no good.

There is an easy fix:

|~p〉 ≡
√

2ω~pa
†
~p |0〉 .

In that case the calculation in the shaded text is replaced by〈
~k|~p
〉

=
√

4ωkωp/δ
(d)

(k − p) = 2ωp/δ
(d)

(k − p)

while 〈
~k′|~p′

〉
= 2ωp

ωp′

ωp
/δ

(d)
(k′ − p′).

So the expression is the same in any frame, yay.

Now you can ask why the factor of
√

2. We’d like to use these states to resolve the

identity in the 1-particle sector, 11 ≡
∑

i |i〉〈i|. I claim that the following expression

does this and makes Lorentz symmetry manifest:

11
?
=

∫
d̄d+1k θ(k0)︸ ︷︷ ︸

E>0

2πδ(k2 −m2)
∣∣∣~k〉〈~k∣∣∣

=

∫
d̄dk

∫
dk0θ(k0)

δ
(
k0 −

√
~k2 +m2

)
2k0

∣∣∣~k〉〈~k∣∣∣ =

∫
d̄dk

2ω~k

∣∣∣~k〉〈~k∣∣∣ .
We used the general fact δ(f(x)) =

∑
x0|f(x0)=0

1
|f ′(x0)|δ(x − x0). Because of the θ(k0),

only the positive-energy solution contributes.

So in retrospect, a quick way to check the normalization is to notice that the

following combination is Lorentz invariant:

d̄dk

2ωk
=

∫
dk0θ(k0) d̄dkδ(k2 −m2) =

d̄dk′

2ωk′
.

Actually, this statement has a hidden assumption, that m2 ≥ 0. In that case, the

4-vector kµ satisfying k2 = m2 ≥ 0 is timelike (or lightlike), and no Lorentz transfor-

mation connected to the identity can change the sign of k0, it can only move it around

within the interior of the forward lightcone (or the forward lightcone itself). So the

θ(k0) is Lorentz invariant.

Notice that our convenient choice of normalization doesn’t show that our Hamilto-

nian description of scalar field theory is actually Lorentz invariant. For example, we

have

[φ(~x), π(~y)]ETCR = iδ(d)(~x− ~y)

at equal times, in one frame. What about other frames?

A second reason to study commutators is ...
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3.1 Causality and antiparticles

Causality in general: This is the very reasonable condition on our description of

physics that events should not precede their causes.

It will be worthwhile to think about how to implement this condition in a QFT.

(The following discussion is based on appendix D of this paper.) Suppose B wants

to send a message to A. How does he do this? He applies a unitary operator36, call

it B (with B†B = 1), localized near B, to the shared state of their quantum many

body system |ψ〉ABE. (Here E is for ‘environment’, the rest of the world besides A and

B.) Then A waits for a time t and measures some observable A. To send a different

message, he should apply a different operator, say B′.

Under the circumstances just stated, the expectation for A’s measurement of A is

〈A〉B = 〈ψ|B† eiHtAe−iHt︸ ︷︷ ︸
=A(t)

B |ψ〉 = 〈A(t)〉 −
〈
B†[B,A(t)]

〉
.

Therefore, if [B,A(t)] = 0, the expectation doesn’t depend on what B did. In fact,

replacing A with Aη for any η and using ( [B,A(t)] = 0 =⇒ [B,A(t)η] = 0 ) shows

that all the moments of the distribution for A’s measurement will also be independent

of what B did, so no message gets through37.

So nonvanishing commutators are essential for sending information. Notice that

entangled states of well-separated local degrees of freedom (such as a Bell pair of

distant spins |↑0↓r〉 − |↓0↑r〉 ∈ H0 ⊗Hr) are insufficient for sending signals: whatever

we do to the spin at 0 has no effect on the outcomes of measurements of the spin at r.

36‘Applying an operator’ is more complicated than it seems. Actually it means ‘changing the

Hamiltonian so that the time evolution operator is B’.
37The loophole-seeking reader (ideally, this is everyone) will worry that a distribution is not in

general determined by its moments. (For example, there are perfectly normalizable distributions with

finite averages but where the higher moments are all infinite, such as p(x) =
√

2a3/π
x4+a4 on the real line:〈

x2
〉

= a2, but
〈
x2n
〉

= ∞ for n > 1.) What we would really like to show is that the conditional

probability p(a|B) is independent of B, in which case for sure A couldn’t learn anything about what

B did. Here a runs over the set of eigenvalues of the operator A, A |a〉 = a |a〉. That is

p(a|B) = 〈ψ|B† eiHt |a〉 〈a| e−iHt︸ ︷︷ ︸
=Pa(t)

B |ψ〉 = 〈Pa(t)〉 −
〈
B†[B,Pa(t)]

〉
.

Does [A,B] = 0 imply that the projector onto a particular eigenvalue of a commutes with B? In a

finite dimensional Hilbert space, it does for sure, since 0 = [Aη,B] =
∑
a a

η[Pa,B] is true for all η,

which gives infinitely many equations for [Pa,B]. In the case of infinite dimensional H I think there is

some room for functional analysis horror. On the other hand, any measurement has finite resolution.

Thanks to Sami Ortoleva and Chuncheong Lam for help with this point.
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Here’s a proof: the spin operators at 0, ~S0 and the spin operators at r, ~Sr commute:

[Si0, S
j
r ] = 0, since ~S0 acts the identity on Hr and vice versa. The groundstate of a

quantum field is somewhat similar: there is quite a bit of entanglement between nearby

points in space, but the equal-time commutators [φ(~x), φ(~y)] = 0 vanish, so it can’t be

used to send instantaneous signals.

[End of Lecture 9]

Causality in relativistic QFT. [Peskin §2.4] In a Lorentz invariant

system, ‘precede’ is sometimes a frame-dependent notion. If A is in

the future lightcone of B, i.e. 0 < (xA−xB)2 = (tA−tB)2−(~xA−~xB)2

and tA > tB, then everyone agrees that A is after B. This is the easy

case. But if A and B are spacelike separated, 0 > (xA − xB)2 =

(tA − tB)2 − (~xA − ~xB)2, then there is a frame in which they occur at

the same time, and frames where they occur in either order. This is

the dangerous case.

~x

t

xB

xA

timelike

~x

t

xB

xA

spacelike

So: causality will follow if, for all local operators A,B, [A(xA),B(xB)] = 0 when-

ever xA and xB are spacelike separated, 0 > (xA−xB)2. Recall that spacelike separated

means that there is a Lorentz frame where A and B are at the same time.

A general operator in a scalar QFT can be made from φs and ∂µφs, so the general

statement of causality (in free scalar QFT) will follow from considering commutators

of

φ(x) =

∫
d̄dp√

2ω~p

(
a~pe
−ipµxµ + a†~pe

+ipµxµ
)
|p0=ω~p ≡ φ(+) + φ(−)

at different points in spacetime. Here we have decomposed the field into positive-

and negative-frequency parts. Notice that since φ(+) (φ(−)) only involves annihilation

(creation) operators, [φ(±)(x), φ(±)(y)] = 0 for any x, y. Using the ladder algebra

[a, a†] = 1,

[φ(x), φ(y)] =

∫
d̄dp

2ω~p

(
e−ipµ(x−y)µ − e+ipµ(x−y)µ

)
=

∫
d̄d+1p 2πδ(p2 −m2)θ(p0)︸ ︷︷ ︸

Lorentz inv’t

(
e−ipµ(x−y)µ − e+ipµ(x−y)µ

)
(3.2)

Here comes the slippery stuff: Suppose x − y is spacelike. Let’s choose a frame
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where they (the points labelled by x, y) are at the same time, and let Λ be the Lorentz

matrix that gets us there: Λµ
ν (x − y)ν = (0, ~∆x)µ ≡ x̃µ. Then we can change the

integration variable to p̃µ = Λµ
νp

ν , so that

pµ(x− y)µ = pµηµν(x− y)µ = p̃σ Λµ
σηµνΛ

ν
ρ︸ ︷︷ ︸

=ησρ

x̃ρ = p̃µx̃
µ.

Then

[φ(x), φ(y)]
(x− y)2 < 0

=

∫
d̄d+1p̃ 2πδ(p̃2 −m2)θ(p̃0)

(
e−i

~̃p·~∆x − e+i~̃p·~∆x
)

︸ ︷︷ ︸
odd under ~̃p→ −~̃p

= 0. (3.3)

We conclude that [φ(x), φ(y)] = 0 if (x− y)2 < 0, i.e. for spacelike separation. By now

you’ve computed enough of these commutators that you know this oddness is why the

equal-time commutator of φs vanishes; Lorentz invariance shows that this implies its

vanishing for all spacelike separation.

The same argument works for [φ, π] and [π, π]. For [φ, π], the strict inequality

(x− y)2 < 0 is important – they do not commute when light-like separated (this is the

Lorentzian version of coincident, (x− y)2 = 0).

So: vanishing equal-time commutators (for nonzero separation) plus Lorentz sym-

metry implies causality.

Notice that the argument fails if (x − y)2 > 0, since then we can’t get rid of the

time component of the exponents by a Lorentz transformation, and they don’t cancel.

It is possible to send signals inside the light cone.

Now let’s think more about the bit that is nonzero:

[φ(x), φ(y)] = [φ(+)(x), φ(−)(y)]︸ ︷︷ ︸
≡∆̂+(x−y)

+ [φ(−)(x), φ(+)(y)]︸ ︷︷ ︸
≡∆̂−(x−y)

.

Because [a, a†] ∝ 1, ∆̂± is a c-number, independent of what state it acts on. So, for

any normalized state |ψ〉,

∆+(x− y) = 〈ψ| ∆̂+(x− y) |ψ〉 = 〈0| ∆̂+(x− y) |0〉
= 〈0| [φ(+)(x), φ(−)(y)] |0〉
= 〈0|φ(+)(x)φ(−)(y) |0〉 − 〈0|φ(−)(y) φ(+)(x) |0〉︸ ︷︷ ︸

=0:φ+ 3 a,a |0〉 = 0

= 〈0|φ(x)φ(y) |0〉

where in the last step we again used φ+ |0〉 = 0 (and 〈0|φ− = 0). 38 This is a

38Note from the definition that ∆±(x− y) = [φ(±)(x), φ(∓)(y)] = −∆∓(y − x).
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vacuum-to-vacuum amplitude, or propagator39, in the sense that

φ(y) |0〉 = |‘particle created at y’〉

〈0|φ(x) = 〈‘particle destroyed at x’|

That is, ∆+ is the amplitude to propagate the excitation created by the field from y

to x.

∆+(x− y) =
∑
p

(x · − − − ← −−− · y) =

∫
d̄dp

2ω~p
e−ip·(x−y)|p0=ω~p . (3.4)

This integral can be done in terms of functions with names40, but the most useful

information is about its asymptotics in the very timelike ( t ≡ |x0 − y0| � |~x − ~y| )

and very spacelike ( |x0 − y0| � |~x− ~y| ≡ r ) limits.

∆+(x− y) '

{
e−imt, |x0 − y0| � |~x− ~y|, (x− y)2 ≡ t2

e−mr, |x0 − y0| � |~x− ~y|, (x− y)2 ≡ −r2

You can read more about how to arrive at these expressions in Peskin (page 27); the

spacelike case is related by a Lorentz boost (to the rest frame) to the calculation of the

Yukawa potential that we did in the last section.

Notice that this quantity 〈φ(x)φ(y)〉 is not zero outside the lightcone. There are

nonzero spatial correlations (and indeed entanglement) in the scalar field vacuum.

What gives? Nothing. Causality only requires the vanishing of commutators outside

the lightcone, which we already showed in (3.3).

The cancellation in (3.3) can be interpreted as destructive interference between

particles and antiparticles. It’s clearer for the complex scalar field, where Φ ≡ Φ(+) +

Φ(−) with

Φ(+) =

∫
d̄dp√

2ωp
e−ipxap, Φ(−) =

∫
d̄dp√

2ωp
e+ipxb†p

(with the expressions for the + and − frequency components for Φ? following by taking

hermitian conjugates).

39We’ll understand its connection to the time-ordered propagator just below.
40Specifically, in four spacetime dimensions and spacelike separation, (x− y)2 ≡ −r2, ∆+(x− y) =
m

4π2rK1(mr).
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So consider the analogous41

D(x− y) ≡ 〈0|Φ(x)Φ?(y) |0〉 = 〈0| [Φ+(x),Φ?−(y)] |0〉 = ∆+
a (x− y)︸ ︷︷ ︸

from [a,a†]

D?(y − x) ≡ 〈0|Φ?(y)Φ(x) |0〉 = 〈0| [Φ?+(y),Φ−(x)] |0〉 = −∆−b (y − x)︸ ︷︷ ︸
from [b,b†]

So if we consider the commutator,

〈0| [Φ(x),Φ?(y)] |0〉 = D(x− y)−D?(y − x)

=
∑
p

(x · − − − ← p−−− ·y)︸ ︷︷ ︸
particle

− (x · − − −p→ −−− · y)︸ ︷︷ ︸
antiparticle!


then in the spacelike case, the antiparticle bit from the first term of the commutator

cancels the particle bit of the second, as above in (3.3). Antimatter makes QFT causal.

3.2 Propagators, Green’s functions, contour integrals

[This subsection is mostly in a different color because I am mostly skipping it in lecture:

we already learned all these things from the point of view of the path integral in the

last section. I’m leaving it in because it has nice pictures, and because it has a possibly-

useful summary of the discussion of choosing the contour for the frequency integrals in

the propagator.]

Any Green’s function for the Klein-Gordon operator (propagator for a real free

scalar field) can be represented as :

∆C(x) =

∫
C

d̄d+1p︸ ︷︷ ︸
≡
∫
C d̄p0

∫
d̄dp

e−ipµx
µ i

p2 −m2

for some choice of contour C. To see that this is related to the object we discussed

above, first note that the denominator is

p2 −m2 = (p0 − ω~p) (p0 + ω~p) , ω~p ≡
√
~p · ~p+m2,

41Notice the annoying fact that the positive frequency component of Φ?, Φ?(+), is actually the

dagger of the negative frequency component of Φ:

(Φ?)
(+)

=
(

Φ(−)
)?
.
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so there are two poles, which seem to be on the real axis; this means that our integral

is ambiguous and we need more information, indeed some physical input.

We can specify the contour C by taking linear combinations of C±
which are small circles going clockwise around the poles at ±ω~p.

These basic integrals are (for a reminder about Cauchy’s theorem see footnote 31):∫
C+

d̄d+1p e−ipµx
µ i

p2 −m2
=

∫
d̄dp

1

2ω~p
e−ipx|p0=ω~p = ∆+(x). (3.5)

∫
C−

d̄d+1p e−ipµx
µ i

p2 −m2
=

∫
d̄dp

1

−2ω~p
e−ipx|p0=−ω~p = −∆+(−x)

let ~q ≡ −~p
= ∆−(x).

These are the same ∆± we encountered in (3.4) as commutators of φ(±).

These are two particular choices of contour, and others are also interesting. Consider

the retarded propagator,

∆R(x− y) ≡ θ(x0 − y0) 〈0|[φ(x), φ(y)]|0〉 .

This is the Green’s function that governs linear response:

∆R(x− y) =
δ 〈φ(x)〉J
δJ(y)

.

(I explain how to see this in §4.9; for now, notice that the θ(x0−y0) guarantees that the

response happens after the perturbation that causes it.) It is also a Green’s function

for the KG operator. We can reproduce ∆R by routing our contour to go above the

poles in the complex p0 plane: if x0 − y0 > 0, then the factor e−ip
0(x0−y0) decays when

Imp0 < 0, so we can close the contour for free in the LHP, and we pick up both poles;

by contrast, if x0 − y0 < 0, we must close in the UHP and we pick up no poles and

get zero. Notice that we could get the same result by replacing p0 → p0 + iε in the

denominator, where ε is an infinitesimal (this means that ε2 = 0 and εc = ε for any

positive quantity c).
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So DR(x, y) = θ(x0 − y0) (∆+(x, y) + ∆−(x, y)) = θ(x0 − y0) (∆+(x, y)−∆+(y, x)).

If we route the contour below the poles, we get the advanced propagator, where the

response only occurs before the source. Surprisingly, the advanced propagator is some-

times useful in physics.

Another interesting way to navigate the poles is by replacing p2−m2 with p2−m2+iε.

This shifts the poles to

p0 = ±ωp
√

1− iε/ωp = ±ωp (1− iε) .

This is called

the Feynman contour, CF , and we saw in the last section that it arises by continuation

from Euclidean spacetime. Consider again the euclidean propagator, where we get rid

of the relative sign in the metric :

IE(~x) ≡
∫

d̄Dp
−i∑D

i=1 p
2
i +m2

e−i
∑D
i=1 pixi .

Its poles are at pD = ±i
√
~p · ~p+m2, far from the integration contour, so there is no

problem defining it. Now consider smoothly rotating the contour by varying θ from

0 to π/2 − ε in p0 ≡ eiθpD. The Feynman contour is the analytic continuation of the

euclidean contour, and the ε is the memory of this.

To be more precise about this ‘smooth rotation’ of the contour,

we can use Cauchy’s theorem again, with the contour at right (the

figure is from Matthew Schwarz’s book). The semicircular arcs

are at |k0| = Λ, and give a contribution that decays like an inverse

power of Λ, and we must take Λ→∞. The integrand is analytic

inside the contour, no poles, so the integral
∫

e−ikx

k2−m2 = 0.

Therefore the real-frequency integral (the real axis) and euclidean

integral (minus the imaginary axis contribution, with xD = it)

are equal.
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42In position space, the Feynman propagator is

∆F (x) ≡
∫
CF

d̄d+1p e−ipµx
µ i

p2 −m2
= θ(x0)∆+(x)+θ(−x0)∆+(−x) = θ(x0)∆+(x)−θ(−x0)∆−(x).

If x0 > 0 (< 0), we must close the contour in the LHP (UHP) and get ∆+ (∆−).

Recalling that ∆+(x− y) = 〈0|φ(x)φ(y)|0〉,

∆F (x− y) = 〈0|
(
θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x)

)
|0〉 ≡ 〈0| T (φ(x)φ(y)) |0〉 .

The T is the time-ordering symbol: the operators at the earliest times go on the right,

so we can regard time as increasing to the left.

The propagator is a Green’s function. So we’ve learned that

i

p2 −m2
≡ ∆̃(p)

is the Fourier transform of ∆(x), the momentum-space propagator (either retarded or

Feynman). From this we can see that ∆(x) is a Green’s function for the differential

operator ∂µ∂
m +m2 in the sense that(

∂µ∂
µ +m2

)
∆(x) = −iδ(x)

(by plugging in the Fourier expansion of ∆ and of the delta function, δ(d+1)(x) =∫
d̄d+1p e−ipx, and differentiating under the integral). Notice that this did not depend

on the choice of contour, so this equation in fact has several solutions, differing by

the routes around the poles (hence by ∆±, which are solutions to the homogeneous

equation, without the delta function). On the homework, you will show this directly

from the position space definitions.

42You might worry about the fact that the exponential in the integrand grows or decays with Λ

depending on the sign of t. It’s not the exponential that kills the integral, but it also doesn’t cause a

problem:

The contribution from the first quadrant is of the form (for large Λ):

1

Λ

∫ π/2

0

dθe−Λt sin θ =
π

2Λ
(I0(Λt)− L0(Λt))

Λ�everyone∼ π

2Λ2t
.

(Here I just used Mathematica, where L0(x) is called StruveL[0, x] in Mathematica and I0(x) is

BesselI[0,x].) The contribution from the third quadrant is

1

Λ

∫ 3π/2

π

dθe−Λt sin θ =
π

2Λ
(I0(Λt) + L0(Λt))

Λ�everyone∼ π

2Λ2t
.

Thanks to Dominic Holland for alerting me to this potential problem.
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Physics preview. Here is a preview of the physics of the Feynman propagator.

Imagine we introduce some interactions, such as a cubic term in the Lagrangian, e.g.

L 3 φp(x)φn(x)φπ(x) + h.c. (3.6)

where the fields appearing here destroy or create particles with the names in the sub-

scripts. Here are two stories we might tell about a collection of such particles.

In both pictures, time goes to the left. In the first picture, a ∆− emits a π−,

becoming a ∆0 at spacetime point P . This π− propagates to Q where it is absorbed

by a p, which turns into an n. In the second picture, a p emits a π+ at Q, and becomes

n; that π+ is absorbed by a ∆− which becomes a ∆0.

The Feynman propagator includes both of these stories automatically.

Antiparticles going backwards in time. This story is clearer if we discuss the

complex scalar, where particles (created by a†) and antiparticles (created by b†) are

distinct:

Φ(x) =

∫
d̄dp√

2ωp
ape
−ipx

︸ ︷︷ ︸
≡Φ+(x)

+

∫
d̄dp√

2ωp
b†pe

+ipx

︸ ︷︷ ︸
≡Φ−(x)

.

The commutator is

[Φ(x),Φ?(y)] = [Φ+(x),Φ?−(y)]︸ ︷︷ ︸
from [a,a†], particles

+ [Φ−(x),Φ?+(y)]︸ ︷︷ ︸
from [b,b†], antiparticles

= ∆+
a (x− y) + ∆−b (x− y)︸ ︷︷ ︸

=−∆+
b (y−x)

=

∫
C+

d̄d+1e−ip(x−y) i

p2 −m2
+

∫
C−

d̄d+1e−ip(x−y) i

p2 −m2
. (3.7)
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The propagator that we’ll really need to compute S-matrix elements is

∆F (x− y) ≡ 〈0| T (Φ(x)Φ?(y)) |0〉
= θ(x0 − y0) 〈0|Φ(x)Φ?(y) |0〉︸ ︷︷ ︸

=〈0|Φ+(x)Φ?−(y)|0〉=〈0|[Φ+(x),Φ?−(y)]|0〉=∆+
a (x−y), particles

+ θ(y0 − x0) 〈0|Φ?(y)Φ(x) |0〉︸ ︷︷ ︸
=−〈0|[Φ?+(y),Φ−(x)]|0〉=−∆+

b (x−y), antiparticles

Signals propagate inside the lightcone. Returning to our discussion of causal-

ity, we showed that in general [B,A(t)] 6= 0 is required for B to successfully send a

signal to A at time t. In a relativistic theory we can now say a little more. If A(0) is a

local operator at the point ~x = 0, then the support of A(t) is only in the region |~x| ≤ ct,

the forward lightcone of the event (~x, t) = (0, 0). By the support of the operator, I mean

the set of points in space where it acts non-trivially, i.e. as something other than the

identity operator. We know this because we showed that in a relativistic QFT, all local

operators commute for any spacelike separation. An operator that commutes with all

other operators is proportional to the identity.
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3.3 Interlude: where is 1-particle quantum mechanics?

Earlier, we started with non-relativistic quantum mechanics (NRQM) of a bunch of

particles and arrived at a QFT describing a different set of particles (phonons). But

I also said that everything is quanta of a QFT, including NRQM. Let’s take a break

from the development of QFT to see how that happens.

[Tong, §2.8] Consider a relativistic complex free massive scalar field Φ, with mass

m. The minimum energy (above the vacuum) of a single-particle state is ωp=0 = m; in

its rest frame, the wavefunction is e−imt. Consider the change of variables:

Φ(~x, t) =: e−imtΨ(~x, t)
1√
2m

. (3.8)

The Klein-Gordon equation is

0 = ∂2
t Φ−∇2Φ +m2Φ =

1√
2m

e−imt
(

Ψ̈− 2imΨ̇−∇2Ψ
)
,

where the terms with m2 cancel; so far we’ve just changed variables. The non-

relativistic limit is |~p| � m which says ωp =
√
~p2 +m2 ' m+ p2

2m
+· · · . The point of fac-

toring out the phase e−imt is that the time evolution of Ψ looks like e−i(E−m)t ∼ e−i
~p2

2m
t;

so in the NR limit, |Ψ̈| � m|Ψ̇| meaning that we can ignore that term in the KG

equation. The remaining equation of motion is

i∂tΨ = − 1

2m
∇2Ψ + · · · . (3.9)

The · · · are higher derivative terms coming from the expansion of the dispersion re-

lation, which I will now drop. This looks like the Schrödinger equation for a particle

in no potential, in position space, but that is a coincidence: Ψ is not a wavefunction.

This equation (3.9) is the eom associated with the lagrange density

L = iΨ?Ψ̇− 1

2m
~∇Ψ? · ~∇Ψ

(which you can also get by plugging (3.8) into ∂µΦ?∂µΦ), from which πΨ = iΨ?, πΨ? = 0.

The ETCRs are then

[Ψ(~x),Ψ?(~y)] = δd(~x− ~y), [Ψ,Ψ] = 0 = [Ψ?,Ψ?]

and the Hamiltonian is

H =

∫
ddx

1

2m
~∇Ψ? · ~∇Ψ.
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The solution in terms of creation operators is then (a first-order linear ODE has a

single solution)

Ψ(x) =

∫
d̄dpei~p·~xap, Ψ?(x) =

∫
d̄dpe−i~p·~xa†p

with [ap, a
†
q] = (2π)dδd(p− q) as before. The hamiltonian is then

H =

∫
d̄dp

~p2

2m
a†pap (3.10)

(with no normal-ordering constant – the vacuum of this non-relativistic theory is

extremely boring and has no dance of birth and death of the fluctuating particle-

antiparticle pairs).

The crucial point here is that the antiparticles are gone, despite the fact that the

field is complex. They disappeared when we dropped the second-order time derivative

(recall that a first-order equation has half as many integration constants as a second-

order equation). In the limit we’ve taken, we don’t have enough energy to make any.

(More precisely, we’re promising to only study states where there is not enough energy

to make any antiparticles. ) The states are

a†~p1 · · · a
†
~pn
|0〉 ≡ |{p}〉 , ap |0〉 = 0

and these are energy eigenstates with energy H |{p}〉 =
∑

i
~p2i
2m
|{p}〉, a nice non-

relativistic (NR) dispersion for each particle. The particle-number symmetry is still

present Ψ→ e−iαΨ, but now the Noether current is

jµ =

(
Ψ?Ψ,

i

2m
Ψ?~∇Ψ + h.c.

)µ
=
(
ρ,~j
)µ
.

Now we can find the QM of a single particle which cannot go away (since we

got rid of the antiparticles), with some position and momentum operators. In fact

the momentum operator is just the charge associated with translation invariance, and

takes the form (just like on the homework)

~P =

∫
d̄dp~pa†pap

and ~P |{p}〉 =
∑

a ~pa |{p}〉. What’s the position operator? A state with a particle at

position ~x is

|~x〉 = Ψ?(x) |0〉 =

∫
d̄dpe−i~p·~xa†p |0〉 .

If we let
~X ≡

∫
ddxΨ?(x)~xΨ(x)
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then indeed ~X |~x〉 = ~x |~x〉. To see that the Heisenberg algebra [X,P] = i works out,

consider the general 1-particle state

|ψ〉 =

∫
ddxψ(x) |x〉 .

The function ψ(x) here is the usual position-basis Schrödinger wavefunction. You can

check on the homework that

Xi |ψ〉 =

∫
ddxxiψ(x) |x〉 , Pi |ψ〉 =

∫
ddx

(
−i

∂

∂xi
ψ(x)

)
|x〉

which implies the Heisenberg commuator. Finally, the hamiltonian (3.10) gives the

time evolution equation

i∂tψ = −∇
2

2m
ψ

which really is the Schrödinger equation.

Many particles that one studies in NR QM are actually fermions (e, p, n...) and

therefore not described by a scalar field. But in the 1-particle sector, who can tell? No

one. Later we’ll see the NR limit of the Dirac equation, which is basically the same,

but with some extra juicy information about spin.

Next we will speak about ‘interactions’. This term is used in two ways. In NR QM,

it is sometimes used to describe an external potential V (x) appearing as an extra term

in the Schrödinger equation

i∂tψ = −∇
2

2m
ψ + V (x)ψ(x).

Such a term explicitly violates translation symmetry. It can be accomplished by adding

to the action the quadratic term

∆SV = −
∫
ddxΨ?(x)Ψ(x)V (x) = −

∫
ddxρ(x)V (x).

This says that nonzero density of particles at x costs energy V (x). A second sense of

‘interaction’ which is how it will be used forever below is interaction between particles.

With only one particle this cannot happen. NR QM theory does accommodate more

than one particle, and we can consider an interaction between them like

∆S = −
∫
ddx

∫
ddyΨ?(x)Ψ(x)V (x− y)Ψ?(y)Ψ(y).

If V (x− y) = δd(x− y), this interaction is local.

[End of Lecture 10]
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4 Interactions, not too strong

4.1 Where does the time dependence go?

[Peskin chapter 4.2] Now we must get straight where to put the time dependence. Dif-

ferent ways of doing the book-keeping are called different ‘pictures’. At some reference

time, say t = 0, they all agree: label states by |ψ, 0〉 and operators by O(0). At a later

time, in picture P , these evolve to |ψ, t〉P ,OP (t). Physics, such as any amplitude like

P 〈φ, t| OP (t) |ψ, t〉P (4.1)

is independent of P . Let’s assume the hamiltonian H has no explicit time dependence.

In Heisenberg picture (P = H), |ψ, t〉H ≡ |ψ, 0〉 for all time, and the burden of the

time dependence is all on the operators

OH(t) = U †H(t)O(0)UH(t). (4.2)

The Heisenberg equations of motion are

iȮH = [OH , HH ] (4.3)

so in particular ḢH = 0 so HH(t) = HH(0) = H. Then (4.3) is solved by (4.2) with

UH(t) = e−itH . An example of an operator is the free field:

ΦH(~x, t) =

∫
d̄dp√

2ωp

(
ape
−ipµxµ + b†pe

ipµxµ
)
|p0=ωp

which you time-evolved this way on the homework. In fact, this equation is basically

the whole story of free field theory. The field makes particles that don’t care about

each other.

In Schrödinger picture (P = S), d
dt
OS = ∂tOS time dependence of operators comes

only from explicit, external dependence in the definition of the operator (which will

not happen here), so OS(t) = O(0), and (4.1) then requires

|ψ, t〉S = UH(t) |ψ, 0〉 .

And the unitary evolution operator is

UH(t) = e−iH(0)t = e−iHSt = US = U

so does not require a picture label.

Interactions. So, in an interacting field theory, all we need to do is to find U to

figure out what it does. For better or worse, this isn’t a realistic goal in general. This
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quarter we are going to focus on the special case where the interactions are weak, so

that the hamiltonian takes the form

H = H0 + V

where H0 is quadratic in fields (linear terms are allowed but annoying) and we assume

that the interaction term V is proportional to a small parameter. This by no means

exhausts all interesting questions in field theory; on the other hand, a surprisingly

enormous amount of physics can be done using this assumption.

Interaction picture. (P = I) Under the circumstances just described, it is very

convenient to use a hybrid picture where the time-dependence of the operators is as

in the Heisenberg picture for the hamiltonian with V → 0. This free field evolution is

solvable (and is what we’ve been doing all along so far):

OI(t) ≡ U †0O(0)U0, U0(t) ≡ e−iH0t. (4.4)

Note that in this picture, H0(t) = H0(0) = H0. Equivalently, iȮI = [OI , H0], where in

this expression, crucially, H0 = H0(ΦI) is made from interaction picture fields, whose

evolution we know from above; for example, for a complex scalar,

ΦI(~x, t) =

∫
d̄dp√

2ωp

(
ape
−ipµxµ + b†pe

ipµxµ
)
.

The catch is that the interaction-picture states are still time-dependent:

H 〈ϕ, t| OH(t) |ψ, t〉H︸ ︷︷ ︸
=〈ϕ,0|U†H(t)O(0)UH(t)|ψ,0〉

(4.1)!
= I 〈ϕ, t| OI(t)︸ ︷︷ ︸

=U†0 (t)O(0)U0(t)

|ψ, t〉I

∀ϕ, ψ which says that

|ψ, t〉I = U †0(t)UH(t) |ψ, 0〉 ≡ UI(t) |ψ, 0〉 , that is, UI(t) = U †0(t)UH(t). (4.5)

In the interaction picture, the interaction hamiltonian itself evolves according to

i
d

dt
VI = [VI , H0] =⇒ VI(t) = U †0V (0)U0.

So for example, if V (0) =
∫
ddxgφ3(x, 0), then using 1 = U0U

†
0 repeatedly,

U †0V (0)U0 = g

∫
ddxU †0φ

3(x, 0)U0 = g

∫
ddxU †0φ(x, 0)U0U

†
0φ(x, 0)U0U

†
0φ(x, 0)U0 = g

∫
ddx (φI(x, t))

3 .

This trick wasn’t special to φ3 and works for any local interaction:

(V (t))I = V |t=0 (φI(t))
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– just stick the interaction-picture-evolved fields into the form of the interaction at

t = 0, easy.

How do the states evolve? Notice that [U †0 , UH ] 6= 0, if the interactions are inter-

esting. So

∂t |ψ, t〉I = ∂t (UI(t) |ψ, 0〉) = ∂t

U †0(t) UH(t)︸ ︷︷ ︸
=e−iH(0)t=e−i(H0+V )t

|ψ, 0〉


= U †0

iH0 − iH︸ ︷︷ ︸
=−iV (0)

UH |ψ, 0〉︸ ︷︷ ︸
=U†H(t)U0(t)|ψ,t〉I

= −iU †0V (0)UHU
†
H︸ ︷︷ ︸

=1

U0 |ψ, t〉I = −iU †0V (0)U0︸ ︷︷ ︸
=V (t)

|ψ, t〉I . (4.6)

Here V (t) ≡ VI(t) is the interaction-picture evolved interaction Hamiltonian. We’ve

learned that

i∂t |ψ, t〉I = V (t) |ψ, t〉I .

Alternatively, the interaction-picture evolution operator satisfies

i∂tUI(t) = V (t)UI(t).

Notice how this differs from the Heisenberg evolution equation (4.3): although the full

H is time-independent, VI(t) actually does depend on t, so [V (t), V (t′)] 6= 0, and so the

solution is not just a simple exponential. We’ll find a nice packaging for the solution

next in the form of Dyson’s expansion.

Peskin’s notation for this object is UI(t) = U(t, t0)|t0=0. We can figure out how to

change the reference time from zero as follows:

|ψ, t〉I = UI(t) |ψ, 0〉 , |ψ, t′〉I = UI(t
′) |ψ, 0〉 =⇒ |ψ, 0〉 = U †I (t′) |ψ, t′〉

|ψ, t〉I = UI(t)U
†
I (t′)︸ ︷︷ ︸

=U(t,t′)

|ψ, t′〉I

From which we infer that

U(t, t′) = U †0(t)UH(t)U †H(t′)U0(t′) = eiH0te−iH(t−t′)e−iH0t′ .

From now on we drop the P = I subscripts: everything is I.

Definition of S-matrix. What are we going to do with the evolution operator?

Here is a basic (only slightly naive) three-step framework for doing particle physics

(not yet for making predictions):
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• At time ti, specify (e.g. measure) all the particle types, spins, momenta in the

form of an initial state |i〉 in the QFT Hilbert space.

• Wait. At time t, the state is

U(t, ti) |i〉 = |ψ, t〉 .

• At time tf , measure all the particle data and get some state |f〉.

Quantum mechanics says that the probability for this outcome is

| 〈f |U(tf , ti) |i〉 |2 .

(One way in which this is significantly naive is that the space of outcomes is continuous,

so we must instead make probability distributions. More soon.) Because particle

interactions are a fast-moving business, a useful idealization is to take ti → −∞ and

tf →∞, and let

Sfi ≡ 〈f | Ŝ |i〉 , Ŝ ≡ U(∞,−∞)

the S-matrix (‘S’ is for ‘scattering’).

This has only three ingredients: initial state, time evolution operator, and final

state. Let’s focus on the middle of the sandwich some more:

Dyson expansion. We need to solve the equation

∂t |ψ, t〉 = −iV (t) |ψ, t〉 , with initial condition |ψ, ti〉 = |i〉 .

Here’s a “solution”:

|ψ, t〉 = |i〉+ (−i)

∫ t

ti

dt1V (t1) |ψ, t1〉

as you can check by the fundamental theorem of calculus. The only small problem is

that we don’t know |ψ, t1〉. But we can use this expression for that too:

|ψ, t〉 = |i〉+ (−i)

∫ t

ti

dt1V (t1)

(
|i〉+ (−i)

∫ t1

ti

dt2V (t2) |ψ, t2〉
)

= |i〉+ (−i)

∫ t

ti

dt1V (t1) |i〉+ (−i)2

∫ t

ti

dt1

∫ t1

ti

dt2V (t1)V (t2) |ψ, t2〉

Why stop there? Two comments: (1) This generates a series in V ; so this is a good

idea when V ∝ λ� 1. (2) Notice the time-ordering: the range of integration restricts

t1 ≥ t2, and the earlier operator V (t2) is to the right. The result of doing this infinitely

many times is

|ψ, t〉 =
∞∑
n=0

(−i)n
∫ t

ti

dt1

∫ t1

ti

dt2 · · ·
∫ tn−1

ti

dtnV (t1)V (t2) · · ·V (tn) |i〉 = U(t, ti) |i〉 .

(4.7)

Since (4.7) is true for any |i〉, it tells us a formula for U .

86



To review, the equation we are trying to solve is:

i∂t |ψ, t〉︸ ︷︷ ︸
=V (t)|ψ,t〉

= i∂tU |ψ, ti〉 = i∂tUU
† |ψ, t〉 .

This is true for all |ψ, t〉, so it means i∂tUU
† = V . Multiplying the BHS on the right

by U gives

=⇒ ∂tU = −iV U.

We might expect that an equation like this has a solution which is something like

U
?∼ e−iV t.

Now we must deal with what Lawrence Hall calls “the wretched n!”. Starting from

our series solution (4.7),

U(t, ti) =
∞∑
n=0

(−i)n
∫ t

ti

dt1

∫ t1

ti

dt2 · · ·
∫ tn−1

ti

dtnV (t1)V (t2) · · ·V (tn)

=
∞∑
n=0

(−i)n
∫ t

ti

dt1

∫ t1

ti

dt2 · · ·
∫ tn−1

ti

dtnT (V (t1)V (t2) · · ·V (tn))

=
∞∑
n=0

(−i)n
1

n!

∫ t

ti

dt1

∫ t

ti

dt2 · · ·
∫ t

ti

dtnT (V (t1)V (t2) · · ·V (tn)) (4.8)

In the first step I used the fact that the operators are already time ordered (this followed

from the differential equation we are solving, since the V always acts from the left). In

the second step we used the fact that the time-ordered integrand doesn’t change if we

permute the labels on the times. So we can just average over the n! possible orderings

of n times. If we pull out the time-ordering symbol, this is an exponential series:

U(t, ti) = T
(
e
−i

∫ t
ti
dt′V (t′)

)
.

The time-ordered exponential is defined by its Taylor expansion – it’s really just a

recipe (or nice packaging) for generating the Dyson expansion.

4.2 S-matrix

Taking the times to ±∞ in the previous equation gives an expression for the S-matrix:

Ŝ = U(−∞,∞) = T
(
e−i

∫∞
−∞ dtV (t)

)
. (4.9)
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The practical value of these expressions is that they give a (compact) recipe for evalu-

ating the time evolution operator as a series in powers of the small parameter in front

of V (0): we know V (t) in terms of things like a, a†, can pull them down term-by-term.

I should have called the previous expression the ‘S-operator’, since the thing we

are after is really the S-matrix elements, 〈f | Ŝ |i〉, for which we still need 〈i| and |f〉.
Here we encounter some small trouble. Can we just use the states like

√
2ωpa

†
p |0〉

(the eigenstates of the free hamiltonian) which we’ve grown to love? In fact, even the

vacuum |0〉 is not an eigenstate of the actual H0 + V (since [H0, V ] 6= 0), so it will not

stay where we put it. The vacuum of the interacting theory |Ω〉 is itself an object of

mystery (a boiling sea of virtual particles and antiparticles), and the stationary excited

states are too (a particle carries with it its disturbance of the vacuum). We’ll learn

to deal with this in perturbation theory, but here’s an expedient: pick a function f(t)

which is zero at one end, one in the middle, and then zero again at the far end. Now

replace the interaction hamiltonian V with f(t)V (t). Then, if we take ti < the time

before which the interaction turns on, and tf > the time after which we turn it off,

then we can use the free hamiltonian eigenstates. This is in fact wrong in detail, but

it will get us started. We’ll fix it later in our discussion of the LSZ reduction formula.

Example. Let’s think about ‘scalar Yukawa theory’. Simplifying the notation a

bit, the whole Lagrangian density is

L =
1

2
∂µφ∂

µφ− 1

2
M2φ2 +

1

2
∂µΦ?∂µΦ− 1

2
m2Φ?Φ + LI (4.10)

with LI = −gΦ?Φφ.

In terms of our notation for perturbation theory, H = H0 + V , this means V =

−
∫
ddxLI . The mode expansions are

φ =

∫
d̄dp√

2ωp

(
ape
−ipx + a†pe

ipx
)
|p0=ωp

Φ =

∫
d̄dp√
2Ep

(
bpe

−ipx + c†pe
ipx
)
|p0=Ep

where I’ve written ωp ≡
√
M2 + p2, Eq ≡

√
m2 + q2. Notice that Φ → e−iαΦ is a

symmetry; the conserved charge is

q = Nc −Nb.

But the φ particles are not conserved.43

43You might notice a possible problem with this theory: what happens to the quadratic term for Φ

when φ is very negative? Let’s not take it too seriously.
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Artisanal44 meson45 decay. [Tong §3.2.1] The interaction LI can change the

number of φ particles. What is the amplitude for a φ particle to decay to a Φ-anti-Φ

pair? So consider

|i〉 =
√

2ωpa
†
p |0〉 , |f〉 =

√
2Eq12Eq2b

†
q1
c†q2 |0〉 .

The S-matrix element between these states is

〈f | Ŝ |i〉 = 〈f | T
(

1 + (−i)

∫
dd+1xgφxΦ

?
xΦx +O(g2)

)
|i〉

where all operators are in interaction picture. The first term dies because 〈f |i〉 = 0. In

the O(g) term, the time-ordering doesn’t matter because all the operators are at the

same time. The φ ∼ a+a† takes a one-particle state into a superposition of states with

zero and two φ-particles. We need to end up with zero φ-particles. The leading-order

nonzero term is

= −ig

∫
dd+1x 〈f |Φ?

xΦx

∫
d̄dk√
2ωk

e−ikx aka
†
p |0〉︸ ︷︷ ︸

=/δ
d
(k−p)|0〉

√
2ωp

= −ig

∫
dd+1xe−ipx 〈0|bq1cq2

√
4Eq1Eq2

∫
d̄dk1√
2Ek1

eik1xb†k1

∫
d̄dk2√
2Ek2

eik2xc†k2 |0〉

44Artisanal means doing something by hand when it can be automated. We are doing it this way

now to understand the process of mechanization that we will introduce next.
45Notice that φ is just like the field we discussed earlier (in §2.1), which mediates an attractive force

between sources with a range 1/M . In LI we have replaced the force J exerted by the ‘giant hand’

with g|Φ|2, where Φ is now also a dynamical variable.

The effect (that a scalar field of mass M mediates an attractive force of range 1/M) is named after

Yukawa. The context in which Yukawa thought about this was the atomic nucleus. An atomic nucleus

is made up of a bunch of nucleons (protons and neutrons), all of which have non-negative charge and

therefore repel each other by Coulomb interaction. But somehow, nuclei stay together. Yukawa’s idea

was that there is some short-ranged but very strong force holding them together, and the φ particle

is the mediator of the force. M , then, is what determines the size of the nucleus, and the quanta of

φ are called pions.

And the role of the nucleons is played by (the quanta of) Φ in our story here. That’s why I made Φ

a complex field, because nucleons carry some conserved charges and are not their own antiparticles.

This model has a number of shortcomings. One is that the nucleons are actually spin-half fermions

and not scalars. We’ll learn how to fix that in §5, and it’s not a real problem. I will call the particles

created by c† and b† snucleons and anti-snucleons, respectively, in recognition of the fact that they

are scalars.

A second problem is that we’ve left out the information that distinguishes protons and neutrons,

and also there are various species of pions. This ‘isospin’ symmetry information is easy to include

and very helpful. A more important shortcoming is the fact that a ‘very strong force’ is required to

overcome the Coulomb repulsion. This is accomplished by the fact that the coupling g is not very

small in a realistic model, and perturbation theory in g is not always so great.

Meson is an old-fashioned word for a scalar particle, and more specifically is another name for pion.
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= −ig

∫
dd+1xei(q1+q2−p)x = −ig(2π)d+1δd+1(q1 + q2 − p)

This is a small victory. The delta function imposes conservation of energy and mo-

mentum on the transition amplitude. In the φ rest frame, pµ = (M, 0) which says the

amplitude is only nonzero when ~q1 = −~q2 and when M = 2
√
|q1|2 +m2. Notice that

this can only happen if M ≥ 2m.

How do we get from this amplitude to a probability? We have to square it:

Pfi ∼ |Sfi|2 = g2
(
δd+1(pf − pi)

)2
.

The square of a delta function is infinity. What did we do wrong?

Not so much, we just asked a dumb question. Here is where it helps to be a physicist.

Consider: (
δd+1(p)

)2
= δd+1(p)δd+1(0) = δd+1(p)

∫
dd+1xei0x = δd+1(p)V T

where V T is the volume of spacetime – the size of the box times how long we’re willing

to wait. There is a nonzero probability per unit time per unit volume that a φ particle

in a plane wave state will decay. We’ll get its lifetime out momentarily.

On the homework you’ll do a few more calculations of amplitudes by this artisanal

method. For more complicated examples, it will help to streamline this process, which

is the job of §4.3. [End of Lecture 11]

4.3 Time-ordered equals normal-ordered plus contractions

[Peskin §4.3] We have an expression for Ŝ in (4.9) involving only time-ordered products

of operators. If we stick this between states with just a few particles, the annihilation

operators in there very much want to move to the right so they can get at the vacuum

and annihilate it, as is their wont. Wick’s theorem tells us how to help them do this,

along the following lines:

Wick: T (φ...φ)︸ ︷︷ ︸
have

= : φ...φ :︸ ︷︷ ︸
want

+ ? (4.11)

In the previous schematic non-equation, I introduced a notation for a normal-ordered

product : φ · · ·φ : which means each term has all the annihilation operators to the right

of all the creation operators, for example

: φ(x)φ(y) :≡ φ−(x)φ+(y) + φ−(y)φ+(x) + φ+(x)φ+(y) + φ−(x)φ−(y). (4.12)
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Normal-ordering difficulty. There is a sticky point in the definition of normal

ordering. The issue is: what is the result of normal-ordering a c-number? We are

defining normal ordering as a lexicographic operation of moving symbols around, not

as a linear operator. If we tried to define the normal-ordering operation to be linear,

then we would need to have

:

 a†a︸︷︷︸
=aa†−1

 :
?
=: aa† : − : 1 : .

But
〈
0| : a†a : |0

〉
=
〈
0| : aa† : |0

〉
= 0 so we would need to have 〈0| : 1 : |0〉 ?

= 0, which

means we would require the shocking-looking equation:

: 1 :
?
= 0

that is: the normal-ordered product of a c-number would be zero. This definition

(which, beware, differs from Peskin’s) would have the advantage that the vacuum

expectation value (VEV) of any normal ordered product is zero (with no exceptions

for c-numbers). The price is that we wouldn’t be able to put the normal-ordering

symbol around the c-number bits, as Peskin does.

Instead we’ll define : c := c for c a c-number. More generally, let A,B,C be the

positive- and negative-frequency bits of some fields. Then

: ABC · · · :≡

A′B′C ′ · ·︸ ︷︷ ︸
only a†s

· · · ·︸︷︷︸
only as


Peskin writes N(· · · ) ≡: · · · :. Notice that with our definition (and Peskin’s)

〈0| : anything except a c-number : |0〉 = 0.

A comment about fermions. Later we will use anticommuting operators, which

have

ckc
†
p + c†pck ≡ {ck, c

†
p} = /δ(k − p), {c†k, c

†
p} = 0.

In particular, the equation
(
c†p
)2

= 0 is an algebraic realization of the Pauli principle.

The cost is that even the φ− bits generate signs when they move through each other.

In that case, we define the normal ordered product as

: ABC · · · :≡

A′B′C ′ · ·︸ ︷︷ ︸
only a†s

· · · ·︸︷︷︸
only as

 (−1)P
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where P is the number of fermion interchanges required to get from ABC · · · to

A′B′C ′ · · · . Keeping track of these signs, and replacing commutators with anticommu-

tators, everything below goes through for fermion fields.

Let’s go back to (4.12) and compare with (4.11). Because [φ±, φ±] = 0, the order in

the last two terms doesn’t matter. So (4.12) can differ from the time-ordered product

only in the first or second term. If y0 > x0, it differs by [φ+(y), φ−(x)] = ∆+(y − x) =

−∆−(x − y), and if x0 > y0, it differs by [φ+(x), φ−(y)] = ∆+(x − y). Altogether

this produces the Feynman propagator ∆F (x− y), which we’ll denote as ∆F (x− y) =

φ(x)φ(y), and call a contraction:

: φ(x)φ(y) := T (φ(x)φ(y))−∆F (x− y) ≡ T (φ(x)φ(y))−φ(x)φ(y). (4.13)

More generally, writing φa ≡ φ(xa), Wick’s theorem says

: φ1 · · ·φn := T (φ1 · · ·φn)− (all contractions) (4.14)

where a contraction is defined as the price for moving a pair of operators through each

other to repair the time ordering, as in (4.13), and denoted by the symbol in (4.13).

For a pair φ(x)φ(y), this price is ∆F (x− y).

For example, for four fields, the theorem says

T (φ1 · · ·φ4) =: φ1 · · ·φ4 : +

(
φ1φ2 : φ3φ4 : +5 more

)
+ (φ1φ2φ3φ4 + 2 more)

Notes: The fully-contracted bits are numbers, so (with Peskin’s convention) it doesn’t

matter if they are inside the normal-ordering symbol. For a product of n fields, there

are

(
n

2

)
+

(
n

4

)(
4

2

)
+

(
n

6

)(
6

4

)(
4

2

)
· · · +

(
n

bn/2c

)
(= many) contractions. But if

we take the vacuum expectation value (VEV) of the BHS, all the terms that aren’t

c-numbers go away.

Here’s the idea of the proof of (4.14) [Peskin page 90], which is by induction on the

number of fields m in the product. We showed m = 2 above. Assume WLOG that

x0
1 ≥ · · · ≥ x0

m, or else relabel so that this is the case. Wick for φ2 · · ·φm says

T (φ1 · · ·φm) = φ1︸︷︷︸
=φ+1 +φ−1

: φ2 · · ·φm : + (all contractions w/o φ1 )

The φ−1 term is already in the right place and can slip for free inside the normal-ordering

sign. The φ+
1 needs to move past all the uncontracted φ−j≥2s; this process will add a

term for every possible contraction involving φ1. �
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4.4 Time-ordered correlation functions by diagrams

[Peskin §4.4] Time-ordered correlation (or Green’s) functions of local operators will be

useful:

G(n)(x1 · · ·xn) ≡ 〈Ω| T
(
φH1 (x1) · · ·φHn (xn)

)
|Ω〉 .

Here, the operators are in Heisenberg picture for the full hamiltonian H = H0 + V ,

and Ω is its actual lowest-energy eigenstate, H |Ω〉 = E0 |Ω〉.

The fourier transform is also useful:

G̃(n)(p1 · · · pn) ≡
∫
dd+1x1 · · ·

∫
dd+1xn e

−i
∑n
i pixiG(n)(x1 · · ·xn) .

Notice that there is no need to restrict the momenta on which G̃ depends to the

mass shell p2
i = m2, that is, G̃(p) is a function of the pi even when pi are off-shell: these

Green’s functions contain “off-shell” information, more information than is available in

just the scattering matrix. However, something special will happen when the external

momenta are on-shell. As you can see from the free two-point function, (4.16), they

blow up on the mass-shell. The existence of a singularity of G̃ on the mass-shell is a

general fact, and their residues give the S-matrix elements:

G̃(p1 · · · pn)
p2i→m2

i∼
∏
i

i

p2
i −m2

i + iε
S(p1 · · · pn). (4.15)

The precise version of this is the content of the LSZ theorem, about which more later.
46

In the free theory of a real scalar, we know something about these:

G
(2)
free(x1, x2) = ∆F (x1 − x2) =

G̃
(2)
free(p1, p2) = /δ

d+1
(p1 + p2)

i

p2
1 −m2 + iε

= /δ
d+1

(p1 + p2) · (4.16)

The higher correlations of the free field are Gaussian, in the sense that they are sums

of products of the two point functions:

G
(4)
free(x1 · · ·x4)

Wick
= ∆F (12)∆F (34) + ∆F (13)∆F (24) + ∆F (14)∆F (23)

= + + . (4.17)

46Big picture comment: This is a long chapter. We are working our way towards a useful and

correct perturbative expansion of the S-matrix, from which we can extract observable physics. So

(4.15) explains a reason to care about time-ordered Green’s functions.
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Expectations. Our next goal is to construct a perturbative expansion in the case

of V =
∫
ddz λ

4!
φ4(z). We expect a correction to G(4) of order λ of the form:

Perturbative expansion of time-ordered correlators. We’ll do this in three

steps: (1) Relate |Ω〉 to |0〉. (2) Relate φH to φI . (3) Wick expand and organize the

diagrams.

Step (1): [Peskin page 86-87] Some preparations:

• Fix the additive normalization of the hamiltonian by H0 |0〉 = 0.

• Label the spectrum of H by |n〉, so

1 =
∑
n

|n〉〈n| = |Ω〉〈Ω|+
∑
n6=Ω

|n〉〈n|. (4.18)

This is a very scary sum over the whole QFT Hilbert space, really an integral.

• Assume that 〈Ω|0〉 6= 0, where |0〉 is the free vacuum. A necessary condition for

this is that the actual Hamiltonian is in the same phase of matter as the H0.

Let’s keep the volume of space finite for awhile.

Now consider

〈0| e−iHT (4.18)
=
∑
n

〈0|n〉 〈n| e−iHT =
∑
n6=Ω

〈0|n〉 〈n| e−iEnT + 〈0|Ω〉 〈Ω| e−iE0T .

Now imagine giving T a large negative imaginary part, T →∞(1− iε) Since E0 < En
for all other n, we can make the contribution of Ω arbitrarily larger than the others.

Multiplying by eiE0T/ 〈0|Ω〉 gives

〈Ω| = lim
T→∞(1−iε)

(
〈0| e−iHT eiE0T

〈0|Ω〉

)
〈0|H0=0

= lim
T→∞(1−iε)

(
〈0| eiH0T e−iHT eiE0T

〈0|Ω〉

)
Since T is infinite anyway, we can shift it to T → T − t0 without change:

〈Ω| = lim
T→∞(1−iε)

(
〈0| eiH0(T−t0)e−iH(T−t0)eiE0(T−t0)

〈0|Ω〉

)
(4.5)
= lim

T→∞(1−iε)

(
〈0|UI(T, t0)eiE0(T−t0)

〈0|Ω〉

)
.

(4.19)

Do the same for |Ω〉 (rather than just taking the dagger of (4.19)):

|Ω〉 = lim
T→∞(1−iε)

UI(t0,−T ) |0〉
e−iE0(T+t0) 〈Ω|0〉

. (4.20)
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Now step (2), relate φH and φI : in terms of the field φ at some reference time t0
(could be zero), we have φI = U †0φU0, φH = U †HφUH and therefore φH = U †HU0φIU

†
0UH =

U †IφIUI , using (4.5). Now put together the Green’s function. First assume x0 > y0:

G(2)(x, y) = 〈Ω| T (φH(x)φH(y)) |Ω〉
(4.19)
= lim

T→∞(1−iε)

[ (
e−iE0(T−t0) 〈0|Ω〉

)−1 〈0|UI(T, t0) 〈Ω|

· U †I (x0, t0)φI(x)UI(x
0, t0) · U †I (y0, t0)φI(y)UI(y

0, t0) φHφH

· UI(t0,−T ) |0〉
(
e−iE0(T+t0) 〈Ω|0〉

)−1 ] |Ω〉

= lim
T→∞(1−iε)

(
e−i2E0T | 〈0|Ω〉 |2

)−1 〈0|U(T, x0)φ(x)U(x0, y0)φ(y)U(y0,−T )︸ ︷︷ ︸
=T (φ(x)φ(y)U(T,−T ))

|0〉

In the last expression I’ve gone back to implying the I subscripts on the interac-

tion picture fields. In observing that the big underbraced product is time ordered we

are appealing to the Dyson formula for the interaction-picture evolution operators,

e.g. UI(t, t
′) = T

(
e−i

∫ t
t′ dt

′′V (t′′)
)

– so it is a sum of time-ordered products, evaluated

between the times in the argument. Notice that I did something slippery in the first

step by combining the factors into one big limit; this is OK if each factor converges

separately. If y0 > x0, the relation between the first and last expressions is unchanged.

What’s the denominator? The norm of the vacuum is one, but we can assemble it

from these same ingredients, (4.19) and (4.20):

1 = 〈Ω|Ω〉 = lim
T→∞(1−iε)

(
e−i2E0T | 〈0|Ω〉 |2

)−1 〈0|U(T, t0)U(t0,−T )︸ ︷︷ ︸
=U(T,−T )

|0〉

Therefore

G(2)(x, y) = lim
T→∞(1−iε)

〈0| T
(
φ(x)φ(y)e−i

∫ T
−T dt

′V (t′)
)
|0〉

〈0| T
(
e−i

∫ T
−T dt

′V (t′)
)
|0〉

The same methods give the analogous formula for G(n)(x1 · · ·xn) for any number

of any local operators. Now we can immediately perturbate to our hearts’ content

by expanding the exponentials. Let’s do some examples, then I will comment on the

familiarity of the prescription for T , and we will see that the denominator is our friend

because it cancels annoying (disconnected) contributions in the numerator.

Examples. For V = λ
4!
φ4, let’s study the numerator of G(2)(x, y) in the first few
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orders of λ:

G(2)
num(x, y)

≡〈0| T
(
φ(x)φ(y)e−i

∫ T
−T d

d+1z λ
4!
φ4(z)

)
|0〉

= 〈0| T φ(x)φ(y) |0〉+
−iλ

4!

∫
dd+1z 〈0| T (φ(x)φ(y)φ(z)φ(z)φ(z)φ(z)) |0〉+O(λ2)

=∆F (x− y) +
−iλ

4!

∫
dd+1z

(
3φ(x)φ(y)φ(z)φ(z)φ(z)φ(z) + 4 · 3φ(x)φ(z)φ(y)φ(z)φ(z)φ(z)

)
+O(λ2)

=

(4.21)

The O(λ2) contribution is

1

2!

(
−iλ

4!

)2 ∫
dd+1z1d

d+1z2 〈0| T
(
φ(x)φ(y)φ(z1)4φ(z2)4

)
|0〉

With ten fields, there will be five propagators in each diagram. The ingredients that

we must connect together are: The answer is

For example,

φ(x)φ(z1)φ(y)φ(z1)

(
φ(z1)φ(z2)

)2

φ(z2)φ(z2) ∝

up to the symmetry factor.

Feynman rules for φ4 theory in position space. The set of diagrams at order

λm is made by drawing one external vertex for each xi, and m internal vertices, and

connecting them in all possible ways with edges (propagators),

{diagrams} ≡ {A} = {A0} ∪ {A1} ∪ · · ·
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where Am gives contributions proportional to λm. Let’s callMA the amplitude associ-

ated to diagram A, and the Green’s function is G(n)(x1 · · ·xn) =
∑

AMA. (Warning:

I won’t always be so careful about distinguishing between a diagram and its associated

amplitude.) To get MA,

• Put a ∆F (yi − yj) for each edge where y may be an external

point xi or an internal point za. If λ were zero, this would reproduce the diagrams

we drew above for the free theory.

• Put a −iλ
∫
dd+1za for each vertex (notice no 1

4!
).

• Multiply by the symmetry factor s(A). The symmetry factor is defined to be

s(A) = |Aut(A)|−1, the inverse of the order of the automorphism group of the

diagram, that is: the number of ways of permuting the ingredients of the diagram

which map the diagram to itself (fixing the external legs). Symmetries of the

diagram mean that the sum over contractions fails to completely cancel Dyson’s

wretched 1
n!

and the 1
4!

in the interaction term. For example, in the diagrams in

(4.21), the symmetry factors are:

s =
1

4!
· 3 =

1

8
, s

( )
=

1

4!
· 4 · 3 =

1

2
.

In the right diagram, we can reflect the loop across the vertical. In the left

diagram we can exchange the two loops, and we can independently reflect them

across the vertical. Do not get hung up on this right now. Much more important

to understand is the structure of the set of diagrams, which we get started on

next.

Let’s do the numerator of G(4) through order λ2:

O(λ0) : + +

O(λ1) :

Notice that only the last term here is “fully connected” in the sense that you can’t divide

the diagram up into disjoint pieces without cutting propagators. The other diagrams

follow a simple pattern: the first three are obtained from the O(λ0) diagrams by
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multiplying by a figure-eight bubble; we can denote this as G
(4)
0 G

(0)
1 , where G

(n)
m denotes

the order-λm fully-connected contribution to G
(n)
num. The second set is a convolution of

G
(2)
0 with G

(2)
1 . The last term is G

(4)
1 . Notice that the numbers in the superscripts in

each term add up to the number of external legs, and the numbers in the subscript add

up to the number of powers of λ. [End of Lecture 12]

O(λ2) : +· · ·

(4.22)

Here we see a new ingredient: there is a term G
(4)
0

1
2
(G

(0)
1 )2. Note that the rules above

about adding the numbers still hold. The 1
2

is part of the symmetry factor associated

with the exchange of the two figure-eights.

The exponentiation of the disconnected diagrams. [Peskin page 96] There

are some patterns in these sums of diagrams to which it behooves us to attend. (The

following discussion transcends the φ4 example.)

To discuss many diagrams at once, it will be useful to introduce the notion of

blobs: a blob (with some lines sticking out) is the sum of all diagrams with the same

external lines. (In momentum space, we’ll have blobs with external lines labelled by

pµi : )

The general diagram has the form:

A =

Only some of the components are attached to the external legs; for a given diagram

A, call the factor associated with these components Ac (note that Ac need not be

fully connected). The rest of the diagram is made of a pile of ‘bubbles’ of various

types Vi (each one internally connected, but disconnected from the external lines) and

multiplicities ni (e.g. V1 could be a figure eight, and there could be n1 = 2 of them, as
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in the second term indicated in (4.22)). These bubbles (or ‘vacuum bubbles’) would be

there even if we didn’t have any external lines, and they would have the same value;

they are describing the fluctuations intrinsic to the vacuum. The amplitude associated

with the general diagram is then

MA =MAc ·
V n1

1

n1!
· V

n2
2

n2!
· · · V

nα
α

nα!

where the ni! factors are the most important appearance of symmetry factors: they

count the number of ways to permute the identical copies of Vi amongst themselves.

The numerator of G(n) is then

G
(n)
numerator = 〈0| T

(
φ1 · · ·φne−i

∫
V
)
|0〉 =

∑
A

MA =
∑
Ac

MAc

∑
{ni=0}

V n1
1

n1!
· V

n2
2

n2!
· · · V

nα
α

nα!

=
∑
Ac

MAc · eV1 · eV2 · · · eVα

=
∑
Ac

MAce
∑
i Vi (4.23)

– the bubbles always exponentiate to give the same factor of e
∑
i Vi , independent of

the external data in G. In particular, consider the case of n = 0, where there are no

external lines and hence no Ac:

G
(0)
numerator = 〈0| T e−i

∫
V |0〉 = 1 · e

∑
i Vi

But we care about this because it is the denominator of the actual Green’s function:

G(n) =
〈0| T

(
φ1 · · ·φne−i

∫
V
)
|0〉

〈0| T e−i
∫
V |0〉

=
G

(n)
numerator

G
(0)
numerator

=
∑
Ac

MAc . (4.24)

And with that we can forget all about the vacuum bubbles. So for example,

G(2) = O(λ3)

G(4) = + · · ·

Notice that in this manipulation (4.24) we are adding terms of many orders in

perturbation theory in the coupling λ. If we want an answer to a fixed order in λ, we

can regard anything of higher order as zero, so for example, it makes perfect sense to

write

G(2) =
· (1 + 8 + 88 + · · ·)

(1 + 8 + 88 + · · ·)
+O(λ) = · e

V

eV
+O(λ) = +O(λ).
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(I only drew one kind of bubble in the previous expression since that one was easy to

type (it is not the number eight, but the figure-eight diagram!) but it is intended to

represent the sum of all connected vacuum bubbles.)

Momentum space Green’s functions from Feynman diagrams. In translation-

invariant problems, things are usually a little nicer in momentum space. Let’s think

about

G̃(n)(p1 · · · pn) ≡
n∏
i=1

∫
dd+1xie

−ipixiG(n)(x1 · · ·xn).

Again, this an off-shell Green’s function, a function of general p, not necessarily

p2 = m2. It will, however, vanish unless
∑

i p
µ
i = 0 by translation invariance. Con-

sider a fully-connected contribution to it, at order λN . (We’ll get the others by

multiplying these bits.) In φ4 theory, we need to make a diagram by connecting

n external position vertices xi to N 4-valent vertices za using Feynman propagators

∆F (yA − yB) =
∫

d̄d+1qre
−i(yA−yB)qr i

q2r−m2+iε
, where {yA} = {za, xi}. Since each propa-

gator has two ends, the number of internal lines (by the fully-connected assumption)

is

NI =
# of ends of lines

2
=
n+ 4N

2
=
n

2
+ 2N.

The associated amplitude is then

MN
FC =∫
dd+1x1 · · · dd+1xne

−i
∑
i pixi(−iλ)N · s(FC)

∫
dd+1z1 · · ·

∫
dd+1zN

NI∏
r=1

∆F (yA − yB) =

∫
dd+1x1 · · · dd+1xne

−i
∑
i pixi(−iλ)N · s(FC)

∫
dd+1z1 · · ·

∫
dd+1zN

NI∏
r=1

∫
d̄d+1qre

−i(yA−yB)qr
i

q2
r −m2 + iε

.

(4.25)

For example, consider a particular contribution with n = 4 external legs and N = 2

interaction vertices:

has NI =
4 + 2 · 4

2
= 6

Notice that we are doing a silly thing here of labelling the momenta of the external

lines (the first n momenta qi=1...n). Here’s why it’s silly: Look at the integral over

x1. Where is the dependence on x1? There is the external factor of e−ip1x1 that

we put to do the Fourier transform, and there is the propagator taking x1 to z1,
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∆F (x1 − z1) =
∫

d̄d+1q1e
−i(x1−z1)q1 i

q21−m2+iε
. So the integral over x1∫

dd+1x1e
−ix1(p1−q1) = /δ

d+1
(p1 − q1)

just sets p1 = q1, and eats the
∫

d̄d+1q1. The same thing happens for each external line,

and reduces the number of momentum integrals to NI − n.

Where is the dependence on z2?∫
dd+1z2 e

−iz2(p3+p4+q5+q6) = /δ
d+1

(p3 + p4 + q5 + q6).

Similarly, the z1 dependence is all in the exponentials:∫
dd+1z1 e

−iz1(−q5−q6+p1+p2) = /δ
d+1

(q5 + q6 − p1 − p2).

These two factors combine to set p1 +p2 = p3 +p4 = −q5− q6: momentum is conserved

at the vertices. Notice that in the example q5 − q6 is not determined.

So each internal vertex reduces the number of undetermined momenta by one. One

combination of the momenta is fixed by overall momentum conservation. So we have

left

NI − n− (N − 1) = N − n

2
+ 1 (4.26)

momentum integrals. This number is ≥ 0 for fully connected diagrams, and it is the

number of loops in the diagram. (This counting is the same as in a Kirchoff’s law

resistor network problem.) In the example, NL = 2− 2 + 1 = 1 which agrees with one

undetermined momentum integral.

Here’s a proof that (4.26) is the number of loops in the diagram: place the N + n

internal and external vertices on the page. Add the propagators one at a time. You

must add N + n − 1 just to make the diagram fully connected. After that, each line

you add makes a new loop. So the number of loops is NI − (N + n− 1), which is the

same as the number of momentum integrals (4.26).

In practice now, we need not introduce all those extra qs. Label the external lines

by p1 · · · pn, and the loop momenta by kα, α = 1..NL. In the example, we might do it

like this: for which the amplitude is

MFC(p1 · · · pn) = (−iλ)N · s(FC)/δ
(d+1)

(
∑

pi)

∫ NL∏
loops,α=1

d̄d+1kα
∏

lines,r

i

q2
r −m2 + iε
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=
(−iλ)2

2!
/δ
d+1

(
4∑
i=1

pi)
n=4∏
i=1

i

p2
i −m2 − iε

∫
d̄d+1k

i

k2 −m2 + iε

i

(p1 + p2 + k)2 −m2 + iε

(You might notice that the integral over k is in fact formally infinite, since at large k

it goes like
∫ Λ d4k

k2
∼ log(Λ). Try to postpone that worry.) The propagators for the

external lines just factor out, and can be brought outside the momentum integrals.

Let’s celebrate my successful prediction, for this particular graph, that there would be

poles when the external particles are on-shell, p2
i = m2. (It would be more correct to

call it Lehmann, Symanzik and Zimmerman’s successful prediction.)

So here are the momentum space Feynman rules for Green’s function in φ4 theory:

• Every line gives a factor of = i
p2−m2+iε

= ∆̃F (p). Notice that since

∆F (x− y) = ∆F (y − x), the choice of how we orient the lines is not so fateful.

• An internal vertex gives  (−iλ)
∫
dd+1ze−i

∑
i piz = (−iλ)/δ

d+1
(
∑

i pi),

momentum conservation at each vertex. So, set
∑

i pi = 0 at each vertex (I’ve as-

sumed the arrows are all pointing toward the vertex). After imposing momentum

conservation, the remaining consequence of the vertex is

= −iλ.

• Integrate over the loop momenta
∏NL

α=1d̄
d+1qα for each undetermined momentum

variable. There is one for each loop in the diagram. You should think of these

integrals as just like the Feynman path integral: if there is more than one way

to get from here to there, we should sum over the amplitudes.

• Multiply by the wretched symmetry factor s(A).

• For G̃(p), multiply by an overall /δ
d+1

(
∑
p) in each diagram.

• An external vertex at fixed position, = e−ipx. (Such vertices would arise

if we wanted to compute G(x) using momomentum-space feynman rules. ) More

generally, external vertices are associated with the wavefunctions of the states we

are inserting; here they are plane waves.

Comment on T → ∞(1− iε). [Peskin p. 95] What happened to the limit on T?

It’s hidden in the integrals over the vertices:∫
dd+1z e−iz

∑
i qi · · · = lim

T→∞(1−iε)

∫ T

−T
dz0ddz e−i(z

0
∑
i q

0
i−

∑
i ~z·~qi) · · · (4.27)
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One end of the integral z0 = ±∞ is going to be infinite unless
∑

i q
0
i z

0 ∈ R, in which

case it just oscillates. We can fix this problem by replacing each q0 with q0 → q0(1+ iε)

to cancel the factor of 1−iε (using ε2 = 0). Then the integral (4.27) is just a delta func-

tion. This means that the integrals will look like:

But this replacement is what we are already doing by the Feynman contour prescrip-

tion. That is: if we use the Feynman contour for every propagator

∆F (x) =

∫
CF

d̄d+1qe−iqx
i

q2 −m2 + iεF

with εF = ε then this problem goes away – this discussion forces us to choose the same

ε in the two places.

The factors of T give another perspective on the exponentiation of the vacuum

bubbles. Consider the diagram:

= (−iλ)2

4∏
i=1

∫
d̄d+1pi/δ

d+1
(p1 + p2)/δ

d+1
(p1 + p2) · · ·

The two delta functions come from the integrals over the positions z, w, and we can

restore sense by remembering this:(
/δ
d+1

(p1 + p2)
)2

= /δ
d+1

(p1 + p2)

∫
dd+1z2 = /δ

d+1
(p1 + p2)2TV

where V is the volume of space. This factor arises because this process can happen any-

where, anytime. There is one such factor for each connected component of a collection

of vacuum bubbles, so for example the diagram
( )

is proportional to

(V T )2. But the free energy ∝ logZ = logG(0) should be extensive, ∝ V T . Therefore,

the vacuum bubbles must exponentiate.

The whole two point function in momentum space is then (through order λ2) :

G̃(2) = O(λ3)

(4.28)

I draw the blue dots to emphasize the external propagators.
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Here’s an easy one: in the φ4 theory, G(n) = 0 (in either position or momentum

space) when n is odd. Technically, we can see this from the fact that there is always a

φ left over after all contractions, and 〈0|φ|0〉 = 0. Slightly more deeply, this is because

of the φ→ −φ symmetry of the action.

4.5 From correlation functions to the S matrix

Next we would like to unpack the physics contained in the correlation functions that

we’ve learned to compute in perturbation theory. The first interesting one is the two-

point function.

Recall our expression for the momentum-space two-point function (4.28) in terms

of a sum of connected diagrams, ordered by the number of powers of λ. Let’s factor

out the overall delta function by writing:

G̃(2)(p1, p2) ≡ /δ
d+1

(p1 + p2)G̃(2)(p1).

It will be useful to re-organize this sum, in the following way:

Here’s the pattern: we define a diagram to be one-particle irreducible (1PI) if it cannot

be disconnected by cutting through a single internal propagator. So for example,

is 1PI, but is not; rather, the latter contributes to the bit with two

1PI insertions. Then

G̃(2)(p) = +· · ·

So that we may write equations without pictures, let

−iΣ(p) ≡
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denote the 1PI two-point function. Σ being 1PI means that the external lines sticking

out of it are ‘nubbins,’ placeholders where propagators may be attached. That’s why

there are no blue dots at the ends.

Now suppose we know Σ. It is known as the self-energy, for reasons we will see

next. Then we can write

G̃(2)(p) =
i

p2 −m2
0

+
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

+
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

+ · · ·

=
i

p2 −m2
0

(
1 +

Σ

p2 −m2
0

+

(
Σ

p2 −m2
0

)2

+ · · ·

)
=

i

p2 −m2
0

1

1− Σ
p2−m2

0

=
i

p2 −m2
0 − Σ(p)

. (4.29)

We see that the self-energy shifts the m2 of the particle – it moves the location of the

pole in the propagator. In the interacting theory, m2
0 + Σ(p)|pole is the physical mass,

while m0 (what we’ve been calling m until just now) is deprecatingly called the ‘bare

mass’. [End of Lecture 13]

For p2 ∼ m2, we will write

G̃(2)(p) ≡
(

iZ

p2 −m2
+ regular bits

)
(4.30)

This equation defines the residue of the pole, Z, which is called the ‘wavefunction

renormalization factor’. It is 1 in the free theory, and represents the amplitude for

the field to create a particle, and the other terms, which are not singular at p2 = m2,

represent the amplitude for the field to do something else (such as create multiparticle

states), and are absent in the free theory. Unitarity (positivity of norms of states)

requires Z < 1. (Perhaps you will see this in 215B. See here for an argument.) Notice

that if we know Σ only to some order in perturbation theory, then (4.29) is still true,

up to corrections at higher order.

The notion of 1PI extends to diagrams for G̃(n>2)(p1 · · · pn). Let

G̃
(n)
1PI(p1 · · · pn) ≡

where the blob indicates the sum over all 1PI diagrams with n external nubbins (notice

that these do not have the blue circles that were present before). This means G1PI
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does not include diagrams like:

or .

Notice that 1PI diagrams are amputated – their external limbs have been cut off, leaving

just nubbins.

This is almost what we need to make S-matrix elements. If we multiply the n-

point function by
∏n

i=1
p2i−m2

√
Z

we cancel out the propagators from the external legs.

This object is naturally called the amputated n-point function. (It differs from the

1PI n-point Green’s function because of diagrams like this one

which is amputated but not 1PI.) If we then take p2
i → m2, we keep only the part of

G̃ which is singular on the mass-shell. And here’s why we care about that:

Claim (the LSZ reduction formula):

Sfi ≡ 〈~p1 · · · ~pn|S|~k1 · · ·~km〉 =
n+m∏
a=1

(
lim

P 0
a→E~Pa

P 2
a −m2

i
√
Z

)
G̃(n+m) (k1 · · · km,−p1 · · · − pn)

(4.31)

where Pa ∈ {pi, ki}. In words: the S-matrix elements are obtained from Green’s

functions by amputating the external legs, and putting the momenta on-shell. Notice

that choosing all the final momenta pi different from all the initial momenta ki goes a

long way towards eliminating diagrams that are not fully connected.

This formula provides the bridge from time-ordered Green’s functions (which we

know how to compute in perturbation theory now) and the S-matrix, which collects

probability amplitudes for things to happen to particles, in terms of which we may

compute cross sections and lifetimes. Let us spend just another moment inspecting the

construction of this fine conveyance.

Why is LSZ true? Here’s the argument I’ve found which best combines concision

and truthiness. [It is mainly from the nice book by Maggiore §5.2; I also like Schwartz’

106



chapter 6; Peskin’s argument is in section 4.6.] The argument has several steps. The

field operators in this discussion are all in Heisenberg picture.

1. First, for a free field, the mode expansion implies that we can extract the ladder

operators by:

√
2ωkak = i

∫
ddx eikx (−iωk + ∂t)φfree(x)

√
2ωka

†
k = −i

∫
ddx e−ikx (+iωk + ∂t)φfree(x) . (4.32)

Notice that the LHS is independent of time, but the integrand of the RHS is not.

2. Now, recall our brontosaurus expedient (introduced previously after (4.9)): turn

the interactions off at t = ±∞.47 This allows us to write the field in terms of

some pretend free fields of mass m (not m0!)

φ(x)

{
t→−∞
 Z

1
2φin(x)

t→+∞
 Z

1
2φout(x)

.

The factors of
√
Z are required to get the correct two point functions (4.30) near

the mass shell. The mode operators for φin are called a(in) etc. φin, out are free

fields: their full hamiltonian is H0. They are in Heisenberg picture, and the

reference time for φin, out is ±∞ respectively. Since they are free fields, we can

use (4.32) to write

√
2ωka

(in)† = −i

∫
ddx e−ikx (+iωk + ∂t)φin(x) = −iZ−1/2

∫
ddx e−ikx (+iωk + ∂t)φ(x)|t→−∞

where in the second step we used the independence on time in (4.32), even though

φ(x) is not a free field. An expression for a(out)† obtains if we take t → +∞
instead.

3. Now make this expression covariant using the fundamental theorem of calculus:

√
2ωk

(
a(in)† − a(out)†) = iZ−1/2

∫ ∞
−∞

dt∂t

(∫
ddx e−ikx (iωk + ∂t)φ(x)

)

= iZ−1/2

∫
dd+1x

e−ikx∂2
t φ− φ · ∂2

t e
−ikµxµ︸ ︷︷ ︸

(~∇2−m2)e−ikx


47Here’s why this is really bad: nearly everything we might scatter is a boundstate. For example:

atoms, nuclei, nucleons etc... But if there are no interactions there are no boundstates. Please see the

comments below this list for the explanation of why this works.
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IBP
= iZ−1/2

∫
dd+1xe−ikx

(
2 +m2

)
φ(x) (4.33)

In the last step we made a promise to only use wavepackets for external states,

so that we can do IBP in space.

4. Now, here’s where the S-matrix enters. Assume no subset of the incoming mo-

menta
∑

i ki is the same as any subset of the outgoing momentum
∑

j pj.

〈p1 · · · pn|S |k1 · · · km〉
=

∏
p,k

√
2ω 〈Ω|

∏
aout
p S

∏
ain†
k |Ω〉

=
∏
p,k

√
2ω 〈Ω| T

(∏
aout
p S

∏
ain†
k

)
|Ω〉 a

out
lives at t = +∞

=
∏
p,k

√
2ω 〈Ω| T

(∏
aout
p S

(
ain†
k1
− aout†

k1

) m∏
2

ain†
k

)
|Ω〉 since pi 6= kj , use 〈0| aout† = 0

(4.33)
=

∏
p,k\k1

√
2ωiZ−1/2

∫
dd+1x1e

−ik1x1 〈Ω| T

(∏
aout
p S

(
2 +m2

)
φ(x1)

m∏
2

ain†
k

)
|Ω〉

=
∏
p,k\k1

√
2ωiZ−1/2

∫
dd+1x1e

−ik1x1
(
2 +m2

)
〈Ω| T

(∏
aout
p Sφ(x1)

m∏
2

ain†
k

)
|Ω〉+ X

In the last step, X comes from where the 2x1 hits the time ordering symbol. This

gives terms that will not matter when we take k2 → m2, I promise.

5. Now do this for every particle to get

〈p1 · · · pn|S |k1 · · · km〉 =
∏m

j=1

∫
dd+1yj e

+ipjyj iZ−1/2 (2j +m2)∏n
i=1

∫
dd+1xi e

−ikixiiZ−1/2 (2i +m2) 〈Ω| T φ(xi) · · ·φ(yj)S |Ω〉+ X‘

The x and y integrals are just Fourier transforms, and this says that near the

mass shell,

G̃(n+m)(k1 · · · km,−p1 · · · − pn) =
n+m∏
a

i
√
Z

P 2
a −m2

〈p1 · · · pn|S |k1 · · · km〉+ regular

(where Pa ∈ {pj, ki}) which is the same as (4.31).

Comments about LSZ.

• An apparently important role is played in the derivation of LSZ by our bron-

tosaurus expedient (after (4.9)). The reason this crazy-seeming trick works is
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the locality of interactions. In a scattering experiment, we scatter well-localized

wavepackets that start and end far away from each other, and therefore do not

interact at the beginning and the end. Although we calculate S-matrix elements

of plane waves (not localized at all), this is also just an expedient – if you forced

me we could figure out how to write the formula for wavepackets instead. No

physics conclusion would be different.

• The real content of the φin, φout business is adiabatic continuation – we are la-

belling the (low-lying) eigenstates of the full Hamiltonian by those of the free

theory. This does not always work! There are at least two failure modes.

The most dramatic is when the eigenstates are not particle states at all, but

rather some kind of soup of excitations. This is what happens in a conformal

field theory (CFT), and is sometimes called unparticles. In this case, not only

does our formula for the S-matrix not work, but the S-matrix itself is not so

well-defined.

Less dramatic is when there are asymptotic particle states, but they are not

simply related to the quanta of the fields in the Lagrangian. This happens any

time there are boundstates, like positronium in QED. But it happens even more

dramatically in QCD, where our microscopic Lagrangian description is in terms

of quarks and gluons, but the quarks and gluons are confined, and the asymp-

totic particle states are instead all colorless composites called hadrons (protons,

neutrons, pions ...). The next item shows that LSZ also teaches us how to deal

with this.

• In our discussion of QFT, a special role has been played by certain fields called

φ. Suppose we have some other (say hermitian) local operator O such that

〈p| O(x) |Ω〉 = ZOe
ipx

where 〈p| is a one-particle state made by our friend φ (we could put some labels,

e.g. for spin or polarization or flavor, on both the operator and the state, but

let’s not). Such an O is called an ‘interpolating field’ or ‘interpolating operator’.

And suppose we have information about the correlation functions of O:

G
(n)
O (1 · · ·n) ≡ 〈Ω| T (O1(x1) · · · On(xn)) |Ω〉 .

In this case, there is a more general statement of LSZ:∏
a∈i

(
Z
−1/2
a i

∫
dd+1xae

−ipaxa (2a +m2
a)
)

∏
b∈f

(
Z
−1/2
b i

∫
dd+1xbe

+ipbxb (2b +m2
b)
)
G

(n)
O (1 · · ·n)
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= 〈{pf}|S |{pi}〉 (4.34)

This more general statement follows as above if we can write Oa
t→−∞
 
√
Zaφin.

This more general formula allows us to scatter particles that are not ‘elementary’

in the sense that they are just the quanta of the fields in terms of which we write

our Lagrangian.

(So, for the example of positronium, which is a boundstate of an electron and a

positron, we can take O(x) = ψ̄e(x)ψe(x) where ψe is the field that annihilates

an electron. This operator has some nonzero amplitude to create a state with a

positronium atom from the vacuum: 〈positronium, q| O(x) |Ω〉 = Zeiqx.)
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4.6 Interlude: old-fashioned perturbation theory

I’m skipping this section in lecture. You might enjoy reading it anyway.

[Schwartz, chapter 4] I want to take a brief break from the inexorable building of

theoretical machines to demonstrate some virtues of those machines. It will explain

what I was really mumbling about when I said that the Feynman propagator involves

antiparticles going backwards in time.

Consider a system which is a small perturbation of a solvable system H = H0 +

V . Suppose that the initial system H0 has a continuous spectrum, so that there are

eigenstates at every nearby energy. Then given an eigenstate of H0, H0 |ϕ〉 = E |ϕ〉, we

expect an eigenstate of H with the same energy H |ψ〉 = E |ψ〉. Palpating the previous

equation appropriately gives

|ψ〉 = |ϕ〉+
1

E −H0 + iε︸ ︷︷ ︸
≡Π

V |ψ〉

(the Lippmann-Schwinger equation). This represents the perturbed eigenstate as the

free one plus a scattering term, in terms of the ‘propagator’ Π. The iε is a safety factor

which helps us negotiate the fact that E −H0 is not actually invertible. To write this

entirely in terms of the known free state |ϕ〉, iterate. Let V |ψ〉 ≡ T |ϕ〉 where T is the

transfer matrix:

|ψ〉 = |ϕ〉+ ΠT |ϕ〉 .

Now act on both sides with V to get V |ψ〉 = T |ϕ〉 = V |ϕ〉+VΠT |ϕ〉, which will hold

if

T = V+VΠT = V+VΠ(V+VΠT ) = V+VΠV+VΠV+VΠVΠV+· · · =
(

1

1− VΠ

)
V

Given a complete set of eigenstates of H0, with
∑

i |ϕi〉 〈ϕi| = 1,

Tfi ≡ 〈ϕf |T |ϕi〉 = Vfi + VfjΠ(j)Vji + VfjΠ(j)VjkΠ(k)Vki + · · ·

where Vfi ≡ 〈ϕf |V |ϕi〉 gives the first Born approximation, and Π(j) ≡ 1
E−Ej , and

E = Ei = Ef , energy is conserved.

For a vivid example, consider the mediation of a force by a boson field. Let

V =
1

2
e

∫
ddx (Ψe(x)φ(x)Ψe(x) + Ψµ(x)φ(x)Ψµ(x))

where ‘φ’ is for ‘photon’ and ‘e’ is for ‘electron’ and ‘µ’ is for ‘muon’ but we’ve omitted

spin and polarization information, and got the statistics and charge of the electron and
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proton wrong, for simplicity. Consider the free eigenstates |i〉 = |~p1, ~p2〉 , 〈f | = 〈~p3, ~p4|
where 1, 3 represent electron states and 2, 4 represent muon states respectively. (I

introduce two kinds of fields here to avoid the presence of some extra diagrams.) Then,

Tfi = Vfi︸︷︷︸
p1,2 6=p3,4

= 0

+
∑
n

Vfn
1

Ei − En
Vni + · · · .

What are the possible intermediate states |n〉? It has to be an e, a µ and one φ, as

in the following visualization (not a Feynman diagram in the same sense we’ve been

discussing):

Time goes to the left, as always. The wiggly line represents the quantum of φ. You

see that there are two classes of possibilities: |nR〉 = |p3, pγ; p2〉 , |nA〉 = |p1; pγ, p4〉.
Consider them from the point of view of particle 2. In the first (R) case, µ2 absorbs a

photon emitted by particle 1, after the emission happens:

V R
ni = 〈p3, pγ, p2|V |p1, p2〉 = 〈p3, pγ|V |p1〉 〈p2|p2〉︸ ︷︷ ︸

=1

=
e

2

∫
ddx

〈
p3, pγ

∣∣Ψe(x)φ(x)Ψe(x)
∣∣p1
〉

=
e

2

∫
ddx 〈pγ|φ(x) |0〉︸ ︷︷ ︸

=e−i~pγ ·~x

〈
p3
∣∣Ψ(x)2

e

∣∣p1
〉︸ ︷︷ ︸

=2e−i(~p3−~p1)·x

= e/δ
d
(~p1 − ~p3 − ~pγ) (4.35)

– momentum is conserved. Note that energy is not, Ei 6= En (or else the denominator

is zero).

The other possibility is |nA〉 = |p1; pγ, p4〉, which means µ2 feels the effects of a

photon it emitted, which is later absorbed by e1 (!).

V A
ni = 〈p4pγ|V

∣∣p2
〉

= e/δ
d
(~p2 − ~p4 − ~pγ).
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Altogether, to leading nonzero order,

Tfi =
∑
n

Vfn
1

Ei − En
Vni =

∑
n=R,A

∫
ddpγ/δ

d
(p1 − p3 − pγ)/δ

d
(p2 − p4 + pγ)

e2

Ei − En
.

A bit of kinematics: let the φ have mass mγ, so for a given ~pγ, Eγ =
√
|~pγ|2 +m2

γ.

Notice that these are real particles, they satisfy the equations of motion. For the R

case, the intermediate energy is

ER
n = E3 + ER

γ + E2 = E3 +
√
|~p1 − ~p3|2 +m2

γ + E2

so

Ei − ER
n = E1 + E2 − (E3 + ER

γ + E2) = E1 − E3 − ER
γ = −∆E − Eγ

where ∆E ≡ E3 −E1 = E2 −E4 (by overall energy conservation). Momentum conser-

vation means ~pγ = ~p2 − ~p4 = ~p3 − ~p1 so

EA
γ =

√
|~p1 − ~p3|2 +m2

γ =
√
|~p2 − ~p4|2 +m2

γ = ER
γ ≡ Eγ.

Therefore

Ei − EA
n = E1 + E2 − (E1 + E4 + Eγ) = +∆E − Eγ.

The sum of these factors is∑
n=R,A

e2

Ei − En
=

e2

−∆E − Eγ
+

e2

∆E − Eγ
=

2Eγe
2

∆E2 − E2
γ

= 2Eγ
e2

k2 −m2
γ

.

Here we defined kµ = pµ3 − pµ1 = (∆E, ~pγ)
µ, and k2 = kµk

µ is a Lorentz-invariant

inner product. Ignoring the normalization factor 2Eγ, this is the Lorentz-invariant

momentum-space propagator for the φ particle with four-momentum kµ. Notice that

there is no actual particle with that four-momentum! It is a superposition of a real

particle going forward in time and its (also real) antiparticle going backward in time.

If we followed the iε that would work out, too, to give the Feynman propagator.
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4.7 S-matrix from Feynman diagrams

Here is a summary of the long logical route connecting Feynman diagrams to measur-

able quantities:

One step is left.
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S-matrix from Feynman diagrams. Now we resume our inexorable progress

towards observable physics (such as cross sections and lifetimes). The end result of

the previous discussion is a prescription to compute S-matrix elements from Feynman

diagrams. In a translation-invariant system, the S matrix always has a delta function

outside of it. Also we are not so interested in the diagonal elements of the S matrix

where nothing happens. So more useful than the S matrix itself are the scattering

amplitudes M defined by

〈f | (S − 1) |i〉 ≡ (2π)d+1δ(d+1)

(∑
f

pf −
∑
i

pi

)
iMfi . (4.36)

(The object iM/δ
d+1

(
∑
p) is sometimes called the transfer matrix. The i is a conven-

tion.)

The rules for the Feynman diagram calculation ofM (for φ4 theory, as a represen-

tative example) are:

1. Draw all amputated diagrams with appropriate external nubbins for the initial

and final states. For a diagram with NL loops think of NL letters that are like k

or q or p to call the undetermined loop momenta.

2. For each vertex, impose momentum conservation and multiply by the coupling

(−iλ). Label each (oriented) edge with a momentum variable.

3. For each internal line, put a propagator.

4. For each loop, integrate over the associated momentum
∫

d̄d+1k.

A comment about rule 1: For tree-level diagrams (diagrams with no loops), ‘am-

putate’ just means leave off the propagators for the external lines. More generally, it

means leave off the resummed propagator (4.29). For example, a diagram like

is already included by using the correct Z and the correct m. Note that in all of the

diagrams to follow, the external lines are actually just nubbins, in this sense.

Example: snucleon scattering. [Here we follow Tong §3.5 very closely] Let’s

return to the example with a complex scalar field Φ and a real scalar field φ with

Lagrangian (4.10). Relative to φ4 theory, the differences are: we have two kinds of

propagators, one of which is oriented (because Φ is complex), and instead of a 4-point

vertex that costs −iλ, we have a 3-point vertex for φΦ?Φ that costs −ig.

Let’s consider 2 → 2 scattering of Φ particles [recall HW 5 or see Tong §3.3.3 for

the artisanal version of this calculation], so

|i〉 = |~p1, ~p2〉 , |f〉 = |~p3, ~p4〉 with |~pi, ~pj〉 ≡
√

2E~pi

√
2E~pjb

†
~pi

b†~pj |0〉 .
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The Feynman rules above give, to leading nonzero order in g,

iMΦΦ←ΦΦ =

= (−ig)2

(
i

(p1 − p3)2 −M2 + iε
+

i

(p1 − p4)2 −M2 + iε

)
. (4.37)

The diagrams depict two ‘snucleons’ Φ (solid lines with arrows indicating snucleons

versus antisnucleons) exchanging a meson φ (double gray line, with no arrow) with

momentum k ≡ p1 − p3 = p4 − p2 (first term) or k ≡ p4 − p1 = p2 − p3 (second term).

Time goes to the left as always. Notice that here I am being careful about using arrows

on the lines to indicate flow of particle number through the diagram, while the extra

(light blue) arrows indicate momentum flow.

The two diagrams included in (4.37) make the amplitude symmetric under inter-

changing the two particles in the initial or final state, as it must be because they are

indistinguishable bosons.

Some useful names for the Lorentz-invariant kinematic variables in a 2← 2 process:

the diagrams in (4.37) are called the t-channel and u-channel diagrams, according to

the momentum flowing in the internal line. They are named after the Mandelstam

variables t ≡ (p1 − p3)2 and u ≡ (p1 − p4)2. I claim that when p1 and p2 are on-shell

(p2
1 = m2 = p2

2), both t and u are strictly negative so that the iεs in (4.37) can be

ignored. There is one more Mandelstam variable for 2-to-2 scattering, s ≡ (p1 + p2)2.

They are not all independent, but satisfy s+ t+ u =
∑4

i=1m
2
i .

The meson in these diagrams is a “virtual”, or off-shell, particle in the sense that

it does not satisfy its equation of motion k2 6= M2. As we saw in §4.6, each of

these diagrams is actually the sum of retarded and advanced exchange of real on-shell

particles. I think the notion of virtual particle is just a book-keeping device and should

not be taken too seriously. Notice that the more virtual is the intermediate state

(i.e. the more k2 differs from M2), the smaller is the amplitude.

Mediation of forces. Consider the non-relativistic (NR) limit of the snucleon-

snucleon scattering amplitude (4.37). In the center-of-mass frame ~p ≡ ~p1 = −~p2 and

~p′ ≡ ~p3 = −~p4. In the NR limit, |~p| � m, and so p0
1 = m(1 + 1

2

(
|~p|
m

)2

+ · · · ).
Energy-momentum conservation says p1 + p2 = p3 + p4, so |~p′| = |~p| � m as well.

In this limit, the meson propagator (in the first diagram) depends on (p1 − p3)2 =
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(p0
1 − p0

3)2 − (~p− ~p′)2 ' −(~p− ~p′)2, so the amplitude reduces to

iM = +ig2

(
1

(~p− ~p′)2 +M2
+

1

(~p+ ~p′)2 +M2

)
.

Now compare to NR QM. The scattering amplitude in the COM frame for two particles

with relative position ~r and potential U(~r) is, in the first Born approximation,

iABorn(~p→ ~p′) = −i NR 〈~p′|U(~r) |~p〉NR = −i

∫
ddrU(~r)e−i(~p−~p

′)·~r

where the two-particle state with NR normalization is

|~p〉NR =
1√

2E1

√
2E2

|p1, p2〉 =
1

2m
|p1, p2〉 .

The two diagrams in the relativistic answer come from Bose statistics, which means we

can’t distinguish ~p→ ±~p′ from each other; to infer the potential we can just compare

the first diagram, (2m)2iABorn(~p→ ~p′) = +ig2 1
(~p−~p′)2+M2 to find:

∫
ddr U(~r)e−i(~p−~p

′)·~r = −MNR limit = −
(
g

2m

)2

(~p− ~p′)2 +M2

which means, in d = 3, (see footnote 33 for the integral)

U(~r) = −
(
g

2m

)2

4πr
e−Mr.

This is the Yukawa potential again. It has a range, M−1, determined by the mass of

the exchanged particle. If we take M → 0, it becomes the Coulomb potential. The

sign means that it is attractive, even though this is the potential between particle

and particle; this is a general consequence of scalar exchange. Notice that in d = 3,

the Yukawa coupling between scalars has 0
!

= [
∫
d4xgφΦ2] = −4 + 3 + [g] so g/m is

dimensionless.

A brief warning: while it is satisfying to make contact with something familiar

here, the way we actually measure any such potential is by scattering the particles and

measuring cross-sections.

[End of Lecture 14]

Two more examples with the same ingredients are useful for comparison. If we

instead scatter a snucleon and an anti-snucleon, so |i〉 =
√

2E~p1
√

2E~p2b
†
~p1

c†~p2 |0〉, then
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the leading diagrams are

iMΦΦ̄←ΦΦ̄ =

= (−ig)2

(
i

(p1 + p2)2 −M2 + iε
+

i

(p1 − p3)2 −M2 + iε

)
. (4.38)

This one has a new ingredient: in the first diagram, (which is called the s-channel

diagram after s ≡ (p1 + p2)2 = E2
CoM) the meson momentum is k = p1 + p2, which

can be on-shell, and the iε matters. This will produce a big bump, a resonance, in the

answer as a function of the incoming center-of-mass energy
√
s ≡

√
(p1 + p2)2.

Finally, we can scatter a meson and a snucleon:

iMΦφ←Φφ =

= (−ig)2

(
i

(p+ k)2 −m2 + iε
+

i

(p− k′)2 −m2 + iε

)
. (4.39)

Now the intermediate state is a snucleon.

4.8 From the S-matrix to observable physics

Now, finally, we extract some physics that can be measured from all the machinery

we’ve built.

Lifetimes. [Schwartz, chapter 4; Peskin §4.5] How do we compute the lifetime of

an unstable particle in QFT? Consider such a particle in its rest frame, pµ = (M,~0)µ.

Let dP be the probability that the particle decays (into some set of final states f)

during a time T . The decay rate is then dΓ ≡ 1
T
dP , the probability per unit time. I

put a dΓ to indicate a differential decay rate into some particular set of final states.

If we sum over all possible final states, we can make a practical, frequentist definition

of the decay rate, with the idea that we have a big pile of particles and we just count

how many go away in some time window:

Γ ≡ # of decays per unit time

# of particles
≡ 1

τ
(4.40)
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where τ is the lifetime.

Fortunately for us, particles that are stable in the free theory can decay because

of weak interactions; in such a case, we can relate dP to an S matrix element for a

process that takes one particle to n particles, 〈f | Ŝ |i〉 = Sn←1

(
{pj}nj=1 ← (M,~0)

)
. (To

get the full decay rate Γ we would have to sum over n and the possible final states of

each particle.) So:

dΓ ≡ 1

T
dP =

1

T

|〈f |S |i〉|2

〈f |f〉 〈i|i〉
dΠf (4.41)

Here are two new ingredients:

(1) dΠf is the volume of the region of final-state phase space, dΠf ∝
∏n

j=1d̄
dpj. We

are allowing, as we must, for imperfect measurements. We will normalize the

density of final states so that
∫
dΠ = 1. Putting back the IR and UV walls of

our padded room as in (1.4), we take the continuum limit (N →∞) of

xi =
i

N
L, pi =

2π

L

i

N
, i = 1 · · ·N

which requires, for each spatial dimension,

∆x
∑
i

=
L

N

∑
i

N→∞,Lfixed
 

∫
dx = L and

1

2π
∆p
∑
i

=
1

2π

2π

LN

∑
i

N→∞,Lfixed
 

∫
d̄p = L−1.

This gives

dΠ =
n∏
j=1

Vd̄dpj,

a factor of the volume of space V = Ld for each final-state particle.

(2) The normalization factors 〈f |f〉 〈i|i〉 are not so innocent as they look, partly

because of our relativistic state normalization. Recall that |~p〉 =
√

2ω~pa
†
~p |0〉, the

price for the relativistic invariance of which is〈
~k|~p
〉

=
√

2ω~p2ω~k · 〈0| aka
†
p |0〉︸ ︷︷ ︸

=〈0|[ak,a
†
p]|0〉=/δd(~k−~p)

= 2ω~p/δ
d
(~p− ~k)

Therefore,

〈~p|~p〉 = 2ω~p/δ
d
(0) = 2ω~p

(∫
dx ei(p=0)x

)d
= 2ω~pV.

Therefore, for a 1→ n process in the rest frame of the initial particle,

|i〉 =
√

2Ma†~0 |0〉 =⇒ 〈i|i〉 = 2MV
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|f〉 = |{~pj}〉 =⇒ 〈f |f〉 =
n∏
j

(2ωjV ) (4.42)

where I’ve abbreviated ωj ≡ ω~pj and evaluated things in the rest frame of the

decaying particle.

Now it is time to square the quantum amplitude

〈f | (S − 1) |i〉 = i/δ
d+1

(pT ) 〈f |M |i〉

(pT =
∑
pi−

∑
pf is the total momentum change) to get the probability (4.41). Again

we encounter a δ2, and again we use (2π)d+1δd+1(0) = TV . So we have

| 〈f | (S − 1) |i〉 |2 = /δ
d+1

(0)/δ
d+1

(pT )| 〈f |M |i〉 |2 = V T/δ
d+1

(pT )|M|2

and therefore (as long as f 6= i),

dP = TV /δ
d+1

(pT )
1

2MV
∏n

j (2ωjV )
|M|2

n∏
j

Vd̄dpj

=
T

2M
|M|2dΠLI (4.43)

where all the factors of V went away (!), and

dΠLI ≡
∏

final state,j

d̄dpj
2ωj

/δ
d+1

(pT )

is a Lorentz-invariant measure on the allowed final-state phase space. You can see that

this is indeed Lorentz-invariant by the same calculation that led us to stick those 2ωjs

in the states. One more step to physics:

dΓ =
1

T
dP =

1

T

T

2M
|M|2dΠLI = |M|2︸ ︷︷ ︸

dynamics

1

2M
dΠLI︸ ︷︷ ︸

kinematics

dΓ = |M|2 1

2M
dΠLI .

On the RHS is all stuff we know how to calculate (recall the Feynman rules forM that

we listed after (4.36)), and on the LHS is a particle decay rate.

The boxed formula gives the decay rate in the rest frame of the unstable particle.

In other frames, the lifetime gets time-dilated. This must be true on general grounds
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of special relativity, but we can see this directly: in a general frame, the normalization

of the initial state is not 〈i|i〉rest frame = 2M but 〈i|i〉 = 2E. Therefore

Γrest frame

Γ
=

E

M
= γ ≥ 1

and τ = τ rest frameγ ≥ τ rest frame.

Cross sections. If we are not in the convenient situation of having in our hands

a big pile of particles that are stable in the free theory and decay because of not-too-

strong interactions, we need to be more proactive to get physics to come out: we have to

smash the particles together. When doing this, we send beams of particles at each other

and see what comes out. We will treat these beams as perfectly collimated momentum

eigenstates; if something goes wrong, we’ll make a more accurate representation and

put them in better-localized wavepackets. A quantity that is good because it is intrinsic

to the particles composing the beams is the scattering cross section, σ, defined by

Number of events of interest ≡ NANB

A
dσ

where A is the common area of overlap of the beams A and B, and NA,B are the

number of particles in each beam. (Peskin does a bit more

worrying at this point, for example, about whether the beams have constant density of

particles.) By ‘events of interest’ I mean for example those particles that end up going

in a particular direction, for example in a solid angle dΩ(θ, ϕ). Restricting to events of

interest in a particular direction gives the differential cross section, dσ
dΩ

. The notation

is motivated by the idea that σ =
∫

all directions
dΩ dσ

dΩ
.

The cross-section is the effective cross-sectional area of the

beam taken out of the beam and put into the particular state

of interest. Here is a picture (adapted from Schwartz’ book)

which I think makes vivid the idea behind the definition of

a cross section:

Now we relate σ to the S-matrix. The scattering rate dwfi ≡ dPfi
T

is the scattering

probability per unit time, for some fixed initial and final particle states. In a beam,

this is related to the cross section by

dσ =
dw

j
(4.44)

where j is the particle current density (aka the particle flux), which for the case of

scattering from an initial state with two particles A+B → ... is

j =
relative velocity of A and B

volume
=
|~vA − ~vB|

V
.
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The number of particles in each beam does not appear in (4.44) because the BHS

is intensive, and this is the point of introducing σ: it’s independent of details of the

experiment like how many opportunities the particles have to interact. Putting together

these statements, we can relate the cross section to the scattering probability:

dσ =
dwfi
j

=
dPfi
Tj

=
V

T

1

|~vA − ~vB|
dPfi. (4.45)

In (4.45) we used a practical frequentist expression for (4.44), analogous to (4.40) for

decay rates. And just as in the discussion of lifetimes above,

dPfi =
|〈f |S |i〉|2

〈f |f〉 〈i|i〉
dΠf .

Everything is as before except for the different initial state:

|i〉 = |~pA, ~pB〉 =⇒ 〈i|i〉 = (2ωAV )(2ωBV ).

Squaring the amplitude gives

dP =
T

V

1

2ωA2ωB
|M|2dΠLI ;

the only difference is that we replace 1
2M

with the factors for the 2-particle initial state.

Finally, dσ = V
T

1
|~vA−~vB |

dP gives

dσ =
1

2ωA2ωB

1

|~vA − ~vB|
|M|2dΠLI .

Again all the IR-divergent factors of V and T went away in the intrinsic physical

quantity, as they must.

Two-body phase space. [Schwartz §5.1] To make the preceding formulae more

concrete, let’s simplify them for the case of n = 2: two particles in the final state,

whose momenta we’ll call p1, p2. Note that overall momentum conservation implies

p1 + p2 = pCM ; we can use this to eliminate p2. In that case

dΠLI = /δ
d+1

(pT )
d̄dp1

2E1

d̄dp2

2E2

Ei ≡
√
|pi|2 +m2

i

=
1

4(2π)2d−(d+1)

1

E1E2

δ(E1 + E2 − ECM) ddp1︸︷︷︸
=dd−1Ωpd−1

1 dp1

p1 ≡ |p1| > 0

=
1

4(2π)d−1

dd−1Ωpd−1
1 dp1

E1E2

θ(p1)δ(x) x(p1) ≡ E1(p1) + E2(p2 = pCM − p1)− ECM

CoM
=

1

4(2π)d−1

dd−1Ωpd−2
1

E1E2

E1E2

ECM
dxδ(x)︸ ︷︷ ︸

=1

θ(ECM −m1 −m2) dp1 =
dp1

dx
dx

CoM
=

E1E2

E1 + E2

dx

p1
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In the last step, we went to the center-of-momentum frame where ~pCM = 0, and we

used the fact that p1 ≥ 0 means E1(p1) ≥ m1, E2(p2 = pCM − p1) ≥ m2.

2 → 2 scattering in d = 3. Let’s be completely explicit in the special case of 3

spatial dimensions, which is sometimes of interest. Let the initial momenta be kA, kB.

In particular, the relative velocity factor is

|~vA − ~vB|
CoM: ~kA=−~kB=

∣∣∣∣ |kA|EkA
+
|kB|
EkB

∣∣∣∣ = |kA|
ECM
EkAEkB

Therefore (
dσ

dΩ

)
COM

=
1

64π2E2
CM

|~p1|
|~kA|
|M|2θ(ECM −m1 −m2). (4.46)

Warning: for identical particles in the final state, one must be careful about over-

counting in the integral over angles, since a rotation by π exchanges them. In this case

σ = 1
2

∫
4π
dΩ dσ

dΩ
.

4.9 Why care about GR?

[Hartnoll, 0903.3246, §3.1; Fradkin, QFT, §10.9] From discussions of QFT in particle

physics, you might be hard-pressed to understand why in the world anyone would care

about real-time Green’s functions other than the Feynman Green’s function. Here

I would like to try to ameliorate that situation. I will describe another way to get

observable physics from QFT.

Recall that the retarded Green’s function for two observables A and B is

GR
AB(ω,~k) = −i

∫
dD−1xdt eiωt−i

~k·~xθ(t)〈[A(t, ~x),B(0, 0)]〉

θ(t) = 1 for t > 0, else zero. As I will explain now, we care about this because it

determines what 〈A〉 does if we kick the system via B.

What I mean by ‘kick the system via B is perturb the Hamiltonian. Consider a

time dependent perturbation to the Hamiltonian:

δH(t) =

∫
dD−1xf(t, ~x)B(~x) .

And we’ll be interested in the resulting change in the expectation value of A:

〈A(~x)〉(t) ≡ Tr ρ(t) A(~x)

= Tr ρ0 U
−1(t)A(t, ~x)U(t) .
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Here we can take the density matrix ρ0 to be ρ0 = e−βH0/Z, the thermal state, or its

limit when β → ∞, limβ→∞ e
−βH/Z = |Ω〉〈Ω|, the projector onto the groundstate. In

interaction picture with Htotal = H + δH(t), the time evolution operator is U(t) =

T e−i
∫ t δH(t′)dt′ , and A(t, ~x) evolves by the unperturbed Hamiltonian, H. (Note that H

may be of the form H0 + V with H0 solvable, but this assumption is not necessary for

what follows.)

But suppose that δH is small, so we can linearize in the small perturbation:

δ〈A〉(t, ~x) = −iTr ρ0

∫ t

dt′[A(t, ~x), δH(t′)]

= −i

∫ t

dD−1x′dt′〈[A(t, ~x),B(t′, ~x′)]〉f(t′, ~x′)

=

∫
dDx′GR

AB(x, x′)f(x′) .

Fourier transforming the preceding equation, we find

δ〈A〉(ω,~k) = GR
AB(ω,~k)f(ω,~k) . (4.47)

These equations are sometimes written in terms of the susceptibility matrix χAB

δ 〈A〉 = χABf

(in position space this is a convolution, and in momentum space it is just a product).

Linear response, an example. Consider a system with a conserved charge. Take

as the perturbation an external electric field, Ex = iωAx, which couples via δH = AxJ
x

where J is the electric current. That is: B = Jx.

And we’ll be interested in the response of the electric current, so A = Jx as well. It’s

safe to assume 〈J〉E=0 = 0 (this is called Bloch’s Other Theorem), so (4.47) specializes

to

〈J(ω,~k)〉 = GR
JJ(ω,~k)Ax(ω,~k) = GR

JJ(ω,~k)
Ex(ω,~k)

iω

Recall that Ohm’s law J = σE defines the conductivity σ. (Really it is a tensor

since J and E are both vectors, but don’t worry about that now.) Therefore we have

the

Kubo formula: σ(ω,~k) =
GR

JJ(ω,~k)

iω
.

I have glossed over some important subtleties in this derivation in order to quickly

convey the idea; for a more complete treatment, please see Fradkin §10.10.
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There is a lot more to say about the analytic structure of GR (because of causality

(the factor of θ(t)), it is analytic in the upper-half frequency plane) and its relation

to the time-ordered Green’s function. In fact, they are both determined by the same

information, namely the spectral density (for which see e.g. here).

[End of Lecture 15]
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5 Spinor fields and fermions

[Peskin chapter 3] Now we need to confront the possibility of fields that transform in

more interesting ways under Lorentz transformations. To do so, let’s back up a bit.

5.1 More on symmetries in QFT

Lightning summary of group theory.48 A group G = {gi} is a set of abstract

elements,

1. two of which can be multiplied to give a third g1g2 ∈ G.

2. The product is associative (g1g2)g3 = g1(g2g3)

3. and has an identity element g0gi = gi for all gi

4. and every element has an inverse, ∀i,∃g−1
i such that gig

−1
i = g0.

The order of G, denoted |G|, is the number of elements of the group. G is abelian if

the product is commutative.

A Lie group is a group whose elements depend smoothly on continuous parameters,

g(θ). These then provide local coordinates on the group manifold. The dimension

of a Lie group is the number of coordinates (to be distinguished from |G|, which is

continuously infinite for a Lie group).

A (linear) representation R of a group assigns to each abstract element g of the

group a linear operator D̂R(g) on some vector space H, R : g 7→ D̂R(g) in a way

that respects the group law (it is a group homomorphism): meaning that D̂R(g0) = 1

and D̂R(g1)D̂R(g2) = D̂R(g1g2).49 If we choose a basis of the vector space, then D̂R(g)

determines a matrix. Two representations R and R′ are regarded as the same R ' R′ if

they are related by a change of basis on H, DR(g) = S−1DR′(g)S (with S independent

of g!). A reducible representation is one for which the matrices can be made block

diagonal by a basis change. A reducible representation is equivalent to R1 ⊕R2 ⊕ ... a

direct sum of irreducible representations, DR '

DR1 0

0 DR2

. . .

.

48This is a big subject, which I’m going to try to present efficiently. A whole quarter on the subject

is here.
49Since the overall phase of a vector in H is unphysical, quantum mechanics allows for projective

representations where the group law is only satisfied up to phases. We’ll see an example below.
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The dimension of R is the dimension of H as a vector space. Notice that different

representations of the same group G can have different dimensions!

What properties of G are inherent in all of its representations? For the case of

Lie groups, one answer is the Lie algebra relations. Consider a (say n-dimensional)

representation of a group element near the identity (which let’s label the identity

element g0 ≡ e ≡ g(θ = 0) by the coordinate value θ = 0):

DR(g(θ ∼ 0)) = 1 + iθaT
a
R +O(θ2), i .e. T aR ≡ −i∂θaDR(g(θ))|θ=0

where T aR are the generators of G in the representation R. In a basis for the vector

space, they are n× n matrices.

The generators T a determine a basis of the tangent space ofG

at the identity, TeG (or equivalently, by the group action, at

any other point). A finite transformation (in the component

of the Lie group that is continuously connected to the identity

element) can be written as

DR(g(θ)) = e−iθaT
a
R

which is unitary if T = T †.

Given two such elements DR(g(θ1)) = e−iθ
1
aT

a
R and DR(g(θ2)) = e−iθ

2
aT

a
R , their prod-

uct must give a third:

DR(g1)DR(g2) = DR(g1g2) = e−iθ
3
aT

a
R (5.1)

for some θ3. Expanding the log of the BHS of (5.1) to second order in the θs (see

Maggiore chapter 2.1 for more detail), we learn that we must have

θ3
a = θ1

a + θ2
a −

1

2
θ1
bθ

2
cf

bc
a +O(θ)3

which implies that

[T a, T b] = ifabc T
c (5.2)

which relation is called the Lie algebra g of G, and the fs are called structure constants

of g or G. f does not depend on the representation. For those of you comfortable

with differential geometry, an easy way to see this is that the commutator is the Lie

bracket between two tangent vectors (which gives another tangent vector). Note that

the normalization of the T a is ambiguous, and rescaling T rescales f . A common

convention is to choose an orthonormal basis

trT aT b =
1

2
δab. (5.3)
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Notice that we often use lowercase letters to denote the algebra g and uppercase letters

to denote the group G, which is natural since the algebra generates small group trans-

formations. The Lie algebra is defined in the neighborhood of the identity element,

but by conjugating by finite transformations, the tangent space to any point on the

group has the same structure, so the Lie algebra determines the local structure every-

where in the group. But it doesn’t know about global, discrete issues, like disconnected

components, so different groups can have the same Lie algebra.

Any set of matrices obeying (5.2) provides a representation of the Lie algebra. By

exponentiating them, we get a representation of the Lie group. This is the best way to

think about representations of Lie groups.

A casimir of the algebra is an operator made from the generators that commutes

with all of them. Acting on an irreducible representation (≡ one which is not reducible

≡ irrep), where all the states can be made from each other by the action of products

of generators, it is proportional to the identity.

Example: representations of the rotation group. This will be a fancy pack-

aging of familiar stuff which will make the step to Lorentz transformations painless (I

hope). Recall from QM that generators of rotations about the axes x, y, z = 1, 2, 3,

Ji=1,2,3, satisfy the Lie algebra so(3) = su(2):

[Ji,Jj] = iεijkJk. (5.4)

So the structure constants are f ijk = εijlδlk. A Casimir of this algebra (meaning that

it commutes with all the generators) is J2 =
∑

i (J
i)

2
, which acts as j(j + 1)1 on the

spin-j representation, whose dimension is 2j + 1, any non-negative integer. A finite

rotation on H is

D(n̂, θ) = e−iθn̂·
~J

where n̂ is a unit vector and θ is an angle, so three real parameters. Familiar matrix

solutions of (5.4) are its action on vectors, where the generators are 3× 3 matrices:(
J i(j=1)

)j
k = −iεijk

(with ε123 = 1) and its 2d representation on the Hilbert space of a spin-1
2

object:

J i(j= 1
2) =

1

2
σi .

Also, its one-dimensional representation, on a scalar, has J i(j=0) = 0, so eiθJ(j=0) = 1.

More generally, the 2j + 1 dimensional representation is D(j)(θ) = e−iθ
aJa with(

J3
)
mm′

= δmm′m,
(
J±
)
mm′
≡
(
J1 ± iJ2

)
mm′

= δm′,m±1

√
(j ∓m)(j ±m+ 1),

(5.5)
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with the basis labels taking the 2j+ 1 values m,m′ ∈ {−j,−j+ 1 · · · j−1, j}. You can

check that these matrix elements reduce to the above three examples for j = 0, 1/2, 1.

Notice that the rotation algebra (5.4) is the statement that Ji itself transforms as

a vector (j = 1) under infinitesimal rotations. What I mean by this is: the action of G

on H by |ψ〉 → DR |ψ〉 implies an action on linear operators on H by O 7→ DROD†R.

Relabelling the reference axes x, y, z that we used to label Ji by a rotation g produces

a rotation by the same angle in the 3d representation. The reference axes themselves

transform in the spin-1 representation:(
D(j=1)(g)

)k
j
Jj = DR(g)†JkDR(g), (5.6)

the infinitesimal version of which is (5.4) (or maybe its complex conjugate). More

generally, the equation

[J i, Kj] = iεijkKk

is the statement that K transforms as a vector.

O(d) for general d. Some of what I have said so far about rotations is special to

rotations in d = 3. In particular, the notion of “axis of rotation” is (d = 3)-centric.

More generally, a rotation is specified by a (2d) plane of rotation; in d = 3 we can

specify a plane by its normal direction, the one that’s left out J i ≡ 1
2
εijkJ jk. Notice

that only the bit of J jk antisymmetric in j ← k appears here, so we assume it is

antisymmetric. In terms of these generators, the so(3) lie algebra is (using ε identities)

[J ij, Jkl] = i
(
δjkJ il + δilJ jk − δikJ jl − δjlJ ik

)
. (5.7)

The RHS here must be antisymmetric under exchange i← j or k ← l or ij ← kl, and

is largely determined by these properties. The vector representation is(
J ij(1)

)k
l = −i

(
δikδjl − δ

jkδil
)

(5.8)

(that is, there is a −i in the ij entry and an i in the ji entry and zeros everywhere

else). In d = 3, the spinor representation is

J ij
( 1
2)

= εijk
1

2
σk =

i

4
[σi, σj]. (5.9)

Define the group O(d) by its action on the d-dimensional vector representation:

d× d real matrices O preserving lengths of vectors under ni 7→ Oijnj : |On|2 !
= |n|2 ≡

ninjδij,∀ni :

OtO = 1 or, in a basis,
(
Ot
)
i
jδjkOkl = δil. (5.10)
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In words: O(d) transformations preserve the bilinear form δij. Looking in the connected

component with the identity50,

O = e−iθ
ijJij , (5.11)

(5.10) implies that the generators J ij, i, j = 1..d satisfy (5.7). Reality of O for all θij

says that for each ij, J ij is a pure imaginary matrix, and OtO = 1 says that each

J ij is an antisymmetric matrix: (J ij)
t

= −J ij, or more explicitly, (J ij)kl = − (J ij)lk.

There is a d(d−1)
2

-dimensional space of such things, and one good basis is given by (5.8)

for general d. This agrees with the d = 3 case above where there are 3·2
2

= 3 such

generators.

A special case is SO(2) where the one generator is T =

(
0 −i

i 0

)
= σ2, and the finite

transformation is

eiβT = 1 cos β + iσ2 sin β =

(
cos β sin β

− sin β cos β

)
.

As we reviewed above, SO(3) has a representation of every positive integer dimen-

sion. Similarly, SO(d) has representations besides the d-dimensional, vector representa-

tion (5.8). For example, for general d, we can make a spinor representation of dimension

k if we find d k × k matrices γi that satisfy the Clifford algebra {γi, γj} = 2δij (as the

Paulis do for k = 2, d = 3). Then I claim that the objects J ijspinor ≡ i
4
[γi, γj] also satisfy

the so(d) Lie algebra, (5.7). More on this soon.

U(N). Another important example is the Lie group U(N) defined by its N -

dimensional representation as N × N complex unitary matrices 1 = M †M = MM †.

This one doesn’t arise as a spacetime symmetry, but is crucial in the study of gauge

theory, and already arose as an example of a global symmetry on the homework. We

can generate these

M = e−iβ
aTa (5.12)

by any hermitian N × N matrices T a, since T = T † in (5.12) implies M † = M−1. A

50For real matrices OtO = 1 says 1 = detOtO = (detO)
2
, so detO = ±1 gives two disconnected

components. The component with detO = 1 (containing the identity) is called SO(d). The other

component is obtained by multiplying by a diagonal matrix with an odd number of minus signs on

the diagonal, parity transformation.
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basis is given by the following set of generators satisfying (5.3):

T 1 =
1

2


1

−1

0
. . .

 , T 2 =
1√
12


1

1

−2

0
. . .

 , T 3 =
1√
24



1

1

1

−3

0
. . .


, · · ·

for i 6= j :
(
T ijx
)k

l =
1

2

(
δikδjl + δjkδil

)
,
(
T ijy
)k

l =
i

2

(
δikδjl − δ

jkδil
)
, TN

2

=
1√
2N

1N×N

Altogether there are N(N−1)
2
· 2 + N = N2 of these. Only the last one has a nonzero

trace. The ones called T ijx and T ijy only have nonzero entries in the ij and ji place,

and are like σx and σy respectively. A finite transformation is

e−iβ
aTa = e−i

∑N2−1
a=1 βaTa︸ ︷︷ ︸
=M

e−iβ
N2

TN
2︸ ︷︷ ︸

=e−iβN
2
/
√

2N

where the first factor has detM = 1 (since log detM = tr logM = −i
∑N2−1

a=1 βatr (T a) =

0) and the second is just a phase. The subgroup with detM = 1 is called SU(N). This

shows that U(N) = (SU(N) × U(1))/ZN . (The quotient by ZN is because the matrix

M = diag(ω, ...ω), ωN = 1 is an element of SU(N), so we have two ways of making it

as an element of U(N).)

A special case is SU(2) which has N2 − 1 = 22 − 1 = 3 generators, which are 2× 2

and are T a = 1
2
σa Pauli matrices. So SU(2) and SO(3) have the same lie algebra. They

are not the same group, though, since SU(2) is twice as big: a 2π rotation is not the

identity (but squares to it). Half-integer spin representations of SU(2) are projective

representations of SO(3) – the SO(3) group law is only satisfied up to a phase (in fact,

a sign).

The matrices above (neglecting TN
2
, which just commutes with everyone) satisfy

the Lie algebra (naturally) called su(N). As for su(2), this algebra has other represen-

tations besides the defining (sometimes called fundamental) N -dimensional represen-

tation displayed above. [End of Lecture 16]

Lorentz group. The Lorentz group can be defined, like O(d) above, as the linear

transformations preserving (proper) lengths of vectors. This implies

η = ΛtηΛ i.e. ηµν =
(
Λt
)
µ
ρηρσΛσ

ν . (5.13)

There are four disconnected components of solutions to this condition. As for O(d),

taking the det of both sides of (5.13) implies that such a matrix has det Λ = ±1; the
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two components are called proper and improper Lorentz transformations, respectively.

The µν = 00 component of (5.13) says

1 =
(
Λ0

0

)2 −
∑
i

(
Λi

0

)2
=⇒

(
Λ0

0

)2 ≥ 1

which has two components of solutions, Λ0
0 ≥ 1 (orthochronous) and Λ0

0 ≤ −1 (not

orthochronous).

Below we will focus on the proper, or-

thochronous component. The other three

components are obtained by multiplying

one of these by one or both of the follow-

ing extra discrete symmetries (whose action

on (real) vectors is P =

(
1

−13×3

)
and

T =

(
−1

13×3

)
.

(A warning about time reversal: In order to preserve the time evolution operator

e−iHt while reversing t and preserving the Hamiltonian, the time reversal transformation

T must also be accompanied by complex conjugation K : i → −i, and the combined

operation T = T ⊗ K is therefore antilinear or antiunitary. Such a transformation

acts on a linear combination of operators by c1O1 + c2O2 7→ T (c1O1 + c2O2) T −1 =

c?1T O1T −1 + c?2T O2T −1. )

The identity-containing component is called SO(1, d). More generally O(m,n) is

the group of linear operations preserving the matrix with m −1s and n +1s on the

diagonal, which I will also call ηµν . For any m,n, all the steps leading to the associated

algebra (5.7) (and generators in the m + n dimensional representation (5.8)) are the

same as for SO(d) with the replacement δij 7→ ηµν (and δji 7→ δνµ), with the metric of

appropriate signature. We will nevertheless resort to some special features of the case

d = 3 to build representations.

5.2 Representations of the Lorentz group on fields

Consider a Lorentz-invariant field theory of a (finite) collection of fields φr = (φ1...φn, ψα, Aµ · · ·)r.
Together they form a (in general reducible) representation of the Lorentz group

φr(x) 7→ Drs(Λ)φs(Λx)
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where Drs(Λ) is some (finite-dimensional) matrix representation, and Λ specifies an

element of SO(1, d) in the defining representation. So far we know two possibilities:

the scalar (one-dimensional) representation, where D(Λ) = 1, and the vector (d + 1-

dimensional) representation, where D(Λ) = Λ is a (d+1)×(d+1) matrix in the defining

rep. (We can also take direct sums of these to make reducible representations.)

But there are other irreps. To find more, let’s think about the algebra in more

detail by extracting it from the representation on 4-vectors

V µ → V ′µ = Λµ
νV

ν , Λ(θa, βa) = exp

−iθa T arot︸︷︷︸
≡Ja

−iβa T aboost︸ ︷︷ ︸
≡Ka

 .

Let’s find the fabc by building the Js and Ks: with the time component first, the matrix

representations are

J i =

(
0

Ji

)
(5.14)

where the 3× 3 matrix is (Ji)
j
k = −iεijk (with ε123 = 1) and(
Ki
)j

0 = iδij =
(
Ki
)0

j (5.15)

and other components zero. To check this, consider a boost in the x direction:

e−iβK
1

= 1−iβK1+O(β)2 =

1 β

β 1

12×2

+O(β2) =

 γ βγ

βγ γ

12×2

+O(β2). (5.16)

In the last step we used γ = 1√
1−(v/c)2

= 1 + O(β2). That is, δV 0 = βV 1, δV 1 =

βV 0, δV 2,3 = 0. The other boosts are related to this one by a rotation. In (5.16), we

only checked the infinitesimal transformation; but this is enough, by the uniqueness

of solutions of linear first-order differential equations: ∂βΛ(β) = −iKΛ with initial

condition Λ(β = 0) = 1 has a unique solution, and so our solution must be the correct

one. We’ll use this strategy several times below. 51

Notice with slight horror that the boost generators are not hermitian, and hence the

finite boost operator defined above is not unitary. This is a symptom of the fact that

the Lorentz group is non-compact (in the sense that its group manifold is not compact:

51In case you are wondering, the finite transformation is e−iβK
1

=

coshβ sinhβ

sinhβ coshβ

12×2

. Note

that the parameter β here is the rapidity; it is additive under successive finite boosts, unlike the

velocity (though they agree when infinitesimal: tanhβ = v
c .) I apologize for using the letter β in an

unfamiliar way.
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think of the orbits of rotations on a 4-vector (a sphere, compact), and the orbits of

a boost on a 4-vector (a hyperbola, non-compact)). For (faithful) representations of

non-compact groups, ‘unitary’ and ‘finite-dimensional’ are mutually exclusive.

The commutators of these objects are52

[J i, J j] = iεijkJk, [J i, Kj] = iεijkKk (5.18)

(which are respectively the statements that the rotation and boost generators each

form a vector) and

[Ki, Kj] = −iεijkJk (5.19)

which says two boosts commute to a rotation. Notice that these equations are not

changed by the (parity-like) operation K → −K, J → J .

Now consider ~J± ≡ 1
2

(
~J ± i ~K

)
. (Don’t confuse these 3+3 operators with the

raising and lowering operators for so(3) from (5.5).) The observation that K → −K
changes nothing implies that they satisfy

[J i+, J
j
−] = 0, [J i±J

j
±] = iεijkJk±,

two independent su(2) algebras, which will be called left and right. Formally, we’ve

shown that as algebras over the complex numbers, so(1, 3) ' su(2)L × su(2)R. But

we know what the representations of su(2)L × su(2)R are! We just have to specify

a representation of each factor, i.e. an irrep is labelled by jL and jR, two positive

semidefinite half-integers. And we can label states in an irrep by (jL,mL, jR,mR) with

mL/R ∈ {−jL/R · · ·+ jL/R}; this has dimension (2jL + 1)(2jR + 1). Thus, we have the

following table 1 of possible Lorentz representations of fields:

Let me emphasize here that we are identifying the possible ways that the Lorentz

group can act on fields, not on the particle excitations of such fields. That’s why it’s

not a problem that the action is not unitary. The resulting unitaries on the Fock space

will come later.

52Like we did for O(d), we can slick this up, and generalize to other SO(1, d) by collecting the

generators into an antisymmetric matrix Jµν with components J ij = εijkJk, J0i = Ki = −J i0
(exactly as ~E, ~B are collected into Fµν). This object satisfies the direct analog of (5.7)

[Jµν , Jρσ] = i (ηνρJµσ + ηµσJνρ − (µ↔ ν)) (5.17)

and the fundamental (d+ 1-dimensional vector) representation matrices solving this equation are

(Jµν)
ρ
σ = −i (ηνρδµσ − (µ↔ ν)) .
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(j+, j−) dim Preview of physics

(0, 0) 1 scalar

(1
2
, 0) 2 left-handed Weyl spinor

(0, 1
2
) 2 right-handed Weyl spinor

(1
2
, 0)⊗ (0, 1

2
) = (1

2
, 1

2
) 2× 2 = 4 4-vector

(1
2
, 0)⊕ (0, 1

2
) 2 + 2 = 4 Dirac spinor (reducible)

(1, 0)⊕ (0, 1) 3 + 3 = 6 V µν = ±εµνρσV ρσ, V µν = −V νµ, antisymmetric tensor

(1, 1) 3× 3 = 9 Sµν = Sνµ, Sµµ = 0, traceless symmetric tensor

· · · · · · · · ·

Table 1: Lorentz representations on fields.

Weyl spinors. Let’s focus on the first nontrivial entry in the table. This is a

2-component field ψ =

(
ψ1

ψ2

)
on which 2× 2 Lorentz matrices act as

D( 1
2
,0)(θ, β) = e−i(θ

iJi+βiKi).

But the fact that it’s a singlet of SU(2)R means that

0 = J i−ψ =
1

2
(J − iK)iψ,

that is, J = iK when acting on ψ, which says that the nontrivial generators act as

J i+ψ =
1

2
(J + iK)iψ =

1

2
(J + J)iψ = J iψ.

But we know a 2 × 2 representation of this object: ~J( 1
2) = 1

2
~σ and hence ~K = −i1

2
~σ.

You can check that these satisfy the three relations (5.18), (5.19). Therefore

ψα 7→
(
e−i

1
2
θ·σ− 1

2
β·σ
)
α

βψβ =
(
e−

1
2
σ·(β+iθ)

)
α

βψβ ≡Mα
βψβ.

(Please don’t confuse the rapidity β with the spinor index β.) Notice that this matrix

M is an ordinary rotation with a complexified angle; it is actually an SL(2,C) matrix,

a general 2× 2 complex matrix, with unit determinant. It is common to call the (1
2
, 0)

representation a left-handed (L) Weyl spinor. The nomenclature is motivated by the

fact that parity takes J± = 1
2

(J ± iK)→ J∓.

For the (0, 1
2
) or right-handed representation, χ, the same story obtains but now(

~J+

)
α̇

β̇χβ̇ = 0 and hence J = −iK. Note the dotted indices to distinguish reps of the

two SU(2)s. Therefore

χα̇ 7→
(
e−i

1
2
θ·σ+ 1

2
β·σ
)
α̇

β̇χβ̇ =
(
e+ 1

2
σ·(β−iθ)

)
α̇

β̇χβ̇ =
(
σ2M?σ2

)
α̇
β̇χβ̇ . (5.20)
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In the last step of (5.20) we used the identity

σ2~σ?σ2 = −~σ. (5.21)

Please don’t get too hung up on dotting the indices, since as we’ll see, there are ways to

turn an L spinor into an R spinor. (For example, the parity operation K → −K, J → J

interchanges the two.) Also, notice that (5.20) shows that if a left-handed Weyl spinor

transforms as ψ →Mψ then

σ2ψ? → σ2M?ψ? =
(
σ2M?σ2

)
σ2ψ?

transforms like a right-handed Weyl spinor.

Invariants. In order to write Lorentz-invariant local lagrangians, we need to know

how to make Lorentz-invariant quantities out of products of fields and their derivatives.

For example, given Lorentz vectors V µ, Uµ, the object V µUµ = V µUνηµν is a Lorentz

scalar (by the defining property of the Lorentz matrices). Can we make a singlet from

two Weyl spinors, (1
2
, 0) ⊗ (1

2
, 0)? Yes: we know (e.g. from basic QM) that SU(2)

representations combine as 1
2
⊗ 1

2
= 0⊕1 where the triplet (spin one) part is symmetric

and the singlet (spin 0) is the antisymmetric combination, ↑↓ − ↓↑. More explicitly,

ψαξβε
αβ ≡ ψαξ

α is a singlet. To see this explicitly:(
iσ2ψ

)
7→ iσ2e−

1
2

(β+iθ)·σψ Insert 1 = σ2σ2 before ψ

= exp

−1

2

(
~β + i~θ

)
·
(
σ2~σσ2

)︸ ︷︷ ︸
(5.21)

= −~σt

(iσ2ψ
)

which means that if ψα 7→Mα
βψβ, then

ψα ≡
(
iσ2ψ

)t α 7→ ψβ
(
e+ 1

2
(β+iθ)·~σ

)
β

α ≡ ψβ
(
M−1

)
β
α

so ψαψα is invariant. Notice that on Weyl spinors, we raise and lower indices with

εαβ ≡ (iσ2)
αβ

=

(
0 1

−1 0

)αβ
which is a good idea because it is an invariant tensor, as

we just showed.

The same story holds for the (0, 1
2
) “right-handed” Weyl representation, that is, we

can also make a singlet out of two of them using an epsilon tensor. Writing out the

matrices again:

χα̇ ≡ χβ̇ε
β̇α̇ 7→

(
e

1
2

(β−iθ)·σt
)α̇

β̇χ
β̇ = χβ̇

(
e−

1
2

(β−iθ)·σ
)
β̇

α̇

which is indeed the inverse transformation of (5.20).
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(1
2
, 1

2
) = vector. Next, we will show that the (1

2
, 1

2
) = (1

2
, 0) ⊗ (0, 1

2
) representation is

indeed a 4-vector. Introduce the following ‘intertwiners’:

σµαα̇ ≡ (1αα̇, ~σαα̇)µ , σ̄µα̇α ≡ (1 α̇α,−~σα̇α)µ .

Our next job is to show that these objects eat a L and an R Weyl spinor and spit out

a vector, or vice versa. That is, for example, I claim that if Vµ is a vector then Vµσ
µ
αα̇

transforms as (1
2
, 0) ⊗ (0, 1

2
), as the notation strongly suggests. And given any two L

and R Weyl spinors ψ, χ, ψασµαα̇χ
α̇Vµ is a singlet.

To summarize:

(1
2
, 0) 3 ψL 7→MLψL = e

1
2

(−iθ−β)·σψL

(0, 1
2
) 3 ψR 7→MRψR = e

1
2

(−iθ+β)·σψR

You can see from this expression and σ2σiσ2 = − (σi)
?

that σ2M?
Lσ

2 = MR and

therefore σ2ψ?L ∈ (0, 1
2
).

Claim: for any two right-handed spinors ξR, ψR, the object ξ†Rσ
µψR is a (complex)

4-vector. To see this, first notice (using σ† = σ) that ξ†R 7→ ξ†Re
+ 1

2
(iθ+β)·σ, so

ξ†Rσ
µψR 7→ ξ†R e

1
2

(iθ+β)·σσµe
1
2

(−iθ+β)·σ︸ ︷︷ ︸
?
=Λ(θ,β)µνσν

ψR

where

Λ(θ, β)µν =
(
e−i(θ·J+β·K)

)µ
ν (5.22)

is the vector representation of the Lorentz transformation with rotation ~θ and boost
~β. To check this, it suffices to check the infinitesimal version (by the uniqueness of

solutions to linear first-order ODEs):

δ
(
ξ†Rσ

µψR

)
= δξ†Rσ

µψR + ξ†Rσ
µδψR

= ξ†R

(
1

2
(iθ + β)j σjσµ + σµ

1

2
(−iθ + β)j σj

)
ψR

=


ξ†R

1
2
2βjσ

jψR ...if µ = 0

ξ†R
1
2

βj (σjσi + σiσj
)︸ ︷︷ ︸

=2δij

+iθj
(
σjσi − σiσj

)︸ ︷︷ ︸
=−2iεijkσk

ψR ...if µ = i

On the other hand, using the form of the vector Lorentz generators (5.14), (5.15), the

transformation of a vector is

δV µ = −
(
iβj
(
Kj
)µ

ν + iθj
(
J j
)µ

ν

)
V ν =

{
βjV

j ...if µ = 0

βiV
0 − θjεjimV m ...if µ = i
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which is just the form we’ve found. �

A few more claims and consequences:

• Since the vector representation matrices K, J in (5.14), (5.15) are pure imaginary,

the matrices (5.22) are real for any θ, β and we can impose the reality condition

V µ = (V µ)? consistent with Lorentz orbits. This is not true of the Weyl spinors

by themselves.

• Similarly, for any ξL, ψL ξ
†
Lσ̄

µψL is a (complex) 4-vector. Notice that we need to

use the σ̄µ, so that

δ
(
ξ†Lσ̄

µψL

)
= −

(
−βiξ†LσiψL, βiξ

†
LψL + εijkθjξ

†
LσkψL

)µ
• Our explicit calculation was about ξ†Rσ

µψR. But we showed that ξ†R transforms

like a χL. So χαLσ
µ
αα̇ψ

α̇
R is a vector, too. And χαLσ

µ
αα̇ψ

α̇
RVµ is Lorentz invariant.

• Notice that ξ†RψR is not Lorentz invariant (even if ξ = ψ), it is rather the 0

component of a four-vector. The dotted index can be a bit helpful in reminding

us that ψ†LψL is not a singlet, since if the index on (ψL)α is undotted then
(
ψ†L

)α̇
has a dotted index.

On the other hand, given an R and an L spinor,

δξ†L = ξ†L (+iθ − β) · σ/2

the combination ξ†LψR is Lorentz invariant, since

δ
(
ξ†LψR

)
= ξ†L

(
1

2
(iθ − β) · σ +

1

2
(−iθ + β) · σ

)
ψR = 0. (5.23)

• Two more occasionally-useful facts:

V µσµ =

(
V 0 + V 3 V 1 − iV 2

V 1 + iV 2 V 0 − V 3

)
7→MV µσµM

†

Also, detV µσµ = V µVµ is Lorentz invariant.

5.3 Spinor lagrangians

Given a Weyl spinor field ψR, we’d like to make a local lorentz-invariant lagrangian

of the form L
(
ψR, ψ

†
R, ∂µψR, ∂µψ

†
R

)
. The sort of obvious generalization of the KG
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lagrangian is ψ†R (2 +m2)ψR, which transforms like ψ†RψR, which is not boost invariant.

On the other hand, the object ψ†Rσ
µψR is a vector, and we can find another index with

which to contract by taking a derivative:

LWeyl ≡ ψ†Rσ
µi∂µψR = ψ†Ri∂tψR + ψ†R~σ ·

(
i~∇
)
ψR

is a nice Lorentz invariant kinetic term. The factor of i is to make i∂µ hermitian, so

L†Weyl = −i
(
∂µψ

†
R

)
(σµ)† ψR

IBP
= ψ†Rσ

µi∂µψR = LWeyl.

Notice that we neglected the total derivative ∂µ

(
ψ†Rσ

µψR

)
which does not change the

equations of motion.

For a left-handed field, the Lorentz-invariant Weyl lagrangian involves σ̄µ = (1,−~σ)µ:

LWeyl(ψL) = ψ†Lσ̄
µi∂µψL.

What about mass terms? For a single R Weyl field, we could use the ε tensor:

ψRiσ2ψR + h.c. = ψ1ψ2 − ψ2ψ1 + h.c. (5.24)

is Lorentz invariant. It is not invariant under ψR → eiθψR, it violates the particle

number. This is called a Majorana mass term. Neutrinos may have such a term, but

electrons don’t. (Notice that it would be zero if the components ψα were commuting

objects. We will see that in fact they are anticommuting objects and (5.24) is not

zero.) [End of Lecture 17]

Dirac spinors. To make a particle-number-conserving Lorentz-invariant mass

term, we need one of each L and R, and the Dirac mass pairs them up via the in-

variant ψ†LψR + h.c.. We can slick this up with some nice packaging, by combining the

two 2-component spinors into one 4-component spinor Ψ:(
1

2
, 0

)
⊕
(

0,
1

2

)
3 Ψ ≡

(
ψL
ψR

)
.

Now let

Ψ̄ ≡
(
ψ†R, ψ

†
L

)
= Ψ†

(
0 12×2

12×2 0

)
≡ Ψ†γ0.

Then we can package the whole thing beautifully as

LDirac = ψ†Riσµ∂µψR + ψ†Liσ̄µ∂µψL −m
(
ψ†LψR + ψ†RψL

)
= Ψ̄ (iγµ∂µ −m) Ψ

with

γµ ≡
(

0 σµ

σ̄µ 0

)
. (5.25)
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The equations of motion are

0 =
∂S

∂Ψ̄
= (iγµ∂µ −m) Ψ ≡ (i/∂ −m) Ψ.

Being explicit about indices, the Dirac equation is 0 = (iγµab∂µ −mδab) Ψb with a, b =

1..4.

Notice that by dimensional analysis of the kinetic terms (that is, demanding that

[Skin =
∫

Ψ̄γµ∂µΨ] = 0, [Ψ] = D−1
2

D=4
= 3/2, so [m] = 1, so m is indeed a mass. Its sign

has not been fixed (and I will probably mix up m and −m at various points).

• The Dirac (or gamma) matrices γµ satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (5.26)

Any set of D matrices satisfying this equation can be combined to form a repre-

sentation of so(1, D − 1) in the form

JµνDirac ≡
i

4
[γµ, γν ].

That is, these objects satisfy the algebra (5.17). (If you want to see the algebra

involved in this statement, see David Tong’s notes.) This works in any dimension.

The representation is reducible for D even. The size of the matrices required to

represent (5.26) grows exponentially with D.

• Notice that the equation (5.26) is not modified by a change of basis in the spinor

space. The particular basis of gamma matrices we’ve chosen in (5.25) is called

the Weyl basis. It makes the reducibility of the Dirac rep manifest, since the

resulting so(1, 3) generators Jµν are block diagonal:

JµνDirac

Weyl basis
=

i

4

[(
0 σµ

σ̄µ 0

)
,

(
0 σν

σ̄ν 0

)]
=

i

4

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)

=


i
4

(
−2σi 0

0 2σi

)
= − i

2
σi ⊗ σ3 if µ = 0, ν = i

i
4

(
−[σi, σj] 0

0 −[σi, σj]

)
= +1

2
εijkσk ⊗ 12×2 if µ = i, ν = j

(5.27)

So you see that in the Weyl basis, we already know that these satisfy the so(1, d)

algebra since it is just the Lorentz generators for the WeylL and WeylR repre-

sentations in blocks. This proves that it works in any basis, since the algebra is

basis-independent.
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• This 4-dimensional Dirac representation is not the 4d vector representation. We

can see this in several ways: It is complex (the generators are not pure imaginary),

though more on this below. It is reducible (we built it by adding together two

irreps!). And it is definitely different because, using (5.27), we have, e.g. J12 =
1
2
σ3 ⊗ 1, so

ΛDirac(θ = 2πẑ) = e−i2πJ
12 (5.27)

= eiπσ
3⊗1 = cosπ1 + sin πσ3 ⊗ 1 = −1.

A 2π rotation gives minus one. This is just as for the spin-1
2

(projective) repre-

sentation of SO(3).

• The Weyl spinors ψL, ψR are irreps. What’s the big deal about the Dirac rep?

Only that the electron is a Dirac spinor (and some other folks are too). Neu-

trinos could be Weyl spinors. There are several possibilities: perhaps there is

a secret (heavy, non-interactive) partner with whom the neutrinos pair up by a

Dirac mass; perhaps lepton number is violated by a Majorana mass term; these

possibilities are not mutually exclusive (see the homework).

• Other bases of the gamma matrices are possible and sometimes useful. If we

replace γµ with

γµ 7→ γ̃µ = UγµU †, Ψ 7→ Ψ̃ = UΨ

for some 4 × 4 unitary U then this gives an equivalent representation, since

{γ̃µ, γ̃ν} = 2ηµν still and hence J̃µν = UJµνU † will still solve so(1, d).

A particular useful other basis is the Majorana basis

γ0
m =

(
0 σ2

σ2 0

)
, γ1

m =

(
iσ1 0

0 iσ1

)
, γ2

m =

(
0 −σ2

σ2 0

)
, γ3

m =

(
iσ3 0

0 −iσ3

)
.

They have the property that they are all imaginary, which means so are the

resulting Lorentz generators Jµνm , which means that all the matrix elements of

eiθµνJ
µν
m are real. So it is consistent to impose a reality condition on the spinors

in this basis, ηm = η?m. (The reality condition can be imposed in any basis, but

in another γµm = Uγ̃µU †, the condition looks like (U?)−1 Uψ = ψ?.) This 4d real

representation is still different from the vector; a proof is that a 2π rotation is still

−1. A good analogy is (real scalar):(complex scalar)::(majorana spinor):(Dirac

spinor). For example, a Majorana spinor particle will be its own antiparticle, just

like for a real scalar.

• The Dirac equation (i/∂ −m) Ψ = 0 implies the wave equation. Act on the BHS

by

(i/∂ +m) (BHS) =⇒ 0 = (i/∂ +m) (i/∂ −m) Ψ
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=
(
−γµγν∂µ∂ν −m2

)
Ψ

=

−1

2

 [γµ, γν ]︸ ︷︷ ︸
antisymmetric

+ {γµ, γν}︸ ︷︷ ︸
=2ηµν

 ∂µ∂ν︸︷︷︸
symmetric

−m2

Ψ

= −
(
∂2 +m2

)
Ψ.

• The equation of motion for Ψ̄ can be obtained by taking the dagger53, or by IBP

in LDirac:

LDirac
IBP
= Ψ̄

(
−i
←
∂ µγ

µ −m
)

Ψ + total deriv

so 0 = ∂SDirac

∂Ψ
= Ψ̄

(
−i
←
∂ µγ

µ −m
)
.

• The Dirac lagrangian is real if m = m?, since we already checked the kinetic

terms.

• Lorentz transformations of Dirac spinors. We have Ψ(x) 7→ e−iθµνJ
µν
DiracΨ(Λ−1x) ≡

Λ 1
2
Ψ(Λ−1x) with Λ 1

2
=

(
M 0

0 σ2M?σ2

)
. The Dirac conjugate spinor transforms

as

Ψ̄ 7→ Ψ†e+iθµν(JµνDirac)
†

γ0 = Ψ†γ0Λ−1
1
2

= Ψ̄Λ−1
1
2

.

Here we used that the ij components of JDirac are hermitian and commute with

γ0 (same for L,R), while the 0i components are antihermitean and anticommute

with γ0 (opposite sign for L,R). This makes it clear that the mass term Ψ̄Ψ is

Lorentz invariant.

The gamma matrices also provide nice packaging of the relation we showed above

between vectors and bispinors54:

Λ−1
1
2

(θ)γµΛ 1
2
(θ) = Λµ

ν(θ)γ
ν . (5.28)

This means that any product of gamma matrices between two spinors V µ1···µn ≡
Ψ̄γµ1 · · · γµnΨ is a tensor, in the sense that V µ1···µn 7→ Λµ1

ν1 · · ·Λµn
νnV

ν1···νn .

(A tensor is defined to be an object that transforms this way under Lorentz

53In doing so, note that γ0 =
(
γ0
)†

, but the spatial ones (~γ)
†

= −~γ are anti-hermitian. This

compensates the fact that the ~γs acquire a minus sign in moving through the γ0 in Ψ̄.
54This is really the same equation as we showed above. In terms of Dirac fermions, its infinitesimal

version is,

(1 + iθ · JDirac) γµ (1− iθ · JDirac) = (1− iθ · Jvector)
µ
νγ

ν ,

which follows from

[γµ, JρσDirac] = (Jρσvector)
µ
νγ

ν ,

the infinitesimal version of the statement that γµ is a Lorentz vector.
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transformations.) To see this, just use V µ1···µn 7→ Ψ̄Λ−1
1
2

γµ1 · · · γµnΛ 1
2
Ψ, insert

1 = Λ 1
2
Λ−1

1
2

in between each pair of gammas, and use (5.28).

Notice that any combination of Aµ1···µnΨ̄γµ1 · · · γµnΨ which is symmetric under

interchange of a pair of indices can be related using the Clifford algebra to a

tensor with two fewer indices. Let γµν ≡ 1
2
[γµ, γν ] be just the antisymmetric

bit, and similarly for more indices. In fact, any bispinor ΓabΨ̄aΨb can be decom-

posed as a sum of these tensors:
∑

nAµ1···µnΨ̄γµ1···µnΨ, where the As are totally

antisymmetric. This follows from counting: 4× 4 = 1 + 4 + 6 + 4 + 1.

• Consider the object γ5 ≡ iγ0γ1γ2γ3 = − i
4!
εµνρσγ

µγνγργσ. The factor of i is

chosen so that (γ5)
†

= γ5. Notice that (γ5)
2

= 1 so its eigenvalues are ±1. Since

it contains one of each of the other four gamma matrices, it anticommutes with

each of them: {γ5, γµ} = 0,∀µ. Since the Lorentz generators JµνDirac are quadratic

in γs, this implies [γ5, JµνDirac] = 0, i.e. γ5 is a Casimir, proportional to the identity

on irreps, indeed ±1. By direct calculation, in the Weyl basis,

γ5 Weyl basis
=

(
−1

1

)
is ±1 on right-handed and left-handed spinors, respectively. This means that the

chirality projectors PR/L ≡ 1±γ5
2

project onto R/L spinors, respectively, P 2
R/L =

PR/L. Notice that PLγ
µ = γµPR and PRγ

µ = γµPL.

• Our basis of bispinors can be rewritten using γ5. Using γµνρσ = −iεµνρσγ5 and

γµνρ = +iεµνρσγσγ
5, we can make a basis of (hermitean) bispinors as in the

table below. The modifier ‘pseudo’ here refers to the properties under parity; for

Bispinor multiplicity representation

Ψ̄1Ψ 1 scalar

Ψ̄γµΨ 4 vector

iΨ̄γµνΨ 6 antisymmetric tensor

iΨ̄γµγ5Ψ 4 pseudovector

iΨ̄γ5Ψ 1 pseudoscalar

example, in terms of Ψ =
(
ψL ψR

)
, consider iΨ̄γ5Ψ = i

(
ψ†LψR − ψ

†
RψL

)
. It is

Lorentz invariant (since it is of the form (5.23)), but under parity P : ψL ↔ ψR
(that is, parity acts by γ0 on Dirac spinors) it goes to minus itself.

Why care about these bispinors? One reason is that we can make 4-fermion

interactions out of them. For example, Ψ̄γµνΨ · Ψ̄γµνΨ is a Lorentz-invariant

local interaction term which we might add to our Lagrangian.
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Another reason is that the vector combinations play an important role:

jµ ≡ Ψ̄γµΨ = ψ†Rσ
µψR + ψ†Lσ̄

µψL

is the Noether current associated with the symmetry Ψ → e−iαΨ of the Dirac

Lagrangian. You can directly check that ∂µj
µ = 0 using the Dirac equation.

Similarly, the axial current

jµ5 ≡ Ψ̄γµγ5Ψ = ψ†Rσ
µψR − ψ†Lσ̄

µψL

would be the Noether current associated with the transformation Ψ → e−iαγ
5
Ψ.

This transformation rotates the L and R bits oppositely, and is only a symmetry

if m = 0. Indeed, the Dirac equation implies that ∂µj
µ
5 = 2imΨ̄γ5Ψ. For E � m,

the breaking of this symmetry by m can be ignored and it is still useful55. The

combinations

jµR/L ≡ Ψ̄γµ
(

1± γ5

2

)
Ψ

involve only the Weyl components and are separately conserved if both jµ and

jµ5 are conserved.

• Notice that gamma matrices have a lot in common with quaternions.

Coupling to the electromagnetic field. Here’s another purpose for the current.

Suppose our spinor field is propagating in a background electromagnetic field with

vector potential Aµ. The whole thing should be Lorentz invariant, so we should be

able to couple them via a Lorentz-invariant Lagrangian. How can we resist adding

LEM = −ejµAµ for some constant e (blame Ben Franklin for the sign). The full

Lagrangian is then

Ψ̄[i (∂µ + ieAµ) γµ −m]Ψ

and the Dirac equation is modified to

0 = (iγµDµ −m) Ψ, where DµΨ ≡ (∂µ + ieAµ) Ψ

is the gauge covariant derivative in the following sense: DµΨ 7→ e−iα(x)DµΨ under

Ψ → e−iα(x)Ψ(x), Aµ → Aµ + 1
e
∂µα. We could have used the demand that the action

respects this transformation to determine the coupling to Aµ to replace ∂µ → Dµ.

The solutions of the Dirac equation in a background EM field are no longer solutions

of the KG equation:

0 =
(
i /D +m

) (
i /D −m

)
Ψ =

(
iDµiDνγ

µγν −m2
)

Ψ .

55Beware that the coupling to gauge field also breaks this symmetry, quantum mechanically. This

is called the chiral anomaly; more later.
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Whereas mixed partials commute, [∂µ, ∂ν ] = 0, the covariant derivatives need not:

[Dµ, Dν ] = ei (∂µAν − ∂νAµ) = eiFµν

so the antisymmetric term matters:

0 =

(
(∂µ + ieAµ)2 + e

i

4
[γµ, γν ]Fµν +m2

)
Ψ

Weyl basis
=

(∂µ + ieAµ)2 − e

( ~B + i ~E
)
· ~σ (

~B − i ~E
)
· ~σ

+m2

Ψ . (5.29)

In the last step we used the form of the Lorentz generators JµνDirac = i
4
[γµ, γν ] in the

Weyl basis. This extra term (relative to the gauge covariant scalar wave equation) is

an intrinsic magnetic dipole moment of a Dirac particle. This is a consequence of the

Dirac equation with implications for the non-relativistic limit.

Notice that we could add extra terms coupling the spin to the EM field strength

LDM = Fµν
(
gmΨ̄iγµνΨ + geΨ̄iγµνγ5Ψ

)
but now [ge,m] = −1 so these coefficients (which would change the magnetic and electric

dipole moments respectively) are suppressed by the inverse of some new mass scale (a

priori independent of m), which is presumably large or we would have noticed it, and

hence we will ignore such terms for a while.
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5.4 Free particle solutions of spinor wave equations

[Peskin §3.3] To understand a quantum scalar field, we had to know that the solutions

of the KG equation were plane waves e−ipx with p2 = m2 (then we associated a mode

operator a~p with each solution and added them up). To do the analog for spinors, we’ll

need to know the free particle solutions.

Let’s focus on the Dirac equation. This implies the wave equation, so solutions can

be made from superpositions of plane waves with p2 = m2

Ψ(x) = e−ipxu(p)

but the Dirac equation places a further restriction on the constant spinor u(p):

0 = (γµp
µ −m)u(p).

Let’s assume m 6= 0 and solve this in the rest frame, p0 = (m,~0). Then we can find

the answer for general pµ (with p0 > 0) by a boost: u(p) = Λ 1
2
u(p0).

0 = (mγ0 −m)u(p0) = m

(
−1 1

1 −1

)
u(p0)

which is solved by u(p0) ∝
(
ξ

ξ

)
for any 2-component spinor ξ. The fact that there are

two solutions for each p is the “intrinsic two-valuedness” associated with spin 1
2
. It will

be convenient to normalize the solutions by

u(p0) =
√
m

(
ξ

ξ

)
, ξ†ξ = 1.

We can choose a basis for such ξs which diagonalize σ3, e.g. ξ1 =

(
1

0

)
, ξ2 =

(
0

1

)
in

the standard basis for the Paulis. ξ is an ordinary non-relativistic spinor.

Now, under a boost in the z direction (suppressing the x, y components which

remain zero),

p0 7→
(
E

p3

)
= exp

(
η

(
0 1

1 0

))(
m

0

)
=

(
m cosh η

m sinh η

)
, (5.30)
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and the positive-energy solution of the Dirac equation becomes56

u(p0) 7→ Λ 1
2
(η)u(p0) = exp

(
−1

2
η

(
σ3

−σ3

))
︸ ︷︷ ︸

cosh(η/2)1−sinh(η/2)

σ3

−σ3



√
2m

(
ξ

ξ

)

=

(√E + p3P+ +
√
E − p3P−

)
ξ(√

E − p3P+ +
√
E + p3P−

)
ξ

 P± ≡
1

2

(
1± σ3

)
=

(√E + p3σ3P+ +
√
E + p3σ3P−

)
ξ(√

E − p3σ3P+ +
√
E − p3σ3P−

)
ξ

 =

(√
p · σξ√
p · σ̄ξ

)
.

In the final expression, we define the square root of a matrix by its action on eigenstates.

The last expression also works for any boost direction since it’s rotation invariant.

Using the identity

(p · σ) (p · σ̄) = p2 (5.34)

(check it on the homework) we can check directly that this expression actually solves

the Dirac equation for general p:

(pµγ
µ −m)

(√
p · σξ√
p · σ̄ξ

)
=

(
−m σ · p
σ̄ · p −m

)(√
p · σξ√
p · σ̄ξ

)
=

(
−m√p · σ +

√
p2
√
p · σ√

σ̄ · p
√
p2 −

√
σ̄ · pm

)(
ξ

ξ

)
p2=m2

= 0.

Negative-energy solutions. So far we’ve found two independent solutions of

the Dirac equation for each ~p. But if we think about Fourier transforming the Dirac

equation just in space, we get four linear first-order ODEs (for each ~p), which should

have four linear-independent solutions.

Just as for the KG equation, there are also negative-energy solutions with the same

~p (which are not related to the previous by any orthochronous Lorentz transformation):

Ψ(x) = v(~p)e+ip·x, p2 = m2, p0 > 0

56Some useful kinematical relations: adding and subtracting

2 cosh η = eη + e−η = 2E/m (5.31)

2 sinh η = eη − e−η = 2p/m (5.32)

(with p ≡ p3), we learn that e±η = 2E±pm , and therefore

cosh η/2 =
eη/2 + e−η/2

2
=

√
E + p

2m
+

√
E − p

2m
, sinh η/2 =

eη/2 − e−η/2

2
=

√
E + p

2m
−
√
E − p

2m
.

(5.33)
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where the Dirac equation further imposes
(
/p+m

)
v(~p) = 0, solved by

vs(~p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, s = 1, 2.

(If we wish to compare solutions with the same spatial momentum as we studied for

the positive-energy solutions, we should write Ψ(x) = v(−~q)e−iq·x, with q = −p. Notice

that the spinors are a function of just a 3-vector, since p0 is determined by the wave

equation.)

Normalization. A Lorentz-invariant normalization condition is

ūsur = 2mξ†sξr = 2mδsr v̄rvs = −2mδrs.

This is equivalent to the following statements about the Lorentz-variant quantities:

u†r(p)us(p) = 2Epξ
†
rξs = 2Epδrs v†rvs = +2Epη

†
rηs = 2Epδrs.

Notice that for each ~p, 0 = ūr(~p)vs(~p) = v̄r(~p)us(~p) (but (ur)† (~p)vs(~p) 6= 0). It will

also be useful below to note that u†r(~p)vs(−~p) = 0.

Completeness relations. Suppose we choose a basis of two-component spinors:

12×2 =
∑
s=1,2

ξs (ξs)† . (5.35)

Then∑
s=1,2

us(p)ūs(p) =
∑
s

(√
p · σξs√
p · σ̄ξs

)(
(ξs)†

√
p · σ̄, (ξs)†√p · σ

)
(5.35)
=

(√
p · σ
√
p · σ̄

(√
p · σ

)2

(
√
p · σ̄)

2 √
p · σ̄√p · σ

)
(5.34)
=

(
m p · σ
p · σ̄ m

)
= γ · p+m ≡ /p+m. (5.36)

Similarly,
∑

s vv̄ = /p−m. Note that these completeness relations for spinor polariza-

tions are analogous to the relation I quoted for photon polarizations (1.39).

Helicity. Define the helicity operator, acting on one-particle states

ĥ ≡ p̂ · ~S ≡ p̂i · J iDirac = p̂i
1

2

(
σi

σi

)
.

p̂ = ~p
|~p| is a unit vector, so ĥ2 = 1/4 and the eigenvalues are ±1/2, which are called

right-handed and left-handed. (Sometimes people normalize the helicity so that h =

±1.) Naturally, positive-energy (massless) Weyl R/L spinors are helicity eigenstates,

with h = ±1/2 respectively, since the R/L Weyl equation is 0 = p01 ∓ piσi, and
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p0 = |~p|. More generally, consider the ultra-relativistic limit of a Dirac spinor, where

E =
√
~p2 +m2 → |~p|, with (WLOG) ~p = ẑp3,

u(Ep, p
3) =




√
E − p3

(
1

0

)
√
E + p3

(
1

0

)
 Ep→|~p|→

√
2E


0

0

1

0

 , if σ3 = +1


√
E + p3

(
0

1

)
√
E − p3

(
0

1

)
 Ep→|~p|→

√
2E


0

1

0

0

 , if σ3 = −1

These are helicity eigenstates. More generally, any ultrarelativistic spinor wavefunction

can be decomposed into a linear combination of such helicity eigenstates. For massive

particles (away from this limit), you can switch the helicity by outrunning the particle;

it is not Lorentz invariant. [End of Lecture 18]
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5.5 Quantum spinor fields

What did we need to build the Fock space of a relativistic scalar field? A quick

recapitulation: For each mode, we had ladder operators, a 6= a†, and a number operator

N = a†a which was hermitian and hence observable. The ladder operators are so called

because

[N, a] = −a, [N, a†] = a† . (5.37)

This says that given a number eigenstate N |n〉 = n |n〉, we can make others by

N (a |n〉) (5.37)
= (n− 1) (a |n〉) and N

(
a† |n〉

) (5.37)
= (n+ 1)

(
a† |n〉

)
. And we know n ≥ 0

since 0 ≤ ||a |n〉 ||2 = 〈n|N |n〉 = n 〈n|n〉, so there must exist a lowest n0 that we can’t

lower any further, a |n0〉 = 0, but then n0 |n0〉 = N |n0〉 = a† a |n0〉︸ ︷︷ ︸ = 0, so n0 = 0.

Hence, a ladder of eigenstates of N with eigenvalues 0, 1, 2, 3, ....

OK, but here’s why I just did that: the necessary equation (5.37) did not require that

[a, a†] = 1. In fact, (5.37) would also follow from the anticommutation relation (for

each mode)

aa† + a†a ≡ {a, a†} = 1, {a, a} = 0 = {a†, a†}.

To see this, note the identity [AB,C] = A{B,C} − {A,C}B, so

[a†a, a] = a†{a, a} − {a†, a}a = −a.

But now 0 = {a, a} = 2a2 means a2 = 0 and
(
a†
)2

= 0: the ladder has only two rungs:

|0〉 with a |0〉 = 0 and |1〉 = a† |0〉, and there is no |2〉 ∝
(
a†
)2 |0〉 = 0. This is Pauli

exclusion.

For multiple modes, we can take

{ai, a†j} = δij, {ai, aj} = 0 = {a†i , a
†
j}.

And states look like

a†ia
†
j |0〉 = ± |00001i00...001j0000〉 = −a†ja

†
i |0〉 (5.38)

we have to remember the order in which the quanta are created to get the sign right (the

overall choice is a convention, but relative signs are physics). This is Fermi statistics.

Given a field, how do we know whether to use commutators or anticommutators? A

practical answer: try both and one of them will be bad somehow. The general answer,

with Lorentz invariance, is the spin-statistics theorem: fields with half-integer spin are

fermionic, and those with integer spin are bosonic. Schwartz, §12 has an illuminating
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discussion of many points of view on the connection between spin and statistics. I’ll

say a little more below.

Anticommuting scalar fields? Consider a real scalar φ(x) =
∫

d̄dp√
2ωp

ape
−ipx +

h.c., with π = φ̇ and

H =
1

2

∫ (
π2 +

(
~∇φ
)2

+m2φ2

)
=

∫
d̄dp

ωp
2

(
a†pap + apa

†
p

)
.

You see that if {ap, a†p′} = /δ
d
(p−p′) then we get a hamiltonian which is just an infinite

constant, independent of the state. Not such a useful energy functional. We also get

{φ(x), π(y)} = 0.

The situation is even worse for a complex scalar, with Φ(x) =
∫

d̄dp√
2ωp

(
ape
−ipx + b†pe

ipx
)
.

Then with anticommutators we get

H
no assumptions

=

∫
d̄dp

1

2
ωp
(
a†pap + bpb

†
p

) {b,b†} ?=δ
=

∫
d̄dp

1

2
ωp
(
a†pap − b†pbp

)
+ cst (5.39)

and the energy is unbounded below. We could alternatively allow negative norm states

or non-local anticommutators. Is that any better?

Dirac Hamiltonian. From the Dirac lagrangian, we have the canonical momen-

tum density Π = ∂L
∂Ψ̇

= iΨ̄γ0 = iΨ† and the hamiltonian density

h = ΠΨ̇− L = iΨ†∂tΨ︸ ︷︷ ︸
=iΨ̄γ0∂tΨ

−L = Ψ̄
(
i~γ · ~∇+m

)
Ψ

eom
= Ψ†i∂tΨ. (5.40)

Following our nose and writing the operator-valued field as a sum over all solutions

of the eom weighted by ladder operators, we have57

Ψ(x) =

∫
d̄3p√

2ωp

∑
s=1,2

(
us(p)e−ipxasp + vs(p)eipxbs†p

)
Ψ̄(x) =

∫
d̄3p√

2ωp

∑
s=1,2

(
ūs(p)eipxas†p + v̄s(p)e−ipxbsp

)
(5.41)

where, as for the scalar, we implicitly set p0 = ω~p.

The hamiltonian is then (using the last expression in (5.40))

H =

∫
d3x h

57If you haven’t already, open your copy of Peskin and cross out equation 3.92, which describes

‘how not to quantize the Dirac equation’.
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=

∫
d3x

∫
d̄3p√

2ωp

∫
d̄3q√

2ωq

∑
ss′

(
us†(p)eipxas†p + vs†(p)e−ipxbsp

) (
ωqu

s(q)e−iqxasq − ωqvs(q)eiqxbs†q
)

This is of the form u†u − v†v + u†v − v†u. In the first two terms, the x integral is∫
d3xei(p−q)x = δ(3)(p − q) while in the mixed uv terms, we have ~q = −~p. We use the

spinor identities

u†s(p)us′(p) = v†s(p)vs′(p) = +2ωpδss′ , u†s(p)vs′(−p) = v†s(p)us′(−p) = 0

and get (no assumptions about commutators or anticommutators yet)

H =

∫
d̄3p ωp

∑
s

(
as†p asp − bspb

s†
p

)
. (5.42)

Now, if [b,b†] = 1, this is
∑

p ωp(N
a
p − N b

p) + constant and the world explodes in a

spontaneous shower of antiparticles lowering the energy by coming from nowhere. But

if instead we have anticommutation relations,

{bs(p),bs′(q)†} = /δ
d
(p− q) ,

then this is

H =

∫
d̄3p ωp

∑
s

(Na
s (p) +N b

s (p)) + const

and all is well, H − E0 ≥ 0.58

This gives canonical equal time local anticommutators

{Ψ(~x)a,Π(~y)b}ET = iδd(~x− ~y)δab

or

{Ψ(~x)a, Ψ̄(~y)b}ET = iγ0
abδ

d(~x− ~y).

Comments on the spin-statistics connection. [Schwartz’s very nice §12] Two

more comments about spin-statistics. First, the general pattern seen above continues

for all spins. The crucial ingredient is that with Lorentz invariance, integer-spin fields

have Lagrangians that involve two time derivatives:

LZ 3 φρ...∂µ∂µφρ... = φρ...φ̈
ρ + ...,

58Here we only used {b,b†} = δ, without any assumption about the commutators or anticommuta-

tors of a. You could ask why we can’t have [a,a†] = 1 still. That would just be gross. Slightly more

scientifically, we can show (see below) that the Lorentz invariance of the propagator would fail.
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while half-integer-spin fields have Lagrangians with a single time-derivative:

LZ+ 1
2
3 ψ̄αρ...γµαβ∂µψ

ρ...
β .

In the former case, this means the Hamiltonian density is hZ = φρ...φ̈
ρ..., while in the

other case, hZ+ 1
2

= ψ†αρ...∂tψ
αρ..., leading to the same relative signs we found in (5.39)

and (5.42).

The statistics are defined by the swap operation as in (5.38). More generally,

consider a two-particle state |φ1(x1)φ2(x2)〉 where we temporarily label the particles 1

and 2, and the wavefunctions φ1,2 are localized at positions x1,2. The swap operator

acts to interchange the positions of the particles

SWAP12 |φ1(x1)φ2(x2)〉 = eiφκ |φ2(x1)φ1(x2)〉 .

As you can see, we’ve allowed for a phase to appear; κ is a label depending on the

species of particles.

In d ≥ 3, the phase eiφκ can only be a sign, ±1. To see this, ask: how do we

implement the swap operator? More generally, if the particles are identical, what can

happen in between two states with a particle at x1 and x2? We must move the particles

on some trajectory which ends up with 1→ 1, 2→ 2 or 1↔ 2 at the end. Let ϕ ≡ the

angle by which particle 1 went around 2. ϕ is a topological property of the trajectory

of the two particles. But in d = 3, ϕ is defined only mod 2π, because there is no

non-trivial linking of curves in 3+1 dimensions. You can see this by visualizing the

following figure in three plus one dimensions:

So the phase φκ must be φκ = πκ with κ ∈ Z, a property of the particles (in fact,

twice the spin), so that in d ≥ 3,

SWAP12 |φ1(x1)φ2(x2)〉 = (−1)κ |φ2(x1)φ1(x2)〉 .

In d = 2, there is a lot more to the story of particle statistics (because two curves in

2+1 dimensions can have a topologically-nontrivial linking).

Now, this swap of two particles can be accomplished using Poincaré transformations

(Lorentz times translations), as follows. First translate by x2−x1. Then rotate around

x1 by π.
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~x2

~x1

T~x2−~x1 Rπ

Therefore, whatever phase φκ is going to happen under interchange is already built into

the rotation matrices (translations don’t produce any phase (at least in the absence of

a magnetic field)).

Note that I am demanding that the statistics phase φκ depends only the topology

of the path by which we exchange the particles. So the phase we get from the protocol

above is the answer for any other protocol which may not just be a rotation.

On a Dirac spinor particle at rest, the action of a Lorentz transformation is (recall

our expression for the Lorentz current)

|pµ, a〉 → Λ 1
2
(θ)ab |Λµ

ν(θ)p
ν , b〉 , (5.43)

with Λ 1
2
(θ) = e−iθµν ·J

µν
Dirac . (Here |p, a〉 = ura(p) |p, r〉, and |p, r〉 ≡

√
2ωpa

†
p,r |0〉.) For

the particular case of a rotation in the xy-plane, this is a diagonal matrix

Λ 1
2
(~θ = θz ž, β = 0) = eiθzσ

3⊗1L/R =


eiθ

z/2

e−iθ
z/2

eiθ
z/2

e−iθ
z/2

 θz→π→


i

−i

i

−i

 = (−1)sz i.

These factors of i are a direct consequence of the fact that the 2π rotation gives −1,

so a π rotation gives ±i (where the sign depends on the spin σz).

Now suppose the initial spin of each particle is in the ž direction (if not, the state will

not be an eigenstate of Λ), so that (e.g. for the σz = +1 eigenstate) ψ1 = (1, 0, 1, 0) 7→
Λψ1 = (i, 0, i, 0) = iψ1. Then the Poincaré transformation that implements the swap

of two such particles is

T~x2−~x1Λ(~θ = πž) |ψ1(~x1)ψ2(~x2)〉 s
z
1=sz2= (±i)2 |ψ1(~x2)ψ2(~x1)〉 = − |ψ1(~x2)ψ2(~x1)〉 .

For either spin (as long as the spins of the two particles are the same), the two π rota-

tions combine to give a (−1) – Fermi statistics follows from the spinor representation

matrices.

Dirac propagator. [Peskin §4.7] Now we will efficiently redo the story of interac-

tion picture perturbation theory and Wick’s theorem for Dirac spinor fields. The story

differs by just a few very important signs.
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Time ordering for fermions is defined with an extra minus sign:

T (A1(x1) · · ·An(xn)) ≡ (−1)PA1′(x1′) · · ·An′(xn′), x0
1′ > x0

2′ > · · · > x0
n′

where P ≡ the number of fermion interchanges required to get from the ordering 1...n

to the ordering 1′...n′ (mod two). Similarly, normal ordering is

: ABC · · · :≡ (−1)PA′B′C ′ · · · ,

where on the RHS all annihilation operators are to the right of all creation operators,

and P is defined the same way. 59 Wick’s theorem is then still

T (ABC · · · ) =: ABC · · · : +all contractions.

The possible contractions of Dirac fields are:

Ψ(x)Ψ(y) = 0, Ψ̄(x)Ψ̄(y) = 0, Ψ(x)Ψ̄(y) = SF (x− y),

where SF is the Feynman propagator for the Dirac field, i.e. the time-ordered vacuum

two-point function. It is

SabF (x− y) = 〈0| T
(
Ψa(x)Ψ̄b(y)

)
|0〉

= θ(x0 − y0) 〈0|Ψa(x)Ψ̄b(y) |0〉−θ(y0 − x0) 〈0| Ψ̄b(y)Ψa(x) |0〉
= θ(x0 − y0) 〈0|Ψ(+)

a (x)Ψ̄
(−)
b (y) |0〉︸ ︷︷ ︸

=〈0|{Ψ(+)
a (x),Ψ̄

(−)
b (y)}|0〉≡S+

−θ(y0 − x0) 〈0| Ψ̄(+)
b (y)Ψ(−)

a (x) |0〉︸ ︷︷ ︸
〈0|{Ψ̄(+)

b (y),Ψ
(−)
a (x)}|0〉≡S−

Ψ ≡ Ψ(+)︸︷︷︸
a

+ Ψ(−)︸︷︷︸
b†

The S+ bit, made only from as, is a c-number

S+
ab(x− y) = {Ψ(+)

a (x), Ψ̄
(−)
b (y)} =

∫
d̄3p√

2ω~p
e−ipx

∑
s=1,2

∫
d̄3q√

2ω~q
e+iqy

∑
s′=1,2

usa(p)ū
s′

b (q) {asp, as
′†
q }︸ ︷︷ ︸

=/δ
d
(p−q)δss′

=

∫
d̄3p

2ω~p
e−ip(x−y)

∑
s

usa(p)ū
s
b(p)︸ ︷︷ ︸

(5.36)
= (/p+m)

ab

=

∫
d̄3p

2ω~p
(i/∂x +m)ab e

−ip(x−y)

59Why the extra signs? One way to see that they must be there is if they weren’t everything would

be zero. With the sign, the following two choices for a normal ordered product are equivalent:

: apaqa
†
r := (−1)2a†rapaq = (−1)3a†raqap,

but without it, we would conclude that the LHS would be zero.
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= (i/∂x +m)ab

∫
d̄3p

2ω~p
e−ip(x−y)︸ ︷︷ ︸

=∆+(x−y)

∆+(x− y)
(3.5)
=

∫
C+

d̄4pe−ip(x−y) i

p2 −m2

=

∫
C+

d̄4pe−ip(x−y)
i
(
/p+m

)
ab

p2 −m2
(5.44)

The same calculation for S−, the bit involving {b,b†}, gives the same integrand, the

only difference, as for the complex KG field, is the contour C+ → C−. Getting the same

integrand with the same sign required the relative minus (the red one above, which

came from the fermionic definition of time-ordering) which for bosons came from the

sign in the commutator [b,b†] = bb† − b†b. Adding the two terms together, we learn

that the momentum space Dirac propagator is

S̃(p) =
i
(
/p+m

)
p2 −m2

=
i
(
/p+m

)(
/p+m

) (
/p−m

) =
i

/p−m
. (5.45)

(These matrices all commute with each other, so my cavalier manipulation of them

can be done in the eigenbasis of /p without trouble.) It is not a coincidence that the

numerator of the propagator is the polarization sum:
∑

s u
s(p)ūs(p) = /p+m.

The position-space Feynman propagator comes from integrating (5.45) over the

Feynman contour, as for scalars:

SF (x− y) =

∫
CF

d̄4p
i

/p−m
e−ip(x−y).

Fermions and causality. Earlier I made a big deal that we need commutators

to vanish outside the lightcone to prevent acausal communication. But the Dirac field

Ψ(x) doesn’t commute with Ψ̄(y) for spacelike x− y (rather, they anticommute). Why

is this OK? What saves the day is the fact that we can’t measure a single fermion

operator. The operators we can measure (such as the number density of fermions Ψ†Ψ,

or their momentum density Ψ†i~∇Ψ) are all made of even powers of Ψ and Ψ̄. And

these do commute outside the lightcone.

A principle that would make this restriction on what we can measure precisely

true and inevitable is if fermion parity is gauged. By ‘fermion parity’ I mean the

transformation that takes Ψ → −Ψ for every fermionic operator in the world. By ‘is

gauged’ I mean that this transformation should be regarded as an equivalence relation,

rather than a transformation that relates distinct physical configurations. In that case,

a local operator with an odd number of fermions would not be gauge invariant. 60

60This point of view, that locality should be built into the Hilbert space, and that therefore that
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5.6 Feynman rules with spinor fields

[Peskin §4.7] We can now write down Feynman rules for Dirac fermion fields. They

follow from an analysis exactly parallel to what we did earlier by interaction-picture

perturbation theory for scalars, with a few extra signs, and a few extra matrices in

spinor space.

As always in these notes, time goes to the left, so I draw the initial state on the

right (like the ket) and the final state on the left (like the bra).

1. An internal fermion line gives

=
i

/k −mΨ

which is a matrix on the spinor indices (not shown).

There are four possibilities for an external fermion line of definite momentum.

2. = Ψ|k, r〉 = ur(k). Here |k, r〉 ≡
√

2ωka
†
k,r |0〉, and this

follows just from the mode expansion (5.41).

3. = 〈k, r|Ψ̄ = ūr(k).

4. = Ψ̄|k, r〉 = v̄r(k).

5. = 〈k, r|Ψ = vr(k).

6. Some advice: When evaluating a Feynman diagram with spinor particles, always

begin at the head of the particle-number arrows on the fermion lines, and keep

going along the fermion line until you can’t anymore. This will keep the spinor

indices in the form of matrix multiplication. Why: every Lagrangian you’ll ever

encounter has fermion parity symmetry, under which every fermionic field gets

a minus sign; this means fermion lines cannot end, except on external legs. The

fermion parity should be gauged, is advocated forcefully by Wen, Quantum Field Theory of Many-

Body Systems (Oxford, 2004) in Chapter 10. It is not clear how to include gravitational degrees of

freedom in this principle.
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result is always of the form of a scalar function (not a matrix or a spinor) made

by sandwiching gamma matrices between external spinors:

r′p′ rp =
∑

a,b...=1..4

ūr
′
(p′)a (pile of gamma matrices)ab u

r(p)b

Furthermore, in S-matrix elements the external spinors u(p), v(p) satisfy the equa-

tions of motion (/p − m)u(p) = 0, a fact that can be used to our advantage to

shrink the pile of gammas.

There can also be fermion lines that form internal loops (though not at tree level,

by definition). In this case, the spinor indices form a trace,∑
a

(pile of gamma matrices)aa ≡ tr (pile of gamma matrices) .

We’ll learn to compute such traces below (around (6.3)); in fact, traces appear

even in the case with external fermions if we do not measure the spins.

7. Diagrams related by exchanging external fermions have a relative minus sign.

8. Diagrams with an odd number of fermion loops have an extra minus sign.

The last two rules are best understood by looking at an example in detail. A good

example of a QFT with interacting fermions (simpler than QED) is the Yukawa theory

of a Dirac fermion field plus a scalar φ and an interaction density

V = gφΨ̄Ψ =⇒ = − igδrr
′
. (5.46)

Notice that in 3 + 1 dimensions, [g] = +4− [φ]− 2[Ψ] = 4− 1− 23
2

= 0, the coupling

is dimensionless. This describes more realistically the interactions between nucleons

(which are fermions, as opposed to snucleons) and scalar pions, which hold together

nuclei. It also is a crude sketch of the Higgs coupling to matter; notice that if φ is some

nonzero constant 〈φ〉, then there is a contribution to the mass of the fermions, g 〈φ〉.

To understand rule 8 consider the following amplitude in the Yukawa theory with

interaction (5.46): It is a contribution to the meson propagator.

It is proportional to∑
abcd

δabδcdΨ̄a(x)Ψb(x)Ψ̄c(y)Ψd(y) =
∑
abcd

δabδcd(−1)3Ψb(x)Ψ̄c(y)Ψd(y)Ψ̄a(x)

= (−1)δabδcdS
bc
F (x− y)SdaF (y − x) = −trSF (x− y)SF (y − x). (5.47)

158



[End of Lecture 19]

[Peskin page 119] To understand rule 7 consider ΨΨ → ΨΨ (nucleon) scattering

in the Yukawa theory: The blob represents the matrix

element

0 〈p3r3; p4r4| T e−i
∫
V d4z |p1r1; p2r2〉0

(up to a factor of −iδ(
∑
p)) where the initial state is

|p1r1; p2r2〉0 = +
√

2ω12ω2a
r1†
p1

ar2†p2 |0〉

– note the convention for the order of anticommuting creation operators. The final

state is then

0 〈p3r3; p4r4| = (|p3r3; p4r4〉0)† ∝ 〈0| ar4p4a
r3
p3

= −〈0| ar3p3a
r4
p4

where note that the dagger reverses the order.

The leading contribution comes at second order in V :

0 〈p3r3; p4r4| T
(

1

2!
(ig)2

∫
d4z1

∫
d4z2

(
Ψ̄Ψφ

)
1

(
Ψ̄Ψφ

)
2

)
|p1r1; p2r2〉0

To get something nonzero we must contract the φs with

each other. The diagrams at right indicate best the pos-

sible ways to contract the fermions. Exchanging the roles

of z1 and z2 interchanges two pairs of fermions so costs

no signs and cancels the 1
2!

.

The overall sign is annoying but can be fixed by demand-

ing that the diagonal bit of the S-matrix give

〈p3p4| (1 + ...) |p1p2〉 = +δ(p1 − p3)δ(p2 − p4) + · · ·

The relative sign is what we’re after, and it comes by comparing the locations of fermion

operators in the contractions in the two diagrams at right. In terms of the contractions,

these t− and u− channel diagrams are related by leaving the annihilation operators

alone and switching the contractions between the creation operators and the final state.

Denoting by a†1,2 the fermion creation operators coming from the vertex at z1,2,

〈0| ap4 ap3a
†
1︸ ︷︷ ︸ a†2... + 〈0| ap4 ap3a

†
1a
†
2︸ ︷︷ ︸ ...

= 〈0| ap4 ap3a
†
1︸ ︷︷ ︸ a†2... − 〈0| ap4a

†
1︸ ︷︷ ︸ ap3a

†
2︸ ︷︷ ︸ ...
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In the last expression the fermion operators to be contracted are all right next to each

other and we see the relative minus sign.

While we’re at it, let’s evaluate this whole amplitude to check the Feynman rules

I’ve claimed and get some physics out. It is

Sfi = −g2

∫
dz1dz2

∫
d̄4q

e−iq(z1−z2)i

q2 −m2
φ + iε

(
e−ız2(p1−p3)ūr3(p3)ur1(p1) · e−ız1(p2−p4)ūr4(p4)ur2(p2)− (3↔ 4)

)
.

In the first (t-channel) term, the integrals over z1,2 gives /δ(p1 − p3 − q)/δ(p4 − p2 − q),
and the q integral then gives δ(p1 + p2 − p3 − p4), overall momentum conservation. In

the second (u-channel) term, q = p1 − p4 = p3 − p2. Altogether,

(S − 1)fi = /δ
4
(pT )iM

with, to leading order,

iM = −ig2

(
1

t−m2
φ

(ū3u1) (ū4u2)− 1

u−m2
φ

(ū4u1) (ū3u2)

)
(5.48)

with t ≡ (p1 − p3)2, u ≡ (p1 − p4)2. This minus sign implements Fermi statistics.

Yukawa force revisited. In the non-relativistic limit, we can again relate this

amplitude to the force between particles, this time with the actual spin and statistics

of nucleons. In the COM frame, in the NR limit, p1 = (m, ~p), p2 = (m,−~p) and

p3 = (m, ~p′), p4 = (m,−~p′). In the non-relativistic limit, the spinors become urp =(√
σ · pξr√
σ̄ · pξr

)
→
√
m

(
ξr

ξr

)
so that ū3u1 ≡ ū(p3)r3u(p1)r1 = 2mξ†r3ξr1 = 2mδr3r1 . Let’s

simplify our lives and take two distinguishable fermions (poetically, they could be proton

and neutron, but let’s just add a label to our fermion fields; they could have different

masses, for example, or different couplings to φ, call them g1, g2). Then we only get

the t-channel diagram. The intermediate scalar momentum is q = p1 − p3 = (0, ~p− ~p′)
so t = (p1 − p3)2 = −~q2 = − (~p− ~p′)2 and

iMNR,COM = ig1g2
1

~q2 +m2
φ

4m2δr1r3δr2r4 .

Recall that this is related to the S-matrix element by S(34 ← 12) = /δ
4
(
∑
p)iM.

Compare this to the NR Born approximation matrix element

2πδ(Ep − Ep′)
(
−iŨ(~q)

)
δr1,r3 = NR 〈~p′, r3|S |~p, r1〉NR

=
∑
r4

∫
d̄3p4

4∏
i=1

1√
2Ei︸ ︷︷ ︸

= 1√
2m

4

S(34← 12)
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= 2πδ(Ep − Ep′)δr1r3
ig1g2

~q2 +m2
φ

where in the second line we summed over possible final states of the second (target)

particle, and corrected the relativistic normalization, so that NR 〈~p′|~p〉NR = /δ
3
(p− p′).

This is completely independent of the properties of the second particle. We infer that

the scalar mediates a force with potential U(x) = −g1g2e
−mφr

4πr
. It is attractive if g1g2 > 0.
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6 Quantum electrodynamics

6.1 Feynman rules for QED

The Lagrangian for QED is

LQED = Ψ̄
(
i/∂ −m

)
Ψ− 1

4
FµνF

µν + eΨ̄γµAµΨ = Ψ̄
(
i /D −m

)
Ψ− 1

4
FµνF

µν . (6.1)

Why is this the form of the interaction? It is the simplest gauge-invariant and Lorentz-

invariant we can make out of a spinor and a vector field. Notice that Ψ has dimension

3 and A has dimension 1 so the coupling e is dimensionless. The theory is classically

scale invariant (and therefore has a chance to be renormalizable). There are other in-

teractions we can add, but they all involve more derivatives or more fields and therefore

are irrelevant, in the sense that they are suppressed by some new mass scale M , and

their effects therefore become unimportant for questions about energies E � M . A

good example is

δL =
c

M
FµνΨ̄γ

µνΨ . (6.2)

This term shifts the magnetic dipole moment of the Ψ particle. You may have heard

about the high-precision measurements of g − 2 of the muon that people have done.

One way to describe what they are doing is measuring the coupling c.

For efficiency, I’m going to just write down the Feynman rules for QED. Then

we’ll come back and understand the form of the photon propagator in the following

subsection.

The new ingredients in QED (relative to field theories we’ve studied above) are the

propagating vectors, and the interaction hamiltonian density V = eΨ̄γµΨAµ. The rest

of the Feynman rules are

9. The interaction vertex gets a

= − ieγµ

10. An external photon in the initial state gets a εµ(p), and in the final state gets a

εµ?(p).

11. An internal photon line gets a

=
i

k2 −m2
γ

(
−ηµν + (1− ξ)kµkν/k2

)
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where mγ = 0 (it’s sometimes useful to keep it in there for a while as an IR

regulator) and the value of ξ is up to you (meaning that your answers for physical

quantities should be independent of ξ).

Spinor trace ninjutsu.

The trace is cyclic: tr (AB · · ·C) = tr (CAB · · ·) . (6.3)

Our gamma matrices are 4× 4, so tr1 = 4.

trγµ = tr
(
γ5
)2
γµ

(6.3)
= trγ5γµγ5 {γ

5,γµ}=0
= −trγµ = 0. (6.4)

The same trick shows that the trace of any odd number of gammas vanishes. The idea

is that an odd number of gammas is a map between the L and R subspaces, so it has

only off-diagonal terms in the Weyl basis.

trγµγν
clifford

= −trγνγµ + 2ηµνtr1
(6.3)
= −trγµγν + 8ηµν =⇒ trγµγν = 4ηµν . (6.5)

trγµγνγργσ = 4 (ηµνηρσ + ησµηνρ − ηµρηνσ) . (6.6)

Why is this? The completely antisymmetric bit vanishes because it is proportional to

γ5 which is traceless (by the same argument as (6.4)). If any pair of indices is the same

then the other two must be too by (6.5). If adjacent pairs are the same they can just

square to one and we get +1; if alternating pairs are the same (and different from each

other) then we must move them through each other with the anticommutator. If they

are all the same we get 4.

trγµγνγργσγ5 = −4iεµνρσ.

6.2 QED processes at leading order

Now we are ready to do lots of examples, nearly all of which (when pushed to the

end) predict cross sections which are verified by experiments to about one part in

137.61 Here 1
137
≈ α ≡ e2

4π
is the small number by which the next order corrections are

suppressed. 62

61I guess it is this overabundance of scientific victory in this area that leads to the intrusion of so

many names of physicists in the following discussion.
62This statement is true naively (in the sense that the next diagrams which are nonzero come with

two more powers of e), and also true in fact, but in between naiveté and the truth is a long road of

renormalization, which begins next quarter.
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Did I mention that the antiparticle of the electron, predicted by the quantum Dirac

theory (i.e. by Dirac), is the positron? It has the same mass as the electron and the

opposite electromagnetic charge, since the charge density is the 0 component of the

electromagnetic current, jµ = Ψ̄γµΨ, so the charge is∫
d3xj0(x) =

∫
Ψ̄γ0Ψ =

∫
Ψ†Ψ =

∫
d̄3p

∑
s

(
a†p,saps − b†p,sbps

)
.

So b† creates a positron. Notice that such an antiparticle is a logical consequence of

demanding a Lorentz-invariant theory of a massive spin-half particle with a conserved

particle number.

[Schwarz §13.3, Peskin §5.1] Perhaps the simplest to start with is scattering of

electrons and positrons. We can make things even simpler (one diagram instead of

two) by including also the muon, which is a heavy version of the electron63, and asking

about the process µ+µ− ← e+e−. At leading order in e, this comes from

iMµ+µ−←e+e− =

= (−ieūs3(p3)γµvs4(p4))muons

−i
(
ηµν − (1−ξ)kµkν

k2

)
k2

(−iev̄s2(p2)γνus1(p1))electrons (6.7)

with k ≡ p1 + p2 = p3 + p4 by momentum conservation at each vertex. I’ve labelled

the spinors according to the particle types, since they depend on the mass.

Ward identity in action. What about the kµkν term in the photon propagator?

I claimed that physics does not depend on ξ in its coefficient – this is called the Ward

identity. The spinors satisfy their equations of motion, /p1
u1 = meu1 (where u1 ≡ us1p1

for short) and v̄2/p2
= −mev̄2. The kν appears in the combination

kν v̄2γ
νu1 = v̄2

(
/p1

+ /p2

)
u1 = v̄2/p1

u1 + v̄2/p2
u1 = (m−m)v̄u = 0.

(The other factor is also zero, but one factor of zero is enough.) Therefore

M =
e2

s
ū3γµv4 · v̄2γ

µu1

63Who ordered that? (I. Rabi’s reaction to learning about the muon.) I hope you don’t find it too

jarring that the number of ‘elementary’ particles in our discussion increased by three in the last two

paragraphs. People used to get really disgruntled about this kind of thing. But here we have, at last,

uncovered the true purpose of the muon, which is to halve the number of Feynman diagrams in this

calculation (compare (6.17)).
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where s ≡ k2 = (p1 + p2)2 = E2
CoM is the Mandelstam variable. And I am relying on

you to remember which spinors refer to muons (3,4) and which to electrons (1,2).

Squaring the amplitude. We need to findM† (the dagger here really just means

complex conjugate, but let’s put dagger to remind ourselves to transpose and reverse

the order of all the matrices). Recall the special role of γ0 here:

γ†µγ0 = γ0γµ, γ†0 = γ0.

This means that for any two Dirac spinors,(
Ψ̄1γ

µΨ2

)†
= Ψ̄2γ

µΨ1.

(This is the same manipulation that showed that the Dirac Lagrangian was hermitian.)

So

M† =
e2

s
(v̄4γ

µu3) (ū1γµv2) .

and therefore

|Mµ+µ−←e+e− |2 =
e4

s2
(v̄4γ

µu3) (ū3γ
νv4)︸ ︷︷ ︸

out

· (ū1γµv2) (v̄2γνu1)︸ ︷︷ ︸
in

. (6.8)

These objects in parentheses are just c-numbers, so we can move them around, no

problem. I’ve grouped them into a bit depending only on the initial state (the electron

stuff 1, 2) and a bit depending only on the final state (the muon stuff 3,4).

Average over initial, sum over final. In the amplitude above, we have fixed the

spin states of all the particles. Only very sophisticated experiments are able to discern

this information. So suppose we wish to predict the outcome of an experiment that

does not measure the spins of the fermions involved. We must sum over the final-state

spins using ∑
s4

vs4a (p4)v̄s4b (p4) =
(
/p4
−mµ

)
ab

=
∑
s4

v̄s4b (p4)vs4a (p4)

(where I wrote the last expression to emphasize that these are just c-numbers) and∑
s3

us3a (p3)ūs3b (p3) =
(
/p3

+mµ

)
ab
.

Looking at just the ‘out’ factor of |M|2 in (6.8), we see that putting these together
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produces a spinor trace, as promised:∑
s3,s4

(
ū(p3)s3a γ

µ
ab v(p4)s4b

)(
v̄(p4)s4c︸ ︷︷ ︸

(/p4−mµ)bc

γνcdu
s3(p3)d

)
= γµab(/p4

−mµ)bcγ
ν
cd(/p3

+mµ)da

= tr
(
γµ
(
/p4
−mµ

)
γν
(
/p3

+mµ

))
(6.9)

= p4ρp3σtrγµγργνγσ −m2
µtrγµγν

(6.5),(6.6)
= 4

pµ4pν3 + pν4p
µ
3 − p3 · p4︸ ︷︷ ︸

≡p34

ηµν −m2
µη

µν

 (6.10)

Diagrammatically what just happened was that we took a copy of M† and a copy of

M; summing over s3, s4 glued the muon lines together to make a loop (at least for the

purposes of the spinor index sums):

s3

s4

M† s3

s4

M

(Muons are in blue in this figure.) [End of Lecture 20]

If also we don’t know the initial (electron) spins, then the outcome of our experiment

is the average over the initial spins, of which there are four possibilities. This is

because, in this circumstance, the initial state is an incoherent mixture of the available

possibilities: ρ =
∑

s1,s2
ps1,s2ρs1,s2 , a density matrix rather than a pure state, with ρs1,s2

the projector onto the pure state with the indicated spins, and in this case ps1,s2 = 1
4
.

Therefore, the relevant probability for unpolarized scattering is

1

4

∑
s1,2,3,4

|M|2 (6.9) twice
=

e4

4s2
tr
(
γµ
(
/p4
−mµ

)
γν
(
/p3

+mµ

))
tr
(
γν

(
/p2
−me

)
γµ

(
/p1

+me

))
(6.10) twice

=
8e4

s2

(
p13p24 + p14p23 +m2

µp12 +m2
ep34 + 2m2

em
2
µ

)
algebra

=
2e4

s2

(
t2 + u2 + 4s(m2

e +m2
µ)− 2(m2

e +m2
µ)2
)

(6.11)
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Here pij ≡ pi · pj. In the second step of (6.11) the p12p34

terms cancel. In the last step of (6.11) we used all the

Mandelstam variables:

s ≡ (p1 + p2)2 = (p3 + p4)2 = E2
CoM = 4E2

t ≡ (p1 − p3)2 = (p2 − p4)2 = m2
e +m2

µ − 2E2 + 2~k · ~p
u ≡ (p1 − p4)2 = (p2 − p3)2 = m2

e +m2
µ − 2E2 − 2~k · ~p

where the particular kinematic variables (in the rightmost

equalities) are special to this problem, in the center of

mass frame (CoM), and are defined in the figure at right.

Really there are only two independent Lorentz-invariant

kinematical variables, since s+ t+ u =
∑

im
2
i .

Now we can use the formula (4.46) that we found for a differential cross section

with a two-body final state, in the CoM frame:(
dσ

dΩ

)
CoM

=
1

64π2E2
CoM

|~p|
|~k|

(
1

4

∑
spins

|M|2
)

=
α2

16E6

|~p|
|~k|

(
E4 + |~k|2|~p|2 cos2 θ + E2(m2

e +m2
µ)
)

(6.12)

where α ≡ e2

4π
is the fine structure constant. This can be boiled a bit with kinematical

relations |~k| =
√
E2 −m2

e, |~p| =
√
E2 −m2

µ to make manifest that it depends only on

two independent kinematical variables, which we can take to be the energy E and the

scattering angle θ in ~k · ~p = |~k||~p| cos θ (best understood from the figure). It simplifies

a bit if we take E � me, and more if we take E � mµ ∼ 200me, to

dσ

dΩ
=

α2

4E2
CoM

(
1 + cos2 θ

)
. (6.13)

In fact, the two terms here come respectively from spins transverse to the scattering

plane and in the scattering plane; see Schwartz §5.3 for an explanation.

You may be surprised that the cross section (6.13) decreases with energy. Mechan-

ically this comes mainly from the 1/s2 from the photon propagator: as s grows, the

intermediate photon is more and more off-shell. But more deeply, it’s because above

we’ve studied an exclusive cross-section, in the sense that we fixed the final state to

be exactly a muon and an antimuon. At higher energies, nothing new happens here,

because the final state is fixed, and most of the probability is elsewhere. More about

where the probability goes in the next subsection.

It has also been very valuable to think about inclusive cross-sections for e+e− scat-

tering, because in this way you can make anything that the s-channel photon couples
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to, if you put enough energy into it. The inclusive cross section for (e+e− goes to

anything) does grow with energy, and jumps at energies that are thresholds for new

particles in the final state. In this way, for example, we can also make quarks (more

specifically quark-antiquark pairs) since they also carry electric charge. See Peskin pp

139-140 for a bit more about that, and in particular how this observable gives evidence

that there are three colors of quarks.

6.3 Vector fields, quickly

We must fill a small hole in our discussion: in §1.3, we figured out a bit of the quantum

theory of the radiation field. A few things we did not do: study the propagator,

figure out the data on external states, and the relation between the masslessness of the

photon and gauge invariance. After that we will couple electrons and photons and study

leading-order (tree-level) processes in the resulting theory of quantum electrodynamics

(QED).

[We’ll follow Ken Intriligator’s efficient strategy for this discussion.] Consider the

following Lagrangian for a vector field Aµ (which I claim is the most general quadratic

Poincaré-invariant Lagrangian with at most two derivatives in D = 3 + 1):

L = −1

2

∂µAν∂µAν + a ∂µA
µ∂νA

ν︸ ︷︷ ︸
=(∂A)2

+bAµA
µ + cεµνρσ∂µAν∂ρAσ

 .

The sign is chosen so that spatial derivatives are suppressed, and the normalization of

the first term is fixed by rescaling A. (Another possible-seeming term, ∂µA
ν∂νA

µ,

is related to the second term by two IBPs.) The last term is a total derivative,

εµνρσ∂µAν∂ρAσ ∝ ∂µ (εµνρσAν∂ρAσ), and will not affect the EoM or anything at all

in perturbation theory; it is called a θ term.

The EoM are

0 =
δ

δAν(x)

∫
L = −∂2Aν − a∂ν (∂ · A) + bAν (6.14)

which (like any translation-invariant linear equation) is solved by Fourier transforms

Aµ(x) = εµe
−ikx, if

k2εµ + akµ (k · ε) + bεµ = 0.

There are two kinds of solutions: ones with εµ ∝ kµ (for which the dispersion relation

is k2 = − b
1+a

, and which is called the longitudinal polarization), and solutions ε · k = 0

with dispersion k2 = −b. The mode polarized along kµ may be removed by taking
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b 6= 0 and a → −1, which we will do from now on and never speak of it again. This

gives the Proca Lagrangian:

La=−1,b≡−µ2 = −1

4
FµνF

µν +
1

2
µ2AµA

µ,

where as usual Fµν ≡ ∂µAν − ∂νAµ. Note that the EOM (Proca equation) 0 = ∂·F·ν +

µ2Aν implies 0 = ∂νAν by the Bianchi identity 0 = ∂µ∂νFµν (which holds because of the

symmetry of mixed partials and the antisymmetry of Fµν). So each component of Aµ
satisfies (by (6.14)) the KG equation, k2 = µ2, and the transverse condition ε·k = 0. In

the rest frame, kµ = (k0,~0)µ, we can choose a basis of plane-wave transverse solutions

which are eigenstates of the vector rotation generator

Jz = i

 +1

−1

 , namely, ε(±) =
1√
2


0

1

∓i

0

 , ε(0) =


0

0

0

1

 .

They are normalized so that ε(r) ·ε(s) = −δrs and
∑

r=±1,0 ε
(r)?
µ ε

(r)
ν = −ηµν + kµkν

µ2
so that

they project out ε ∝ k. More generally, if kµ = (ω, 0, 0, pz), then the third polarization

meeting these demands is

ε(0)
µ =

1

µ
(pz, 0, 0,−ω)µ, ε(0)µ =

1

µ
(pz, 0, 0, ω)µ

Notice that in the massless case, there’s no rest frame where ~k = 0 and the story can

be different, and also that in this case pz = E, so ε(0)µ ∝ kµ is longitudinal.

If ~k ∝ ẑ (for example in the massless case with kµ = (E, 0, 0, E)µ) then these three

ε are also all helicity eigenstates: h = ~J · k̂ = Jz.

Canonical stuff: The canonical momenta are πi = ∂L
∂Ȧi

= −F 0i = Ei (as for

electrodynamics in §1.3) and π0 = ∂L
∂Ȧ0

= 0. This last bit is a little awkward, but it

just means we can solve the equations of motion for A0 algebraically in terms of the

other (real) dofs:

0 =
δS

δA0

∝ ~∇· ~E−µ2A0 = (∇2−µ2)A0− ~∇· ~̇A =⇒ A0(~x) =

∫
d3ye−µ|~x−~y|

(
−~∇ · ~̇A

)
4π|~x− ~y|

.

(6.15)

So at each moment A0 is determined by Ai. (Notice that this is still true for µ →
0.) The hamiltonian density is (after using πi = F 0i, integration by parts, and the

equations of motion for A0)

h =
1

2

(
~E2 + ~B2 + µ2 ~A2 + µ2A2

0

)
≥ 0,

169



where positivity follows from the fact that it is a sum of squares of real things.

The canonical equal-time commutators are then

[Ai(t, ~x), F j0(t, ~y)] = iδji δ
(3)(~x− ~y)

which if we add up the plane wave solutions as

Aµ(x) =
∑
r=1,2,3

∫
d̄3k√
2ωk

(
e−ikxarkε

(r)
µ + e+ikxar†k ε

(r)?
µ

)
give the bosonic ladder algebra for each mode

[ark, a
s†
p ] = /δ

(3)
(~k − ~p)δrs.

The normal-ordered hamiltonian is

: H :=
∑
r

∫
d̄3k ωka

r†
k ark.

The propagator for the Aµ(x) field is

〈0|T Aµ(x)Aν(y)|0〉 =

∫
d̄4ke−ik(x−y)

[
−i(ηµν − kµkν/µ2)

k2 − µ2 + iε

]
. (6.16)

Notice that like in the spinor case the polarization sum
∑

r ε
r?
µ ε

r
ν appears in the numer-

ator of the propagator. The way to understand the sign is that the spatial components

are just like scalars. The quantity in square brackets is then the momentum-space

propagator. Since 〈0|Aµ(x) |k, r〉 = εrµ(k)e−ikx , a vector in the initial state produces a

factor of εrµ(k), and in the final state gives ε?.

Massless case. In the limit µ → 0 some weird stuff happens. If we couple Aµ
to some object jµ made of other matter, by adding ∆L = jµAµ, then we learn that

∂µA
µ = µ−2∂µj

µ. This means that in order to take µ→ 0, it will be best if the current

is conserved ∂µj
µ = 0.

One example is the QED coupling, jµ = Ψ̄γµΨ. We saw that this coupling Aµj
µ

arose from the ‘minimal coupling’ prescription of replacing ∂µ → Dµ = ∂µ + ieqAµ
in the Dirac Lagrangian. In that case, the model had a local invariance under Aµ →
Aµ + ∂µλ(x)/e,Ψ(x) → eiqλ(x)Ψ(x). For λ non-constant (and going to zero far away),

this is a redundancy of our description rather than a symmetry (for example, two sets

of fields related by this transformation have the same values of the physical quantities
~E, ~B, ei

∮
A).

That is, configurations related by this gauge transformation should be regarded as

equivalent. This gives us a new interpretation of the polarization with εµ ∝ kµ: this
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means in position space that Aµ = ∂µλ for some function λ, i.e. it is a pure gauge

configuration, equivalent to Aµ = 0 by a gauge transformation. See Schwartz §8.6 for

a nice diatribe on why we use such a redundant description.

Another example of coupling a gauge field to matter can be obtained by taking

a complex scalar and doing the same minimal coupling ∂ → D replacement: L =

(DµΦ)?DµΦ + ... Notice that in this case the vertex involves a derivative, so it comes

with a factor of = −ieq(pΦ +pΦ?)
µ. Also, there is a AµAνΦ

?Φ coupling, which

gives a vertex = −ie2q2ηµν .

How do I know that configurations related by a gauge transformation should be

regarded as equivalent? If not, the kinetic operator K for the massless vector field

Kν
µν ≡ (ηµν (∂ρ∂ρ)− ∂µ∂ν)Aν = 0 is not invertible, since it annihilates Aν = ∂νλ.

This would be bad because the path integral
∫
DAe−

∫
AKA would blow up from the

integral over this degenerate mode. So gauge transformations are redundancies of our

description of massless vector fields in terms of vector potentials.

What’s the propagator, then? One strategy is to simply ignore the gauge equiv-

alence and use the same propagator (6.16) that we found in the massive case with

µ→ 0. Since the dynamics are gauge invariant, it will never make gauge-variant stuff,

and the longitudinal bits ∝ kµkν in (6.16) (which depend on µ) will just drop out, and

we can take µ→ 0 in the denominator at the end. This actually works. The guarantee

that it works is the QED Ward identity: any amplitude with an external vector ε(k)µ
is of the form

= iM = iMµ(k)εµ(k)

and if all external fermion lines are on-shell then

Mµ(k)kµ = 0.

There is a complicated diagrammatic proof of this statement in Peskin; Schwartz

§8.4 argues that it is a necessary condition for Lorentz invariance of M = εµ · Mµ;

and we’ll give some illustrations of it below (I also recommend Zee §II.7). But it

is basically a statement of current conservation: such an amplitude is made (by

LSZ and the photon Schwinger-Dyson equation) from a correlation function involv-

ing an insertion of the electromagnetic current jµ(k) =
∫
d4x e−ikxjµ(x), in the form,

Mµ ∼ ... 〈Ω|....jµ(k)...|Ω〉, and kµj
µ(k) = 0 is current conservation64.

64Current conservation ∂µj
µ is a statement that requires the equations of motion (recall the proof of
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This property guarantees that we will not emit any longitudinal photons, since the

amplitude to do so is the µ→ 0 limit of

A

(
emit εLλ = 1

µ
(k, 0, 0,−ω)λ

with kλ = (ω, 0, 0, k)λ

)
∝ εLµMµ =

1

µ

(
kM0 − ωM3

)
=

1

µ

kM0 −
√
k2 + µ2︸ ︷︷ ︸

=k+µ2

2k
+...

M3


=

1

µ
kµMµ︸ ︷︷ ︸

=0,by Ward

− µ

2k
M3 +O(µ3)︸ ︷︷ ︸
→0 as µ→0

µ→0→ 0.

Gauge fixing. You might not be happy with the accounting procedure I’ve advo-

cated above, where unphysical degrees of freedom are floating around in intermediate

states and only drop out at the end by some formal trick. In that case, a whole zoo of

formal tricks called gauge fixing has been prepared for you. Here’s a brief summary to

hold you over until 215B.

At the price of Lorentz invariance, we can make manifest the physical dofs, by

choosing Coulomb gauge. That means we restrict ∂µA
µ = 0 (so far, so Lorentz invari-

ant) and also ~∇ · ~A = 0. Looking at (6.15), we see that this kills off the bit of A0

that depended on ~A. We also lose the helicity-zero polarization ~∇ · ~A ∝ ε(0). But the

Coulomb interaction is instantaneous action at a distance.

To keep Lorentz invariance, we can instead merely discourage configurations with

∂ · A 6= 0 by adding a term to the action

L = −1

4
FµνF

µν − 1

2ξ
(∂ · A)2

for some arbitrary number ξ. Physics should not depend on ξ, and this is a check

on calculations. With ξ < ∞ the kinetic operator is invertible and its inverse is the

propagator:

〈T Aµ(x)Aν(y)〉 =

∫
d̄4k e−ik(x−y)

[
−i(ηµν − (1− ξ)kµkν/k2)

k2 − µ2 + iε

]
Noether’s theorem). Recall that we proved that equations of motion are true in correlation functions,

up to contact terms, using the independence of the path integral on choice of integration variables.

By contact terms, I mean terms that are only nonzero when two operators are at the same point. So

you can worry about the contact terms in the argument for the Ward identity. The reason they do

not contribute is that all the operators in the correlation function (using the LSZ formula) correspond

to external states. A collision between the operators creating the external particles would lead to a

disconnected amplitude, which could only contribute for degenerate kinematical configurations, and

we can ignore them. If you would like to read more words about this, look at Schwartz §14.8, or

Appendix A.
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and again the bit with kµkν must drop out. ξ = 1 is called Feynman gauge and makes

this explicit. ξ = 0 is called Landau gauge and makes the propagator into a projector

onto k⊥.

It becomes much more important to be careful about this business in non-Abelian

gauge theory.

65

6.4 More examples of QED processes at tree level

There is a lot more to say about what happens when we scatter an electron and a

positron. Another thing that can happen is that the final state could be an electron

and positron again (Bhabha scattering66).

In the s-channel diagram they are not the same e− and

e+ (except in the sense that they are all the same).

Another way to get there at tree level is the second,

t-channel, diagram, at right, where there is a sense in

which the initial particles survive in the final state. The

intermediate photon in that diagram has kt = (p1 − p3),

so that the denominator of the propagator is t = k2
t =

(p1 − p3)2 instead of s.

Squaring this amplitude gives

|Ms +Mt|2 = |Ms|2 + |Mt|2 + 2Re(MsM?
t ), (6.17)

65By the way, you might be bothered that we didn’t go back to our table 1 of possible Lorentz

representations on fields to think about spin one particles. Indeed, we could start with the (1, 0)⊕(0, 1)

antisymmetric tensor Fµν as our basic object. (See, for example, the book by Haag, Local Quantum

Physics, page 47.) Indeed, in this way we could construct a theory of a free EM field. But don’t we

need a vector potential to couple to charged matter? The answer turns out to be ‘no,’ as explained

by Mandelstam here. The price is that the charged fields depend on not just a point, but a choice of

path; if we did introduce the vector potential, they would be related to our fields by

Φ(x, P ) = ei
∫
P
AΦ(x),

where P is a path which ends at x and infinity. This Wilson line ei
∫
P
A carries away the gauge

transformation, so that Φ(x, P ) is actually invariant under gauge transformations that fall off at

infinity.

66See figure 3 here. Now remember that a person doesn’t have much control over their name. By

the way, I totally believe the bit about non-perturbative strings = lint.
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interference terms. Interference terms mean that you have to be careful about the

overall sign or phase of the amplitudes.

e−e− ← e−e− . What happens if instead we scatter two

electrons (Möller scattering)? In that case, the leading

order diagrams are the ones at right. Now the interme-

diate photons have kt = (p1 − p3) and ku = (p1 − p4)

respectively, so that the denominator of the propaga-

tor is t and u in the two diagrams. The evaluation of

these diagrams has a lot in common with the ones for

e+e− → e+e−, namely you just switch some of the legs

between initial and final state.

The relation between such amplitudes is called crossing

symmetry. Let’s illustrate it instead for e−µ− ← e−µ−,

where again there is only one diagram, related by cross-

ing to (6.19). The diagram is the one at right. (The

muon is the thicker fermion line.)

iM = = (−ieū3γ
µu1))electrons

−i
(
ηµν − (1−ξ)kµkν

k2

)
k2

(−ieū2γ
νu4)muons (6.18)

with k ≡ p1 − p3 = p2 − p4. It differs from (6.19) by replacing the relevant vs with

us for the initial/final antiparticles that were moved into final/initial particles, and

relabelling the momenta. After the spin sum,

1

4

∑
s1,2,3,4

|M|2 =
e4

4t2
tr
(
γµ
(
/p4

+mµ

)
γν
(
/p2

+mµ

))
tr
(
γν

(
/p3

+me

)
γµ

(
/p1

+me

))
this amounts to the replacement (p1, p2, p3, p4)→ (p1,−p3, p4,−p2).

Crossing symmetry more generally. If you look at a Feynman diagram on its

side (for example because someone else fails to use the convention that time goes to the

left) it is still a valid amplitude for some process. Similarly, dragging particles between

the initial and final state also produces a valid amplitude. Making this relation precise

can save us some work. The precise relation for dragging an incoming particle into the
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final state, so that it is an outgoing antiparticle, is:

iMf←iA(pf ; pi, pA) = = iMĀf←i(pf , k = −pA; pi) = .

(If you must, note that this is another sense in which an antiparticle is a particle

going backwards in time.) If A is a spinor particle, the sum relations for particles and

antiparticles are different:∑
r

ur(p)ūr(p) = /p+m,
∑
r

vr(k)v̄r(k) = /k −m = −(/p+m)

– after accounting for k = −pA, they differ by an overall sign. Hence we must also ap-

pend a fermion sign factor (−1)number of fermions shuffled between in and out in the unpolarized

scattering probability. We’ll study a well-motivated example in more detail next.

Mott formula. By studying scattering of an electron from a heavy charged fermion

(a muon is convenient) we can reconstruct the cross section for scattering off a Coulomb

potential (named after Mott). This example will be important next quarter, where

you’ll learn how it is corrected by other QED processes.

µ+µ− ← e+e− . Consider again the process µ+µ− ← e+e−. To try to keep things

straight, I’ll call the electron momenta p, p′ and the muon momenta k, k′, since that

won’t change under crossing. We found the amplitude

iMµ+µ−←e+e− =

=
(
−ieūs(k)γµvs

′
(k′)
)

muons

−i
(
ηµν − (1−ξ)qµqν

q2

)
q2

(
−iev̄r

′
(p′)γνur(p)

)
electrons

(6.19)

(with q ≡ p+ p′ = k + k′)67 and the (unpolarized) scattering probability density

1

4

∑
spins

|M|2 spinor traces
=

1

4

e4

s2
EµνMµν ,

where the tensor objects Eµν ,Mµν come respectively from the electron and muon lines,

1

4
Eµν = pµp

′
ν + p′µpν − ηµν(p · p′ +m2

e)

67Relative to the notation I used earlier, p1 = p, p2 = p′, p3 = k, p4 = k′.
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1

4
Mµν = kµk

′
ν + k′µkν − ηµν(k · k′ +m2

µ).

and they are contracted by the photon line, with s = q2 = (p+ p′)2.

e−µ− ← e−µ− . To get from this the amplitude (tree level, so far) for the process

e−µ− ← e−µ−, we must move the incoming positron line to an outgoing electron line,

and move the outgoing antimuon line to an incoming muon line (hence the sign in σ will

be (−1)number of fermions shuffled between in and out = (−1)2 = 1). Relative to the amplitude

for µ+µ− ← e+e− (6.19), we must replace the relevant vs with us for the initial/final

antiparticles that were moved into final/initial particles, and we must replace p′ →
−p′, k′ → −k′:

iM = = (−ieū(p′)γµu(p)))electrons

−i
(
ηµν −

(1−ξ)qtµqtν
q2t

)
q2
t

(−ieū(k)γνu(k′))muons(6.20)

with qt ≡ p− p′ = k − k′. After the spin sum,

1

4

∑
s,s′,r,r′

|M|2 = 4
e4

t2
(
−pµp′ν − p′µpν − ηµν(−p · p′ +m2

e)
)

·
(
−kµk′ν − k′µkν − ηµν(−k · k′ +m2

µ)
)

(6.21)

On the Mandelstam variables, this is just the permutation (s, t, u)→ (t, u, s).

Payoff: the Mott formula. Recall other ways of figuring out the scattering cross

section from a Coulomb potential from a point charge of charge ze.

We think about scattering from a fixed electrostatic potential A0 = ze
r

and do classical

mechanics. I can never remember how this goes. Instead, let’s just scatter an electron

off a heavy charge, such as a muon. If the charge of the heavy object were z times that

of the electron, we would multiply the amplitude by z and the cross section by z2.

‘Heavy’ here means that we can approximate the

CoM frame by its rest frame, and its initial and fi-

nal energy as k′0 = mµ, k0 =
√
m2
µ + ~k2 = mµ +

1
2
~k2/mµ + · · · ' mµ. Also, this means the collision

is approximately elastic, E ′ ' E. In the diagram of

the kinematics at right, annoyingly, s ≡ cos θ, c ≡
sin θ. (Sorry.)
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This means that the muon-line tensor factor Mµν in (6.21) simplifies dramatically:

−1

4
Mµν ' kµk

′
ν + k′µkν − ηµν

k · k′ −m2
µ︸ ︷︷ ︸

=m2
µ−m2

µ=0

 ' δµ0δν02m2
µ.

In the electron line, we’ll need the ingredient

− p · p′ +m2
e = −E2 + ~p2 cos θ +m2

e = −~p2(1− cos θ). (6.22)

So

EµνMµν = −8m2
µE

00 = 32m2
µ(2E2 + η00(−p · p′ +m2

e))
(6.22)
= 32m2

µ(2E2 − ~p2(1− cos θ))
trig
= 32m2

µ2(E2 − ~p2 sin2 θ/2)
β2≡~p2/E2

= 64m2
µE

2(1− β2 sin2 θ/2) .

From the two-body phase space, the cross section is

dσ =
1

vrel︸︷︷︸
=β

1

2E

1

2mµ

z2e4

t2
64

4
m2
µE

2(1− β2 sin2 θ/2)
dΩ

16π2

p

Etotal

Etotal∼mµ
=

4Ep

β

z2α4(1− β2 sin2 θ/2)

t2
dΩ

Noting that t = (p− p′)2 = −2~p2(1− cos θ), we get(
dσ

dΩ

)
Mott

= z2α
2(1− β2 sin2 θ/2)

4β2~p2 sin4 θ/2
.

If we take β � 1 in this formula we get the Rutherford formula. Notice that it blows

up at θ → 0. This is a symptom of the long-range nature of the Coulomb potential,

i.e. the masslessness of the photon.

Electron-proton scattering. The answer is basically the same if we think of the

heavy particle in (6.20) as a proton (we have to flip the sign of the charge but this gets

squared away since there is no interference in this case). ep→ ep is called Rutherford

scattering, for good reason68.

Electron-photon scattering. In the case of the process e−γ ← e−γ, 69 we meet

68If you don’t know why, you should go read Inward Bound, by Abraham Pais, as soon as possible.
69which at high energy is called Compton scattering and at low energies is called Thomson scattering.

Despite my previous curmudgeonly footnote chastising the innocent reader for an imagined incomplete

knowledge of the history of science, I do have a hard time remembering which name goes where.

Moreover, as much as I revere the contributions of many of these folks, I find that using their names

makes me think about the people instead of the physics. No one owns the physics! It’s the same

physics for lots of space aliens, too.

177



a new ingredient, namely external photons:

iM = ≡ iMs + iMt

= (−ie)2εµ1ε
?ν
4 ū3

(
γν

i/ks +m

s−m2
γµ + γµ

i/kt +m

t−m2
γν

)
u2 . (6.23)

The two amplitudes have a relative plus since we only mucked with the photon contrac-

tions, they just differ by how the gamma matrices are attached. If you don’t believe

me, draw the contractions on this:

〈γe| (Ψ̄ /AΨ)1(Ψ̄ /AΨ)2 |γe〉

(I’m not going to TeX it, thank you).

Now, if we don’t measure the photon polarizations, we need

P =
1

4

∑
polarizations, spins

|M|2.

The key ingredient is the completeness relation∑
i=1,2

εi?µ (k)εiν(k) = −ηµν + something proportional to kµkν .

We can do various incantations to find a definite coefficient, but it will not matter

because of the Ward identity: anytime there is an external photon ε(k)µ, the amplitude

is M = Mµε
µ(k) and satisfies kµMµ = 0. Therefore, we can ignore the term about

which I was vague and we have∑
polarizations

|M|2 =
∑
i

εi?µMµ?Mνεiν = −ηµνMµ?Mν + (terms with Mµk
µ)

= −M?
µMµ.

Don’t be scared of the minus sign, it’s because of the mostly minus signature, and

makes the thing positive. But notice the opportunity to get negative probabilities if

the gauge bosons don’t behave!

A dramatic process related by crossing to Compton scattering is pair annihilation,

Mγγ←e+e− . See the end of Peskin §5, where he has a nice plot comparing to experi-

mental data the result for dσ
dΩ

as a function of scattering angle.

To be continued ... e.g. here.
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A More about the non-perturbative proof of the

Ward identity

[Schwartz §14.8] First, consider a Green’s function from which we might make an S-

matrix element by LSZ,

G ≡ 〈Ω|T O1(x1) · · · On(xn)|Ω〉 =

∫
DΨeiSO1(x1) · · · On(xn)

where the operators O1(x1) 7→ e−iQiαO1(x1) have charge Qi under a global U(1) sym-

metry. For example the O(x) could be just the elementary field Ψ(x) 70.

Now change variables in the path integral so that Oi(xi) 7→ e−iQiα(xi)Oi(xi); the

action will shift by S 7→ S−
∫
α∂µj

µ where jµ is the Noether current. The path integral

doesn’t change at all, so its infinitesimal variation is

0 = δG =

∫
DΨ

(
−
∫

iα∂µjµe
iSO1 · · · On − i

∑
i

Qiα(xi)e
iSO1 · · · On

)
(A.1)

=

∫
ddxα(x)

[
i∂µ 〈jµ(x)O1 · · · On〉 −

∑
i

Qiδ(x− xi)G

]
. (A.2)

Since this is true for any α(x), we learn that the thing in square brackets is zero:

∂µj
µ = 0 up to contact terms. This is called the Ward-Takahashi identity.

Now suppose we do this same manipulation in a gauge theory, say QED for defi-

niteness (the story is slightly modified in scalar QED). The additional terms in S are

FµνF
µν+iAµΨ̄γµΨ, which are invariant under the transformation, so don’t change these

statements. Notice that the transformation we’re doing here is not the gauge trans-

formation, since Aµ doesn’t transform – we’re only doing the gauge transformation on

the matter fields here, so their kinetic terms actually shift and produce the α∂µjµ term

above. Photon field insertions in G don’t contribute, since they have charge zero here.

Next, think about the LSZ formula for an S-matrix element with (say) two external

photons:

M = 〈ε, ...εk...|S|...〉
LSZ
= εµερki

n

∫
d4xeipx2µν

∫
d4x1e

ipkxk2k
ρσ

∫
... 〈Aν(x)...Aσ(xk)...〉

≡ εµMµ (A.3)

where 2µν is shorthand for the photon kinetic operator 2µν = 2ηµν−∂µ∂ν/µ2. Hidden

in the · · · is all the factors of e.g.
∫
dyeiq1y

(
i/∂y +m1

)
associated with external spinor

70You’ll have to trust me for now that the path integral for fermionic fields exists. That’s the only

information about it we’ll need here.
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particles, as well as the information that we have to take the limit where the particles

go on-shell.

The Schwinger-Dyson equation for Aµ then implies that

2k
ρσ2µν 〈Aν(x)...Aσ(xk)...〉 = 2k

ρσ

(
〈jµ(x)...Aσ(xk)...〉 − iδ4(x− xk)ηµσ 〈...〉

)
(A.4)

= 〈jµ(x)...jσ(xk)〉 − i2δ(x− xk)ηµσ 〈...〉 (A.5)

First of all, this is why I said we could get the S-matrix elements with photons from

correlators with currents. Notice that this is only true up to the contact terms. But

those are disconnected amplitudes that we can ignore.

Finally, set the polarization of one of the photons equal to its momentum ε = p.

Then

pµMµ = lim
q2→m2

ερki
n

∫
d4xeipx

∫
d4x1e

ipkxk

∫
dyeiq1y

(
i/∂y +m1

)
... 〈−i∂µj

µ...jρ(x1)...Ψ(y)..〉

(A.2)
= lim

q2→m2

(
/q1
−m1

)(
/q2
−m2

)
· · ·
∑
j

QjG̃(..., qj ± p, ...) (A.6)

where the ± depends on whether particle j is incoming or outgoing. At the last step

we used the Fourier transform of (A.2).

Now here’s the punchline: The G̃ on the RHS of (A.6) has poles at (qj ± p)2 = m2
j ,

and not at q2
j = m2

j . So when it’s multiplied by /qj − mj =
q2j−m2

j

/q+m
and we put the

external particles on shell, q2
j → m2

j , it will vanish. End of story. Notice that no use of

perturbation theory was made here.

[End of Lecture 21]
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