
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 220 Symmetries Fall 2024
Assignment 2 – Solutions

Comment: this problem set contains many problems, but most of them are simple

and many of them are bonus problems.

Due 3:30pm Thursday, October 10, 2024

1. Brain-warmer. What is the cycle structure of the permutation (235)(245)?

Repeatedly using (abc) = (ab)(bc) and the fact that non-overlapping cycles com-

mute we find

(235)(245) = (23)(35)(24)(45) = (23)(24)(35)(45) = (234)(345) = (23)(34)(34)(45) = (23)(45).

The last expression is two non-overlapping 2-cycles, so this is the cycle structure.

2. Conjugacy classes of Sn.

(a) Write the following elements of Sn in cycle notation:

π =

(
1 2 3 4 5

2 3 1 4 5

)
, σ =

(
1 2 3 4 5

2 1 3 4 5

)
, ρ =

(
1 2 3 4 5

2 3 4 1 5

)
.

(b) Check that the cycle structure is preserved by conjugation, e.g. for π−1σπ,

π−1ρπ.

(c) Bonus problem: give a proof that this always works.

Suppose σ has the cycle decomposition σ = σ1σ2.... where σi are non-

overlapping cycles of length si.

π−1σπ = (π−1σ1π)(π−1σ2π)(π−1 · · · )

so we wish to show that π−1σiπ is a cycle of length si, too. (Note that since

π is a bijection on the n objects, disjoint cycles must remain disjoint under

conjugation by π.) But consider (π−1σiπ)
si = π−1(σi)

siπ = π−1eπ = e. If

π−1σiπ were a cycle of any other length, this would not be the case.

More constructively, the action by conjugation of π is

π(ijk...)π−1 = (πiπjπj...). (1)

To see this, let σ ≡ (ijk...) and ρ ≡ πσπ−1, so ρπ = πσ. (ρπ)i = (πσ)i = πj,

(ρπ)j = (πσ)j = πk and so on, which can be rewritten as ρπi = πj, ρπj = πk.
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In contrast, when acting on an element not in the cycle σ = (ijk..), ρ does

nothing, since the action of π commutes with ρ on such an element.. This

means ρ can be written as in (1).

Alternatively, we can use representation theory. Think about the action

of Sn in the defining representation. The representative of π, D(π) is an

orthogonal matrix (in fact one with a single one in each row and column).

But this means that conjugation by π is represented as a simple basis trans-

formation. The cycle structure of σ is determined by the dimensions of

the invariant subspaces of D(σ). This data does not change under a basis

transformation.

3. Brain-warmer.

(a) What group is this: G = 〈a, b|aba−1b−1 = e〉?
The relation says that a and b commute, so this group is Z×Z = {(n,m)},
with the identification anbm → (n,m).

(b) [Bonus problem] Find a space X so that π1(X) = G above.

Take the plane and divide it up into unit squares. Now identify two points

if they are related by a translation by (n,m),∈ Z×Z. This is a description

of the torus T 2, which makes clear that its fundamental group is π1(T 2) =

Z × Z. To see this, we can appeal to the fact that π1(X/G) = G if G acts

freely and π1(X) = {e}. Alternatively, we can draw a small loop in the

middle of one of the squares (this clearly represents the identity in π1(T 2))

and then homotope it to the boundary of the square, where it becomes

aba−1b−1 = e, where a and b are the loops crossing the square horizontally

and vertically.

You could arrive at this answer by following the construction of XG that I

described in lecture: make the Cayley diagram for the group. This is just

the edges of the square lattice. There is a relation for each square. If we fill

in these squares as instructed, we get the whole plane R2. Now we quotient

by the action of Z2, which is generated by unit translations in x and y, to

get T 2 = R2/Z2, whose fundamental group is therefore Z2.

But I have to admit that there is an even easier way. Given that π1(S1) = Z,

we can use the fact that π1(X × Y ) = π1(X)× π1(Y )1 to conclude that the

space we want is S1 × S1 = T 2.

1The proof of this fact follows from the definition without too much trouble: assume we have

representatives of π1(X) and π1(Y ); these can be embedded in X × Y by mapping e.g. a curve in X

to (the curve in X, the base point in Y ). Then the generators of π1(X × Y ) are just (γx, γy).
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4. Quaternions.

Decompose the quaternion group Q8 into conjugacy classes.

Conjugating i by j gives

ji(−j) = −k(−j) = −i.

Similarly, conjugating ±i or ±j or ±k by any of the other two reverses the sign.

All other conjugations leave the elements invariant. Therefore each of ±i, ±j and

±k constitute a conjugacy class of two elements. ±1 are by themselves.

5. Brain-warmer. Check the relation |G| = |Z(g)||C(g)| for g = (12) in G = Sn.

Here Z(g) is the centralizer of g (the set of elements of G that commute with g)

and C(g) is the conjugacy class of g (by |C(g)| I mean the number of elements

in the conjugacy class).

Z(12) = Z2 × Sn−2 where the Z2 = {e, (12)}. This has 2(n − 2)! elements. The

conjugacy class contains all interchanges on two of n objects, of which there are

n(n− 1)/2. So the product is indeed n!.

6. A presentation of A4. Prove that the group 〈a, b|a2 = e, b3 = e, (ab)3 = e〉 is

isomorphic to A4, the group of even permutations of 4 objects,

A4 = {e, (12)(34), (14)(23), (13)(24), (123), (132), (243), (234), (341), (314), (421), (412)}.

The isomorphism takes a to an order-two element and b to an order-three element.

The order-three element could be (123) (or one of its conjugates). (12) is not in

A4, so the order-two element must be a = (12)(34) (or one of its conjugates).

Now we check that their product ab is indeed order three:

ab = (12)(34)(123) = (12)(43)(312) = (12)(4312) = (12)(1243) = (12)(12)(243) = (243).

The inverse of (ab) = (234) is then just (ab)2. To get the other order-two elements

(13)(24) and (14)(23) we can just conjugate a by b and b2: bab2, b2ab. There are

4 other order-3 elements (143), (134), (142), (124) which are obtained from ab2

and its square and aba and its square. To be completely explicit, then the 12

elements of A4 are

e, (12)(34), (14)(23), (13)(24), (123), (132), (243), (234), (341), (314), (421), (412)

e, a, bab2, b2ab, b, b2, ab, (ab)2 = b2a, ba, (ba)2 = ab2, aba, (aba)2 = ab2a

To make sure that the map is onto we should make sure that there are no other

independent words. An argument is something like this: an arbitrary word is
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a product of factors abm, with m = 1, 2. But using the relations above we can

reduce any word with three or more as to one of the above elements.

A nice way to check that there are 12 elements of the group with this presentation

is to make the Cayley diagram. Here are two ways to draw it (from Jiashu Han

and Yuan Zhang respectively):

I like them both.

7. Free groups are weird. [Bonus problem] Show that the free group on two

elements 〈a, b|〉 contains subgroups isomorphic to the free group on any number

of elements.

We can make a generator of the subgroup out of a string of letters, like abab,

and another generator out of another, different string, like a2b2a2b2, and so on.

The group generated by such elements is a subgroup, and there are no relations

between them. I think the simplest basis of generators for Fn is akbk, k = 1..n.

8. Counting elements of conjugacy classes of Sk. Here is a cool trick, related

to Polya enumeration, for counting the number of elements in the conjugacy class

of Sk associated to a given Young diagram (cycle structure), λ.

(a) [bonus problem]. Fill in the missing details of the following argument.

First, recall the object z(σ) ≡ z
c1(σ)
1 z

c2(σ)
2 · · · , where ci(σ) is the number

of cycles of length i in the permutation σ. This is a conjugation-invariant

weight over which we can sum:

ZG(z1, z2, · · · ) ≡
∑
σ∈Sk

z(σ).

This is (proportional to) the object we called the cycle index in our discussion

of Polya enumeration (for the case with G = Sk).
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Now consider the case where |X| = k and G = Sk, the whole permutation

group on the k objects, and we’ll take n colors (i.e. an n-state Potts model

on X). Weight a coloring with li objects of color i with a factor of W =

ul11 u
l2
2 · · · . Polya’s enumeration theorem says that the partition sum is then∑
orbits O

W (O) = ZSk

(
z1 = u1 + u2 + · · · , z2 = u2

1 + u2
2 + · · · , · · ·

)
(2)

=
∑

l1,l2,···ln

(# of orbits with l1 1s, l2 2s...)ul11 u
l2
2 · · · (3)

What is this number of orbits? Because we are modding out by the whole

permutation group, an orbit is entirely determined by specifying the number

of each color. So this number is only ever 1 or 0.

To avoid the cases where it’s zero, here’s the final trick, familiar from sta-

tistical mechanics as the grand canonical ensemble: sum over k (!). Let

P (t, u1, u2, · · · ) ≡
∞∑
k=1

tk
∑

orbits O of Sk

W (O).

On the one hand, this is

P (t, u1, u2, · · · ) =
∑
k

tkZSk

(
z1 = u1 + u2 + · · · , z2 = u2

1 + u2
2 + · · · , · · ·

)
.

On the other hand, this is

P (t, u1, u2, · · · ) =
∑
k

tk
∑

l1,l2,···ln

(# of orbits with l1 1s, l2 2s...)ul11 u
l2
2 · · ·

(4)

=
∞∑
l1=0

(tu1)l1
∞∑
l2=0

(tu2)l2 · · · (5)

= exp
(
z1t+ z2t

2/2 + z3t
3/3 + · · ·

)
(6)

where zi ≡ ui1 + ui2 + · · · .
The only step I really left out is summing the geometric series
∞∑
li=0

(tui)
li =

1

1− uit
= e− log(1−uit) = exp

(
uit+ (uit)

2/2 + (uit)
3/3 + · · ·

)
.

Then

P (t, u1, u2, · · · ) =
∏
i

exp
(
uit+ (uit)

2/2 + (uit)
3/3 + · · ·

)
(7)

= exp

(
(
∑
i

ui)t+ (
∑
i

u2
i )t

2/2 + (
∑
i

u3
i )t

3/3 + · · ·

)
(8)

= exp
(
z1t+ z2t

2/2 + z3t
3/3 + · · ·

)
. (9)
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I learned this from this website.

So for example, to compute the sizes of the conjugacy classes of S7, let T =

z1t+ z2t
2/2 + z3t

3/3 + · · · (you can stop at some number bigger than 7), and just

find the coefficient of t7 in eT . The result is a polynomial in the zi where the sum

of the subscripts of each term adds up to 7. Each term is then associated with a

Young diagram λ and hence a conjugacy class.

(b) What should you get if you set zi = 1 for all i and why?

If we set zi = 1,∀i, then we are just counting orbits of Sn on n elements, of

which there is exactly 1. Also, the sum over conjugacy classes of the number

of elements in each class is the order of the group.

(c) Find the size of each conjugacy class of S4 and S5 using the result above.

(I recommend Mathematica’s Series and Coefficient commands and the

method described in the previous part of the problem.) Check that your

polynomial satisfies the check of the previous part.

(d) Actually, there is a better way to learn the sizes of conjugacy classes of

Sn. The order of the centralizer of g, |Zg|, depends only on its conjugacy

class. The size of the conjugacy class is then |Cg| = |G|/|Zg| (by Lagrange’s

theorem). Show that the centralizer of an element g of Sn with cj cycles of

length j is

|Zg| =
∏
j

(cj)!j
cj . (10)
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[Hint: Think about what elements that commute with a permutation of

a given cycle structure can do, then count them.] Write a formula for the

number of elements of the conjugacy class Cg and compare with your results

from the previous part.

An element of the centralizer can only permute cycles of equal length or

cyclically permute within a cycle. The number of such elements is (10).

|Cg| =
n!∏

j(cj)!j
cj
. (11)

Some useful special cases:

|C | = (n− 1)!, |C | = n(n− 1)

2
, |C | = 1.

9. Counting non-isomorphic graphs. A graph with k vertices can be regarded

as a choice of {0, 1} for each of the

(
k

2

)
= k(k−1)

2
pairs of vertices (’1’ means no

edge and ’1’ means yes edge). Two graphs are isomorphic if they are related by

a relabelling of the vertices. How many non-isomorphic graphs on 4 vertices are

there? (The result of the previous problem will be useful.)

Construct the partition function which weights a graph by the number of edges,

Z(t) =
∑

graphs, Γ t
# of edges of Γ for k = 4.

Bonus problem: answer the above questions for 5 vertices.

We take the set on which the group acts to beX = {edges} = {12, 13, 14, 23, 24, 34}
(for k = 4), and we color the edges with one of two colors. Let Xl be the set of

graphs with with l edges, and Xg
l the set of such graphs fixed by the action of

the group element g. According to not-Burnside,

Z(t) =
∑
l

|Xl/G|tl =
∑
l

1

|G|
∑
g∈G

|Xg
l |t

l =
1

|G|
∑
g

(∑
l

|Xg
l |t

l

)
.

Since again we are modding out by the whole permutation group, we only care

about conjugacy classes – that is, every element of a conjugacy class C contributes

the same amount to Z:

Z(t) =
1

|G|
∑
C

nC

(∑
l

|Xg
l |t

l

)
.

Therefore
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conjugacy class # of elements orbits # of orbits weighted contribution

e 1 12, 13, 14, 23, 24, 34

(
4

2

)
= 6 (1 + t)6

(12) 6 {13, 23}, {14, 24}, 12, 34 4 (1 + t2)2(1 + t)2

(12)(34) 3 {13, 24}, {14, 23}, 12, 34 4 (1 + t2)2(1 + t)2

(123) 8 {12, 13, 23}, {14, 24, 34} 2 (1 + t3)2

(1234) 6 {12, 23, 34, 41}, {13, 24} 4 (1 + t4)(1 + t2)

Z(t) =
1

4!

(
(1 + t)6 + (1 + t2)2(1 + t)2 + (1 + t2)2(1 + t)2 + (1 + t3)2 + (1 + t4)(1 + t2)

)
= 1 + t+ 2t2 + 3t3 + 2t4 + t5 + t6.

If we set t = 1 we get the total number, which is 11.

Alternatively, we can use Polya enumeration. The cycle index for the action of

S4 on the 6 edges is

Z =
1

24

(
z6

1 + 9z2
1z

2
2 + 8z3

3 + 6z2z4

)
.

(check: Z(zi = 1) = 1). Making this polynomial requires the same work as the

table above. Setting zi = 1 + ti gives the polynomial above.

For 5 vertices, the cycle index of S5 on the 10 edges is

Z =
1

120

(
z10

1 + 10z4
1z

2
2 + 15z2

1z
4
2 + 20z1z

3
3 + 20z1z6z3 + 30z2z

2
4 + 24z2

5

)
.

For the explanation, see the following nice figure from Xiang Li:

Now plug in zi = 1 + ti and expand. Setting t = 1 gives 34 graphs on 5 vertices.

10. Quotients of the spherical model. I’ll post my solution of this problem with

the next problem set.
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