
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 220 Symmetries Fall 2024
Assignment 4 – Solutions

Comment: this problem set contains many problems, but most of them are simple

and many of them are bonus problems.

Due 3:30pm Thursday, October 24, 2024

1. Brain-warmer. If I tell you that 〈χR, χR〉 ≡ 1
|G|
∑

g∈G χ
?
R(g)χR(g) = 2 for some

representation R of a finite group G, do you know whether R is irreducible?

Explain.

It is not. As a special case of character orthonormality, an irrep has 〈χa, χa〉 = 1.

Moreover, we know that it decomposes into two irreps, since if its character is

χ = χ1 + χ2 then

(〈χ1|+ 〈χ2|) (|χ1〉+ |χ2〉) = 〈χ1|χ1〉+ 〈χ2|χ2〉 = 2.

2. Brain-warmer. Given two representations A,B of a group G (with carrier

spaces U and V respectively) and an intertwiner between them

Λ : U → V, ΛA(g) = B(g)Λ∀g ∈ G

show that ker Λ ⊂ U and ImΛ ⊂ V are invariant subspaces. (Recall that this

was the crucial ingredient in Schur’s Lemma.)

Recall that an invariant subpace of a representation D is W ⊂ V such that

D(g) |w〉 ∈ W for all w ∈ W, g ∈ G.

If |a〉 ∈ ker Λ, Λ |a〉 = 0. Then

ΛAα |a〉 = BαΛ |a〉 = 0,

so Aα |a〉 ∈ ker Λ, too.

Similarly, if |b〉 ∈ ImΛ, then |b〉 = Λ |a〉 for some |a〉 ∈ U , so

ΛA(g) |a〉 = B(g)Λ |a〉 = B(g) |b〉 ∈ ImΛ,∀g ∈ G.

3. Character table for the quaternions. Figure out the character table for

the quaternion group Q8 (on page 11 of the lecture notes) by whatever means

necessary (don’t look it up).
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One way to do it is to find all the irreps. We know the trivial rep. Since there are 5

conjugacy classes, the dimensions (1,b,c,d,e) have to satisfy 8 = 1+b2+c2+d2+e2

which Diophantine equation is only solved by (1, 1, 1, 1, 2). The 2d rep is

D(±1) = ±I, D(±i) = ±iX,D(±j) = ±iY,D(±k) = ∓iZ

where X, Y, Z are the Pauli matrices. These are traceless. The other three one-

dimensional reps are D(i) = −1, D(j) = D(k) = +1 and its cyclic permutations.

This gives:
Q8 nC 1 1x 1y 1z 2

e 1 1 1 1 1 2

Z2 −e 1 1 1 1 1 −2

Z4 ±i 2 1 1 −1 −1 0

Z4 ±j 2 1 −1 1 −1 0

Z4 ±k 2 1 −1 −1 1 0

But we actually don’t need to find all the reps. We know the first column of the

character table. Once we know the dimensions of the irreps, we know the first row.

Consider the second row. Since−e generates a Z2 subgroup, the 1d characters can

only be±1. The condition
∑

r χ
?
r(c)χr(c

′) = |G|
nc
δcc
′
with c = c′ = −e requires that

χr(−e) satisfy the same equation as the dimensions of the irreps and therefore

requires χ2(−e) = ±2 which then gives the second row by orthonormality with

the first row.
Q8 nC 1 1x 1y 1z 2

e 1 1 1 1 1 2

Z2 −e 1 1 1 1 1 −2

Z4 ±i 2 1 x y z a

Z4 ±j 2 1 x′ y′ z′ b

Z4 ±k 2 1 x′′ y′′ z′′ c

Then column orthonormality of the last column with itself requires

0 = 22 + (−2)2 + |a|2 + |b|2 + |c|2

so a = b = c = 0.

Since the elements of the remaining three conjugacy classes each generate a Z4

subgroup, the 1d characters must satisfy x4 = y4 = z4 = 1. Row orthonormality

of the 3rd row with itself requires

12 + |x|2 + |y|2 + |z|2 + 02 = 8/2 (1)

so each of |x| = |y| = |z| = 1. You might have worried that we could have

(1, x, y, z) = (1,−1, i,−i) which satisfies orthogonality with the first two rows,
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1 + x+ y+ z = 0 as well as (1). But then there is no choice of (1, x′, y′, z′) which

satisfies both 1 + x′ + y′ + z′ and (1, x′, y′, z′) · (1, x, y, z) = 0. Therefore, each of

(x, y, z) and the primed and double primed things must have two -1 and one +1.

Note that Q8 and D4 have the same character table. But they are actually

different groups (Q8 has six elements of order four while D4 has only two).

4. Irreps and conjugacy classes.

Consider the object

Saα ≡
1

nα

∑
g∈Cα

Da(g),

a linear operator on Va, the carrier space for an irrep of G. Cα is a conjugacy

class of G.

(a) Show that Saα commutes with all the Da(g).

This is the same manipulation as the one we did to show that the character

table is square. For any class function f(g),

Da(h)S =
∑
g

f(g)Da(hg) =
∑

g′=h−1gh

f(hg′h−1)Da(g′h) =
∑
g′

f(g)Da(g′)Da(h) = SDa(h).

(To remove clutter, I dropped the indices on S in this equation.) Now take

f(g) =

{
1, g ∈ Cα
0, else

.

(b) Use Schur’s lemma to conclude that Saα = λaαIa and find λaα in terms of

familiar objects.

Well, this is just exactly the conclusion of Schur’s lemma. Taking trace of

both sides, we get
1

nα

∑
g∈Cα

χa(α) = λaαda

which says

λaα = χaα/χ
a
e

since χae = da.

(c) [Bonus problem] Conclude that CαP
a = λaαP

a where Pa = da
|G|
∑

g∈G (χa(g))? g

is the projector in the group algebra associated with the irrep a and Cα ≡
1
nα

∑
g∈Cα g are elements of the center of the group algebra.

The idea is that Cα commutes with everyone in the group algebra. This

means, by Schur’s lemma, that acting on an irrep, it must be proportional

to the identity. Pa restricts its action to the irrep a.
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To be more precise and more explicit, we have

CαP
a =

da
|G|nα

∑
g∈G,h∈Cα

χa(g−1)hg (2)

=
da
|G|nα

∑
g∈G,h∈Cα

χa(g−1h)g (3)

=
da
|G|nα

∑
g∈G,h∈Cα

tra
(
Da(g−1)Da(h)

)
g (4)

=
da
|G|

∑
g∈G

tra

Da(g−1)
1

nα

∑
h∈Cα

Da(h)︸ ︷︷ ︸
=Saα

g (5)

4b
= λαa

da
|G|

∑
g∈G

traD
a(g−1)g = λαaP

a. (6)

5. Statistics of cycle lengths of permutations. [This is a bonus problem]

(a) What fraction of permutations in Sn have just one big cycle?

The size of the conjugacy class with one column of n boxes is n!∏
j j
kj kj !

=

(n− 1)!. So the fraction is (n−1)!
n!

= 1
n
.

(b) What fraction of permutations in S2n have no cycle of length greater than

n? What is the large-n limit of this number?

[Hint: Count the number of ways to assign elements to such a cycle.]

An element of S2n can have at most one cycle of length greater than n. The

number of elements with a cycle of length l > n is

Nl =

(
2n

l

)
(l − 1)!(2n− l)!

The first factor is the number of ways to choose which elements are in the

l-cycle, the second factor is the number of ways to choose the order of those

elements (up to cyclic permutations which don’t change the cycle), and the

last factor counts the permutations of the remaining elements. This is

Nl = (2n)!/l.
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Therefore the probability that a uniformly random permutation has a cycle

of length > n is

1

(2n)!

2n∑
l=n+1

(2n)!

l
=

2n∑
l=n+1

1

l
= H2n −Hn

where Hn ≡
∑n

k=0 1/k is the nth harmonic number. These numbers ap-

proach

Hn
n→∞→ lnn+ γ

where γ is the Euler-Mascheroni constant. So the probability that a permu-

tation of 2n elements has no cycle of length greater than n is

1− (H2n −Hn)
n→∞→ 1− ln 2n+ lnn = 1− ln 2 ≈ 0.30685. (7)

(c) What fraction of permutations in Sn have no fixed points? What is the

large-n limit of this number?

[Hint: One way to do it is to use inclusion-exclusion. Another way is to find

a recursion relation for D(n), the number of elements of Sn with no fixed

point. A third, trickier, way is to use our formula for cycle-lengths; to use

this method, I had to pass through the grand canonical ensemble, i.e. sum

over n.]

Method 1: There are

(
n

1

)
= n ways to choose an element to be in a one-

cycle, and then (n− 1)! permutations of the remaining elements. However,

this number (
n

1

)
(n− 1)!

overcounts permutations with two one-cycles (which could be either the one

we chose or part of the remaining permutation). So let’s subtract(
n

2

)
(n− 2)!

1

2!
=
n!

2!
.

The 1/2! permutes the two one-cycles. But now we have undercounted

permutations with at least three one-cycles, so we add back(
n

3

)
(n− 3)!

1

3!
=
n!

3!
.
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Continuing in this way until we get to n one-cycles, we have the fraction of

permutations with at least one one-cycle is

1− 1

2!
+

1

3!
...± 1

n!
. (8)

Perhaps more clearly, let Sk be the subset of Sn that fixes the kth object.

Then

|S1 ∪ · · · ∪ Sn| =
∑
i

|Si| −
∑
i<j

|Si ∩ Sj|+
∑
i<j<k

|Si ∩ Sj ∩ Sk| − · · · (9)

=

(
n

1

)
(n− 1)!−

(
n

2

)
(n− 2)! +

(
n

3

)
(n− 3)!− · · ·(10)

Thus, the fraction without any one-cycle is

1− 1

1!
+

1

2!
− 1

3!
...∓ 1

n!
=

n∑
k=0

(−1)k

k!

n→∞→ 1

e
≈ 0.36787944. (11)

Method 2: Another solution is to find a recursion relation for D(n), the

number of fixed-point-free permutations (which are called derangements).

Let me describe it in terms of the riddle about exams in the next problem.

In a derangement, there are n−1 possibilities for whose exam person n gets,

let’s call it i. Let’s think about whose exam person i gets (for n ≥ 2). There

are two cases:

i. Person i gets person n’s exam, so there is a cycle of length two. Fixing

i and n, the number of ways this can happen is D(n− 2), since we just

remove i and n from the discussion.

ii. Person i gets some other person’s exam. In this case, the number of

ways this can happen is just D(n − 1), since there are n − 1 people

involved, and each one has exactly one exam they can’t get (in the case

of person i it is person n’s exam).

Therefore

D(n) = (n− 1)(D(n− 2) +D(n− 1)), n ≥ 2 (12)

with the initial condition D(0) = 1, D(1) = 0. A nice way of rewriting this

equation (I learned from Xiang Li) is

D(n)− nD(n− 1) = −(D(n− 1)− (n− 1)D(n− 2)) (13)
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so that G(n) ≡ D(n)−nD(n−1) satisfies G(n) = −G(n−1) with G(2) = 1,

which is solved by G(n) = (−1)n.

Mathematica can solve the recursion relation (12) by the command RSolve,

with the result

D(n) =
Γ(1 + n,−1)

e
. (14)

In fact, Mathematica has a command called Subfactorial which is the

answer to this question. Alternatively, you can check that the solution

above (11) (times n!) solves this linear second order recursion relation and

is therefore the unique solution.

Method 3: Let’s count how many elements of Sn do have at least one fixed

point, this is F (n) ≡ n! − D(n). We know that the cycle structure is a

property of a conjugacy class of Sn, which corresponds to a Young tableau

with n boxes. Demanding that the permutations in a conjugacy class do

have a fixed point means that they have at least one cycle of length one,

and hence that the corresponding tableau has at least one column of a single

box.

But every such tableau of n boxes can be made by attaching an extra column

of one row to all the tableau for Sn−1. For example, for n = 5:

, , , , (15)

So

F (n) =
∑

{kj |
∑
j jkj=n−1}

∏
j

n!

j k̃j k̃j!
(16)

where k̃j ≡ (k1 + 1, k2 · · · )j. This sum doesn’t seem so easy because of the

constraint on the ks.

As a warmup, let’s think about how to do the sum over conjugacy classes

of the number of elements in each conjugacy class:∑
{kj |

∑
j jkj=n}

∏
j

n!

jkjkj!
= |Sn| = n! . (17)

When we have a sum over a constrained variable a very useful trick is to sum

over the constraint, with some fugacity variable as a bookkeeping device. So
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consider 1
n!

∑∞
n=0(BHS)xn with some fugacity x. The LHS gives

S(x) ≡
∞∑
n=0

xn
∑

{kj |
∑
j jkj=n}

∏
j

1

jkjkj!
(18)

=
∑
{kj}

x
∑
j jkj

∏
j=1

1

jkjkj!

=
∑
{kj}

∏
j=1

xjkj

jkjkj!

=
∏
j

∞∑
kj=0

(xj/j)
k
j

kj!

=
∏
j

ex
j/j = e

∑∞
j=1 x

j/j

= e− log(1−x) =
1

1− x
.

Which is just what we get from the RHS: S(x) =
∑∞

n=0 x
n = 1

1−x .

So let’s use the same trick for the counting permutations with fixed points:

F (x) ≡
∞∑
n=0

xn
∑

{kj |
∑
j jkj=n−1}

∏
j

1

j k̃j k̃j!
(19)

=
∑
{kj}

x
∑
j jkj+1

∏
j=1

1

j k̃j k̃j!

=
∑
{kj}

xk1+1

(k1 + 1)!

∏
j>1

xjkj

jkjkj!

=
∞∑
k̃1=1

xk̃1

k̃1!

∏
j>1

∞∑
kj=0

xjkj

jkjkj!

= (ex − 1)
∞∏
j=2

ex
j/j

=
1

1− x
(1− e−x).

To extract the coefficient of xn in F (x) =
∑∞

n=0 qnx
n, we can take

1

n!
∂nxF (x)|x=0 = qn. (20)

The first few entries are

{0, 1, 1, 4, 15, 76, 455, 3186, 25487, 229384, 2293839...}
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which agrees with the values of F (n). To see directly that

(1− e−x) 1

1− x
?
=
∞∑
n=1

xnF (n) (21)

we can Taylor expand each factor on the LHS as

(1− e−x) 1

1− x
= −

∞∑
j=1

(−x)j

j!

∞∑
l=0

xl (22)

=
∞∑

j=1,l=0

(−1)j+1

j!
xj+l

=
∞∑

n=j+l=1

xn
n∑
j=1

(−1)j+1

j!
.

At the last step, the summation variable j must be ≤ n since n = j + l.

Method 4: (I learned from Deepak Aryal and Haoran Sun)

n! =
n∑
k=0

(
n

k

)
D(k)

where the kth term counts the permutations with exactly n− k one-cycles.

Therefore

D(n) = n!−
n−1∑
k=0

(
n

k

)
D(k) (23)

is a recursion relation for D(k) (which apparently Mathematica can solve).

But supposed we are just interested in the large-n limit of rn ≡ D(n)/n!.

The recursion says

rn = 1−
n−1∑
k=0

1

k!(n− k)!
D(k) = 1−

∞∑
k=0

rk
(n− k)!

. (24)

Assuming the limit r∞ exists, this says something like

r∞ = 1− r∞
n∑
l=1

1

l!
(25)

or 1 = r∞
∑∞

l=0
1
l!

= r∞e.

6. Completely unrelated riddles.
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(a) There are 100 students in the group theory class. The professor is tired

of grading and decides to let the students grade each others’ exams. He

arranges 100 boxes and uniformly randomly puts one exam in each box. The

students must each open one box and grade the exam they find. What’s the

probability that no student grades their own exam?

(b) [I recommend this puzzle very highly.] The next year, there are again 100

students in the group theory class. This time, for the final exam, the evil

professor decides to assign a group project. He arranges 100 numbered boxes

and uniformly randomly puts the name of one student in each box. Each

student is allowed to open half the boxes. If every student finds their own

name then all the students pass, otherwise they all fail. The students are

not allowed to communicate with each other after the box-opening begins,

but they are allowed to develop a strategy together beforehand. What is a

strategy that allows them all to pass with probability > .3?

I first heard this problem from Brian Swingle.

(c) A group of n comic artists is playing a game of exquisite corpse. This means

that each person draws one frame of the comic, and then passes it on to the

next. If the order of artists is determined by a uniformly random element

of Sn, what is the probability that the result is a comic with n frames, each

by a different artist?

I guess I could have made this problem clearer. The idea is we pick a

permutation π ∈ Sn, and after each round (everyone draws their frame),

person i passes their comic to person π(i).
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