University of California at San Diego – Department of Physics – Prof. John McGreevy Physics 220 Symmetries Fall 2024 Assignment 8

Due 11:59pm Thursday, November 21, 2024

1. Brain-warmers.

- (a) **BCH practice.** Suppose that $[A, B] = \operatorname{ad}_A(B) = \alpha B$. Find an expression for log $(e^{-A}e^{A+B})$.
- (b) Show that the *adjoint* representation matrices

$$\left(T^A\right)_{BC} \equiv -\mathbf{i}f_{ABC}$$

furnish a dim G-dimensional representation of the Lie algebra

$$[T^A, T^B] = \mathbf{i} f_{ABC} T^C$$

Hint: commutators satisfy the Jacobi identity

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0.$$

- (c) Show that if $(T_A)_{ij}$ are generators of a Lie algebra in some unitary representation R, then so are $-(T_A)_{ij}^{\star}$. Convince yourselves that these are the generators of the complex conjugate representation \bar{R} .
- 2. so(4).

Show that $so(4) = so(3) \oplus so(3)$.

3. The rest of the Lie algebra in Cartan-Weyl form.

- (a) Use the Jacobi identity to show that $|[E_{\alpha}, E_{\beta}]\rangle$ has weight $\alpha + \beta$, and hence $[E_{\alpha}, E_{\beta}] = N E_{\alpha+\beta}$ for some constant N.
- (b) Can you conclude from this that if α is a root, 2α is not a root?