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0.1 Introductory remarks

Compromise. Historically this class is quite bimodal: when it is taught by a con-

densed matter physicist it is mostly about finite groups and very detailed applications

to crystal structure; when it is taught by a high energy physicist it is mostly about lie

groups and lie algebras.

I work on both condensed matter physics and high energy physics (or maybe neither,

depending on whom you ask), and so I am going to try to find some compromise which

will keep everyone happy. The subject is important enough in all fields that there is

something in it for everyone.

Your input about choice of topics and emphasis is encouraged and appreciated. I

am developing this course as we go, and I am happy to try to take requests.

Some motivating problems. We begin with a little motivation. Consider the fol-

lowing problem. Assign to each vertex of an octahedron an initial temperature. The

edges of the octahedron are conductors of heat, so as time passes, the thermal energy

diffuses. (More explicitly, the temperatures satisfy

a(t+ ∆t)i = a(t)i + λ
∑
〈ij〉

(a(t)j − a(t)i) ≡ a(t)i + λ

(∑
j

Hij (a(t)j − a(t)i)

)
,

where 〈ij〉 indicates the four pairs of neighbors of a site, and Hij is the adjacency

matrix

Hij =

{
1, if 〈ij〉 is a link

0, else
. (0.1)

of the graph with vertices at the corners of the octahedron.) What is the final temper-

ature and how long does it take to reach equilibrium? (If you are not impressed by the

octahedron, consider instead the buckyball.) Notice that this is a question in classical

physics.

Actually, to remove the mysteries of heat conduction, consider instead the following

version [Kirillov, p. 269]: In the lobby of a building is a model of a cube, each face

labelled with a number 1 to 6. As a practical joke, one of the workers in the building

replaces each number by the average of the numbers of the neighboring faces. Suppose

she does this each day for 30 days. Approximately what are the numbers on the faces

at the end? And more interestingly, what is the error in your estimate?

These first two problems are the same since faces of the cube are in 1-1 correspon-

dence with vertices of the octahedron.

Really the same problem arises in the following other classical situation: consider a
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collection of point masses arranged in an octahedron, and connected by springs. Find

the normal modes.

And the problem is most direct in the following quantum situation: consider a

particle hopping on a collection of orbitals placed at the vertices of a octahedron:

H =
∑
〈ij〉

|i〉〈j|

where |i〉 is the state of a particle sitting at vertex i and 〈ij〉 indicates vertices sharing a

link. Find the eigenstates of H. (Notice that the matrix elements of H in the position

basis are 〈i|H |j〉 = Hij, the adjacency matrix defined above in (0.1).

If for no other reason than making simple the answers to questions like this, it is

worth learning some group theory, and more specifically the theory of group represen-

tations.

However, in addition to explaining how to use group representation theory to solve

such problems, in this class I would like to try to take a broad perspective on symmetry

in physics.

Let me mention some other places in physics where the ideas in this course are

important, some of which we’ll discuss explicitly (I’m not sure yet which). The moti-

vating example I gave above involved six sites; when there are instead a macroscopic

number of sites, it becomes even more important to try to decompose the Hamiltonian

into blocks using symmetries. Group theory is extremely useful in thinking about the

physics of crystalline solids – they are complicated, but by definition have a lot of sym-

metry, which we must use to our advantage to understand them. It is often useful for

solving statistical mechanics problems, which can sometimes reduce to combinatorics.

Group theory (as opposed to symmetry) is a crucial ingredient in the construction of

the Standard Model of particle physics and its possible extensions to higher energies.

It is extremely useful for taking advantage of simplifications of physics happening in

symmetric spacetimes, such as euclidean space (a good approximation for physics hap-

pening slowly enough on short-enough length scales), or Minkowski spacetime (a good

approximation for physics happening on short-enough length scales), or de Sitter space-

time (a good approximation for physics happening on cosmological length scales). It

is the basis for a classification of phases of matter and transitions between them called

the Landau Paradigm. Symmetry can provide rare instances of exact statements about

strongly-coupled systems of many degrees of freedom (“strongly-coupled” means that

there is no small parameter in which to perturbate) in the form of anomalies (or some-

times ’t Hooft anomalies); here is a simply-stated example called the Lieb-Schulz-Mattis

theorem: in a chain of spin one-half degrees of freedom with spin rotation symmetry

and translation symmetry, there cannot be a unique gapped groundstate – the system
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must either be gapless or break a symmetry.

Recently we have learned that sometimes the study of symmetry in physics even

goes beyond group theory (I have in mind e.g. this and this). Let me say a few high-level

words about this before we start from scratch.

I would like to try to stress the close connection between symmetry and topology.

The basic idea is the following. Noether’s theorem relates continuous symmetries to

conserved quantities. Think about the notion of a conserved quantity in a spacetime

picture. Usually1 the thing that’s conserved can be written as an integral over a spatial

slice of a local density, Q =
∫

Σ
nµj

µ, where Σ is some codimension-one (that means I

have to specify one coordinate, locally, to determine a point on Σ) surface, and nµ is

its normal vector. (The simplest case is when the normal is just ∂t and Q =
∫

space
j0.)

That Q is conserved is the statement that it does not depend

on the choice of Σ – I can smoothly deform the surface to a

later time (or even only locally to a later time), and I still

get the same answer for the integral∫
Σ̃

ñµj
µ −

∫
Σ

nµj
µ =

∫
Σ̃−Σ

nµj
µ =

∫
∂V

n · j =

∫
V

∂µj
µ = 0.

(In the second step we assumed there is no current flowing out at infinity.) At the last

step we used current conservation ∂µj
µ = 0. So we can deform Σ as much as we want,

as long as we never cross a source or sink of charge, where ∂µj
µ 6= 0. Such a source

would act a like a hole in spacetime around which we cannot deform our surface. The

conclusion is that Q is a topological invariant.

In the case of a quantum field theory, Q is an operator. It is an operator associated

with a codimension-one surface Σ which only depends on the topological class of Σ

in the spacetime minus the set of points where charge can appear or disappear. It is

tempting then to streamline Noether’s theorem to say that symmetries are associated

with “topological surface operators”. (Recently people have found that sometimes such

1This word is always dangerous in physics and I apologize for using it in my haste to quickly get

to the point in this discussion. There are two dangers here. (1) The first is that here I am talking

about systems with degrees of freedom spread over space, like in a material, or like the electromagnetic

field in vacuum, or more generally a field theory. Quantum field theory (QFT) is not a prerequisite

for this class, and I will not assume sophisticated knowledge of QFT. You all know about electricity

and magnetism, though, and I expect that you will have seen some other context where degrees of

freedom are spread over space, such as inside a magnet. (2) More generally saying that something is

‘usually’ true is dangerous because it implies some kind of measure on the space of physics situations

and because it means that it’s not always true. Here the extra assumption is that the theory is local,

for example that it is defined by an action which is a single integral over space and time. More on

this in a bit.
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topological surface operators aren’t associated with groups! In particular, when we try

to multiply them, rather than ab = c we get something like ab = c+ d!)

Noether’s theorem also has a converse: given a topological surface operator Q

(assume it’s hermitian or replace it with Q + Q†), it generates a symmetry: U = eiαQ

is a unitary operator which commutes with the time evolution operator.

This idea has some natural generalizations. For example, what about topological

operators associated with codimension-p surfaces, XD−p? Such a thing would come

from a conserved current with p+ 1 indices, antisymmetrized – a p+ 1-form:∫
XD−p

jν1···npn
µ1

1 · · ·nµpp =

∫
XD−p

?j (0.2)

(n1 · · ·np are the normals to XD−p) satisfying ∂µjµν1···np = 0. A field theory with such

an object is said to have a p-form symmetry. (In the second step in (0.2) I’ve used

the Hodge star (?j)µ1···µD−p = εµ1···µDj
µD−p+1···µD . and differential form notation. Don’t

worry if this is unfamiliar right now.) What we’ve thought of as symmetry all along is

the special case called 0-form symmetry.

This appearance of differential forms reminds me to mention the following. There

are many other connections between groups and topology which are relevant to physics.

An important one is the use of groups themselves as topological invariants. In the quest

for topological invariants of various geometric data, such as the shape of space, or a

space of maps from one space into another, many of them turn out to be themselves

groups. Here I have in mind homology groups, cohomology groups, homotopy groups,

cobordism groups. These topological invariants are useful in (parts of) physics all the

time (some examples which spring to mind are: when classifying phases of matter,

when identifying topological defects in a given phase of matter, when compactifying

string theory), so I feel pretty justified talking about some of them in a class about

group theory in physics! We’ll see how far we get.

Group theory is useful in field theory in many ways. A common situation in field

theory is: we have a list of degrees of freedom, and a symmetry group, and we would

like to know what interactions are allowed.

Backing up a little, what is a field theory? It’s a physical system where the degrees

of freedom are fields φ(x, t) – functions of space and time, which may have some extra

decorations like vector indices. The interactions are governed by an action of the form

S[φ] =

∫
ddxdtL(φ(x), ∂φ(x)).

This is not the most general functional of φ; rather, I have assumed the property of

locality. A good example to keep in mind (where we know the answer) is Maxwell’s
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theory, where

S[Aµ] =

∫
d3xdt

1

2

(
~E2 − ~B2

)
, ~B ≡ ~∇× ~A, ~E ≡ −∂t ~A+ ~∇A0.

(If we regard the variables as quantum mechanical, then it is a quantum field theory.)

A common situation where field theory arises is in studying a chunk of matter, like

a magnet. A magnet is a material whose hamiltonian preserves some subgroup G of the

spin rotation symmetry. The magnetization ~φ(x, t) is a local property of the material

which says which way (if any) the spins are pointing near the spacetime point (x, t),

so it is a field. It transforms under the spin rotations (and other symmetries, such as

spatial symmetries, like symmetries of the lattice making up the material) in a definite

way. This constrains the form of the action for ~φ.

A similar situation obtains in particle physics. There we discover in various ways

particles that are the quanta of fields (as the photon is the quantum of the EM field

Aµ), and carry various symmetry properties – which we infer from which reactions we

see and which ones don’t happen. A priori we don’t know how they interact with each

other, and we would like to write an action for these fields; constraints from symmetries

are indispensable.
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0.2 Conventions

For some of us, eyesight is a valuable commodity. In order not to waste it, I will often

denote the Pauli spin operators by

X ≡
(

0 1

1 0

)
Y ≡

(
0 −i

i 0

)
Z ≡

(
1 0

0 −1

)
(rather than σx,y,z).

≡ means ‘equals by definition’. A
!

= B means we are demanding that A = B.

A
?
= B means A probably doesn’t equal B.

The convention that repeated indices are summed is always in effect unless otherwise

indicated.

A useful generalization of the shorthand ~ ≡ h
2π

is

d̄k ≡ dk

2π
.

I will also write /δ(q) ≡ (2π)dδd(q).

I try to be consistent about writing Fourier transforms as∫
ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

WLOG ≡ without loss of generality.

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

iid ≡ independent and identically distributed.

We work in units where ~ and kB are equal to one unless otherwise noted.

Please tell me if you find typos or errors or violations of the rules above.
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0.3 Sources

Zee, Group Theory in a Nutshell.

Georgi, Lie Algebras in Particle Physics, editions 1 & 2. Particle-physics centric, but

very clear and worthwhile. The first edition has no finite groups.

Stone and Goldbart, Mathematics for Physics, a guided tour for graduate students.

The discussion of group theory is in two very concise chapters – 74 pages long,

total. For our purposes, it takes a too-geometric approach in the bit about Lie

groups. It has a good list of examples, balanced in application.

Fulton and Harris, Representation Theory, A First Course. This is a real math book,

but it is quite accessible and clear and full of examples. (It is a Springer Yellow

Book, so you can get it electronically through the UCSD library at the link

above.)

Ramadevi and Dubey, Group Theory for Physicists. Most applications are to chem-

istry, but it is clear and concise.

W. K. Tung, Group Theory in Physics. Lots of good stuff about spatial symmetries,

and about the relations between special functions and noncompact Lie groups.

Brian Hall, Lie Groups, Lie Algebras, and Representations. A math book which is

usefully focused on matrix lie groups.

Kirillov, Elements of the Theory of Representations. A bit heavier mathematically.

Cvitanovic, Group Theory. Birdtracks!
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1 Groups

1.1 Basic notions

Definition of a group: a group G is a set of elements with a multiplication law,

· : G×G → G

(g1, g2) 7→ g2 · g1
and the following properties

1. The product is associative: (g1 · g2) · g3 = g1 · (g2 · g3).

2. There is an identity element e: e · g = g = g · e for all g ∈ G.

3. Every element g has an inverse: g−1 · g = e, g · g−1 = e.

Associativity is inevitable if we regard the elements of the group as transformations

acting on some set of objects: at any intermediate step of the composition of operations,

there is a well-defined object.

The order of operations may matter: g1 · g2
?
= g2 · g1. If all the products commute,

the group is called abelian, else non-abelian. Notice in thinking about the group as a

set of operations and the product as composition, we have to choose a convention for

the order of composition. If we act first with g1 and then with g2, we will write g2 · g1.

As a perhaps-counterintuitive consequence of the fact that we write from left to right,

time goes to the left.

The number of elements, |G|, is called the order of the group. It may be finite

or infinite. The elements may or may not be countable, and the labels on the group

elements may be discrete or continuously variable. Furthermore, an infinite group may

be compact or non-compact. The useful definition of compact for our purposes is: a

group G is compact if we can sum (integrate) over the elements in a G-invariant way

and get a finite answer. For discrete groups this is
∑

g∈G 1; for infinite groups we

require a G-invariant integration measure. You’ll see why we care about summing the

elements so much soon.

I will now stop writing the dot in the multiplication law: g · h ≡ gh.

On the homework you’ll show that we gain nothing by relaxing the demand that

the left inverse is the same as the right inverse, or the demand that the ‘left identity’

ge = e is the same as the ‘right identity’ eg = e.

A finite group can be specified by its multiplication table. For example, here is

the group Q8 of quaternions, a group with |Q8| = 8 elements, defined by the rules
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i2 = k2 = j2 = −1, ij = k and its images under i→ j→ k:

Q8 1 −1 i −i j −j k −k

1 1 −1 i −i j −j k −k

−1 −1 1 −i i −j j −k k

i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j

j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i

k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

To find ab, look at the row with a and the column with b. Notice that ab 6= ba in

general, so this group is non-abelian.

Sudoku rule. ax = bx implies a = b. This is just because x is always invertible.

This means that each element of the group must appear exactly once in each row and

each column of the multiplication table.

1.2 Examples of groups and where they come from

Equivalence of groups. Two groups are equivalent (isomorphic) if there is a map

between their group elements that preserves the multiplication rule (this is called a

group homomorphism) which is bijective (≡ one-to-one and onto).

In this subsection I am going to give a bunch of examples of groups, and examples of

ways that groups are defined. Sometimes (very) different definitions lead to isomorphic

abstract groups.

Integers Z under addition. (k, l) 7→ k + l. 0 is the identity. This group is

discrete and infinite. (Integers under multiplication is not a group because 0 has no

multiplicative inverse.)

Integers modulo n under addition. (k, l) 7→ (k+l)n. (By (a)n I mean a modulo

n.) This group, called Zn, is discrete and finite. We can make the product look more

like multiplication by letting ω = e2πi/n be an nth root of unity and identifying k mod

n with ωk: ωkωl = ωk+l. Multiplying a complex number by ωk is a rotation in the

complex plane by an angle 2πk/n.

Infinite not-discrete groups. By “not-discrete” here I mean that the elements

can be labelled by a continuously variable parameter – a real number.2

2In a previous version of these notes I used the term “continuous group” here. This was a mistake,
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We can make an infinite, not-discrete group by taking n→∞: {eiφ, φ ∈ [0, 2π)} =

U(1). Multiplication by such a phase makes continuous rotations in the complex plane;

decomposing into real and imaginary parts, eiφ = cosφ + i sinφ, this is the group of

rotations in 2d, SO(2). U(1) is infinite and not-discrete and compact, since
∫ 2π

0
dφ = 2π.

Another infinite not-discrete group is R under addition. This is infinite and not-

discrete but unlike U(1), it is non-compact.

An infinite not-discrete group which is also a smooth manifold, and whose product

is also smooth enough, is called a Lie group. So U(1) = SO(2) and R are our first

examples of Lie groups. We will not think about not-discrete groups which are not Lie

groups3.

So far all the examples (besides Q8) are abelian. A non-abelian example is the

group of rotations in R3, SO(3) (infinite, not discrete, compact). A simpler non-abelian

example (finite, discrete) is the subgroup of rotations with angle π/2. This is the group

of rotational symmetries of the cube, and has 12 elements; it is sometimes called O (for

octahedral) but we will learn to call it A4.

To see that O is not abelian, consider its action on a

book at right. Compare the result of successive π/2

rotations about ẑ and x̂ versus the opposite order

of operations. Notice that a book is a good choice

to illustrate this because no elements of O map the

book to itself.

[End of Lecture 1]

New groups from old. Given two groups, we can make another, the tensor

product: G1 ×G2 is

{(g1, g2), g1 ∈ G1, g2 ∈ G2}, with product (g1, g2) · (g′1, g′2) = (g1g
′
1, g2g

′
2). (1.1)

since this name is sometimes used (as a synonym for “topological group”) to mean a topological space

with a group action which is continuous (with respect to the given topology). Annoyingly, if we choose

the discrete topology (declare that every set is open), then even finite groups are “continuous groups”

by this definition. The distinction I am trying to make is between discrete groups and groups with

uncountably many elements. Of the latter (in general, scary) class we will only talk about Lie groups.
3I haven’t actually defined what I mean by a smooth manifold and I don’t want to. It means that

locally it looks like Rn for some n (the dimension) and that we can do calculus all we want.

The question of to what extent we can relax the smoothness assumption (and still end up with

the same set of examples) is the subject of Hilbert’s 5th problem, and the answer is ‘yes, to a large

extent’; see here.
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A subset H of a group G which is also a group (under the product in G) is, nat-

urally, a subgroup. We write this H ⊂ G, overloading the subset notation by context.

For example, for each element g ∈ G of a finite group, {e, g, g2 · · · gk} is a subgroup

isomorphic to Zk for some k.

Matrix Lie groups. Consider the set of n × n matrices M with detM = 1,

under matrix multiplication. This is a group because detM1M2 = detM1 detM2. This

is SL(n, F ), where F = Z,R,C is the ring where the matrix entries live. If we don’t

demand that detM = 1, but just thatM is invertible, we get the group GL(n, F ). These

are non-compact, since the set of solutions of these conditions runs off to infinity.

O(n) is defined as the group of n×nmatricesO with real entries satisfyingOTO = 1,

aka

Oi
kδijO

j
l = δkl. (1.2)

This condition means that under vi 7→ Oi
jv
j, O preserves the length of vectors:

||v ||2 = vTv 7→ vTOTOv = vTv = ||v ||2, or ||v ||2 = viδijv
j 7→ vkOi

kδijO
j
lv
l (1.2)

= ||v ||2 .

If we further demand that det(O) = 1, we get the group SO(n) of rotations in Rn. O(n)

and SO(n) and infinite, continuous, compact. The difference is that O(n) contains

reflections, like (x, y, z) → (−x, y, z) which can have determinant −1. The elements

with determinant −1 are not continuously connected to those with determinant +1,

but are all connected to each other by rotations (note that (x, y, z)→ (−x,−y, z) is a

rotation), so O(n) has two connected components (each of which has the structure of

SO(n)).4

4You may wonder whether O(n) was then the same as SO(n)×Z2, where× is tensor product, defined

in (1.1). They are certainly the same as sets, since we’ve just seen that O(n) = SO(n)∪̇PSO(n) where

∪̇ is disjoint union, and P is an element with detP = −1. (If G = {g1, g2 · · · }, then by hG I mean

the set of elements {hg1, hg2 · · · } – a coset.) However, in order for them to be isomorphic as groups,

we require that the element P commute with everybody else (that P ∈ Z(O(n)), the center of O(n)).

For odd n, an element with determinant −1 is just an overall reflection (like (x, y, z) → −(x, y, z))

which does commute with everyone. For even n > 2, an element with determinant −1 is something

like (x, y, z, w)→ (−x, y, z, w) which does not commute with rotations.

For even n, O(n) is isomorphic to a semi-direct product of SO(n) and Z2 – in symbols, O(n) '
Z2 × SO(n). G1 ×G2 is not a well-defined operation like the tensor product (1.1); it merely connotes

that the set of elements is the same as G1×G2, but the action of the second factor does not commute

with the action of the first. In this case, the product that reproduces the O(n) group law is

((−1)p1 ,M1) · ((−1)p2 ,M2) = ((−1)p1+p2 , P−p2M1P
p2M2). (1.3)

(To see this, write any g ∈ O(n) in a canonical form g = P pM, with p = 0, 1 and detM = 1. This

corresponds to the element ((−1)p,M) in Z2 × SO(n). Then the product of two elements in O(n) is

g1g2 = P p1M1P
p2M2 = P p1P p2P−p2M1P

p2M2
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Consider instead (n+m)× (n+m) matrices Lµν with real entries satisfying instead

of (1.2) the relation LTηL = η, aka LµρηµνL
ν
σ = ηρσ, where ηµν =

(
1n×n 0

0 −1m×m

)
.

This is O(n,m); for n = 1,m = d, this is the Lorentz group in d space dimensions. For

n > 0,m > 0, O(n,m) is infinite, continuous, but non-compact, since the condition is

like the equation for a hyperbola.

Here’s another important family of matrix groups, which plays a starring role in

quantum mechanics. Consider the group of transformations |ψ〉 → U |ψ〉 on an n-

dimensional Hilbert space that preserve the inner product:

〈φ|ψ〉 !
= 〈φ|U †U |ψ〉 ∀φ, ψ.

This requires U †U = 1, which condition defines the unitary group U(n) (which is infi-

nite, continuous, compact). (If we pick a basis of our Hilbert space, H = span{|i〉 , i =

1..N}, then the matrix elements of the unitary operator U , Uij ≡ 〈i|U |j〉 comprise a

unitary matrix.)

The final class of matrix groups may be familiar from classical mechanics: The

symplectic groups are Sp(n) = {M |MT εM = ε}, where ε is an antisymmetric matrix,

like the Poisson bracket which pairs canonical coordinates (q, p) on phase space.

You might think this list could go on forever. Remarkably, it is possible to classify

compact Lie groups into just these infinite classes plus a set of 5 sporadic (‘exceptional’)

groups E6,7,8, F4, G2 (and tensor products (see (1.1)) of these). For a little while we

will focus on finite groups.

The symmetric group, Sn. The set of permutations of n objects forms a group

called Sn. One way to denote the permutation that takes the list {1, 2, · · · , n} to the

list {π1, π2, · · · , πn} is π =

(
1 2 · · · n
π1 π2 · · · πn

)
. Each column, read from top to bottom,

indicates where each element ends up. In this notation, the identity is e =

(
1 2 · · · n
1 2 · · · n

)
,

and the inverse permutation of π above is π−1 =

(
π1 π2 · · · πn
1 2 · · · n

)
. The order of Sn is

|Sn| = n!.

Imagine following a particular entry in the list through repeated actions of (the

same) π. After at most n operations, the entry comes back to its original position.

The set of entries it is mapped into during this journey, its orbit under πk, is called a

where in the last step we put it back in the canonical form.) (1.3) is only the same as (1.1) if

P−p2M1P
p2 = M1,∀M1 ∈ SO(n). But as we’ve seen, there is no such P which commutes with all the

elements of SO(n) for even n.
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cycle. Each entry appears in exactly one cycle. An alternative notation for permutation

instead indicates the cycles, grouped by parentheses:

e = (1)(2) · · · (n),

(
1 2 3 · · ·
2 1 3 · · ·

)
= (12),

(
1 2 3 4 5 · · ·
3 4 5 2 1 · · ·

)
= (135)(24).

Notice that we can omit cycles of length one. When I say ‘the cycle decomposition’

of a permutation, I will mean a decomposition into non-overlapping (‘disjoint’) cycles

which share no elements.

Every permutation can be written as a product of (possibly-overlapping) two-cycles.

This is just because we can achieve any rearrangement by a series of interchanges of

pairs. For example (just to clarify the notation: on the left and far right I am using

cycle notation, the second expression is the notation we introduced first which displays

the input and output of the permutation on the top and bottom row, and in the third

expression I extend that notation in a natural way to include an intermediate step

along the way from top to bottom),

(132) =

(
1 2 3

3 2 1

)(
1 2 3

1 3 2

)
=

1 2 3

1 3 2

3 1 2

 = (13)(32).

Notice that this expression is not the cycle decomposition of the group element, since

3 appears in two different cycles. Here are some simple rules for composition of per-

mutations:

• Cyclic permutations within a cycle don’t change the cycle: (12) = (21) and

(123) = (231) = (312) (but not (132)).

• Exchanges square to the identity (12)(12) = e.

• (12)(23) = (123) – a product of overlapping two-cycles gets joined at a shared

element.

• (12)(234) = (1234) – the same is true for longer cycles.

• (12)(34) = (34)(12) – non-overlapping cycles commute.

Embedding in Sn. Here’s a reason that Sn is an important family of groups. What

I’ve called the Sudoku rule above (sometimes grandiosely called the ‘rearrangement

lemma’) implies that any group G of order n is equivalent to a subgroup of Sn. Here’s

why: put the elements of G in some arbitrary order: (g1, g2, · · · gn). Multiplication by
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any element h acts on this list by (hg1, hg2, · · ·hgn) = (gπ1 , gπ2 · · · gπn). But by the Su-

doku rule this is the same set in a different order – a permutation π =

(
1 2 · · · n
π1 π2 · · · πn

)
.

This fact (due to Cayley) misled mathematicians into overemphasizing the importance

of Sn and held back the study of representation theory by decades. But it does have

some simple useful consequences.

Perhaps-surprising claim: The π we get from the construction in the previous para-

graph is not an arbitrary permutation. The cycle lengths in the permutation π must

all be the same. Suppose the contrary, e.g. π = (123)(45). Then π2 = (132)(4)(5). So

π2 would have cycles of length 1. But this means that some element of G is mapped

to itself by multiplication by h2 (not the identity) which is forbidden by the Sudoku

rule. The same would happen if π had cycles of length l1, l2; if l1 6= l2 then πl2 violates

the Sudoku rule.

A consequence of this is that if the order of the group is a prime number p, it is

isomorphic to the subgroup of Sn generated by (1 · · · p), the cyclic permutation. This

shows that it is equivalent to Zp, the cyclic group.

Point groups. A big source of groups and even moreso of nomenclature is the

discussion of symmetries of lattices and 3d objects like platonic solids. They have

intimidating names like C3v and T,O, I which I can never remember and don’t approve

of. These names refer to their definitions as symmetries of particular objects, but they

are in fact isomorphic to ordinary things like Zn and Sn and their products.

Fundamental group of a topological space. Consider a topological space, X,

that is, a set of points with some notion of which points are next to each other. We

can associate a group (π1(X), its fundamental group, or first homotopy group) to it as

follows: Consider continuous maps f from the circle S1 into X that start and end at

some ‘base point’ f0. The image is a loop in X. The product of f and g is defined by

appending f to g: parametrize the circle as θ ∈ [0, 2π),

f · g(θ) ≡

{
f(2θ), θ < π

g(2(θ − π)), θ > π
.

One more step: we regard two loops as equivalent if they can be continuously deformed

into each other through other loops (in which case they are said to be homotopic).

π1(X) is the group of equivalence classes. The identity of the group is the constant

map f(θ) = f0. The inverse of f is just f run backwards, f−1(θ) = f(2π − θ), which

unwinds the loop. For example, π1(S1) = Z, where the integer is the winding number.

A less trivial example is π1(RP2) = Z2. RP2 can be defined as the disk with antipodal

points identified5. A path that goes from one side to the other cannot be deformed

5A more physical definition is: the configuration space of a two-headed arrow in three dimensions
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to nothing, but a path which does this twice can be deformed away. (Why doesn’t

π1(X) depend on the choice of base point? If we can find a path γ in X from x0 to x1,

then any loop α with base point x0 ([α] ∈ π1(X, x0)) can be mapped to the the loop

γαγ−1, which gives a representative in π1(X, x1), so π1(X) is independent of the choice

of base point if X is path-connected.) I’ve tried to be very brief here; for a lot more on

this huge subject see section 8 of these great notes by Justin Roberts or chapter 1 of

Hatcher.

Generators and relations. Writing out the group multiplication table quickly

gets tiresome as |G| grows. A more compact way to present a groupG = 〈g1, g2...|r1(g), r2(g)...〉
is through its generators gi and relations ra . For example, Zn = 〈a|an = e〉, and

S3 = 〈r, s|r3 = e, s2 = e, rs = sr2〉, where r = (123) and s = (12). This expression

means the group made from all powers and products of the elements before the | (and

their inverses and the identity), subject to the relations after the |. A new example is

the dihedral group, Dn = 〈a, b|an = e, b2 = e, (ab)2 = e〉. This is the symmetry group

of the regular n-gon. The first two relations are there because a is a 2π/n rotation and

b is a reflection. The third relation can be rewritten as bab−1 = a−1, which expresses

the fact that a rotation viewed in the mirror goes in the opposite direction. Here it6 is

for n = 3:

(1.4)

in which case it is the same as S3.

This way of describing a group is called a presentation of the group, and is sometimes

much more efficient. For example, if there are k generators but no relations at all, the

group is called the free group on k generators.

Consider this example:

ΓEnglish ≡ 〈a, b, c, · · · , z|A = B if the words A and B are homophones〉.

Here the multiplication law is just concatenation of the 26 generators. Any non-native

English speaker will not be surprised to hear that the authors of the linked paper

(of fixed position). A two-headed arrow is the order parameter (called a director field) for a nematic

phase (e.g. of a liquid crystal, like a liquid of little rods which line up with each other).
6Actually what I am drawing here is the group action of D3 on the vertices of the equilateral

triangle. More on this notion and its utility in §1.4.
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prove that this is actually the group with one element (and the same for French, but

not Japanese or Greek). The result for English (French) is proved in French (English).

[End of Lecture 2]

Presentations are not unique. Another presentation of D4 is 〈b, c|b2 = c2 = e, bcbc =

cbcb〉. Here c is a reflection through a diagonal of the square.

Cayley diagram of a group presentation. A useful device, at least for visual-

izing discrete groups, is the Cayley diagram or Cayley graph of a group presentation.

It is a graph whose vertices correspond to elements of the group, and whose edges cor-

respond to generators of the presentation (sometimes people color the edges associated

to different generators different colors). Each relation implies a loop. So for example,

Zn = 〈x|xn = 1〉 is a cyclic graph, a circular chain of n nodes.

The Cayley diagram for the first presentation of Dn =

〈a, b|an = e, b2 = e, (ab)2 = e〉 is two n-gons (associated with

ak and bak, k = 0..n − 1, respectively) connected at their

corresponding edges, as at right for D3 = S3. The Cayley

diagram for the other presentation is uglier.

The Cayley diagram for the free group on q elements is the

q-Bethe lattice, shown at right for q = 2 (from Hatcher). It

has no relations and hence no loops.

Here is the Cayley diagram for the infinite group 〈a, b|a2 = e, b3 = e〉 (just like
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S3 = D3 but with no third relation), also from Hatcher:

For any discrete group G, a topological space XG whose fundamental group is

π1(XG) = G can be constructed from the Cayley graph. The idea is to start from

the Cayley graph of G and attach a 2-cell (a disk) into the loop associated with each

relation, and then take a quotient of the resulting space by the right action of G. For

more on what I mean by the ‘action of G,’ wait for §1.4. See Hatcher page 77.

1.3 Subgroups and conjugacy classes

There are two useful ways to chop up a group, into cosets and conjugacy classes.

Cosets. One is to look at its subgroups. Any group G has subgroups {e} and G.

These are trivial, any other subgroup is called a proper subgroup. Given a subgroup

H = {h1, · · · , hn} ⊂ G (of order |H| = n), and g1 ∈ G, the (left) coset is

g1H ≡ {g1h1, · · · , g1hn}.

For any other element g2 6= g1, either g1H∩g2H = ∅ or g1H = g2H (if they intersect at

all, g1h1 = g2h2 for some h1, h2, then g1 = g2h2h
−1
1 ∈ g2H, so g1H = g2H). Each giH

has n = |H| distinct elements, and they are all distinct (if gh1 = gh2 then h1 = h2).

Therefore

G = g1H∪̇g2H∪̇ · · · gkH for some k ∈ Z
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(where I use ∪̇ to denote disjoint union). This means |H|k = |G|, the order of any

subgroup divides the order of the group (this result is due to Lagrange). k = |G|/|H|
is called the index of the subgroup, and the set of cosets is called G/H.

An invariant or normal subgroup H satisfies g−1Hg = H,∀g ∈ G. This notation

means g−1hg ∈ H,∀h ∈ H. If H is normal, then the set of cosets G/H is a group,

the quotient group with product defined as follows: choose a representative gihi of each

coset; then (giH)(gjH) ≡ the coset gkH containing gihigjhj. For a normal subgroup,

gihigjhj = gi(gjg
−1
j )higjhj = gigj g

−1
j higj︸ ︷︷ ︸

=hk

hj = gigjhkhj ∈ gigjH, so this is independent

of our choice of representative, and in fact giHgj = gigjH.

G is simple if it has no invariant subgroups. There exists a classification of finite

simple groups. There are 18 infinite families (cyclic Zn, alternating An, and 16 others)

plus 26 sporadic groups, including the monster group, which has ∼ 1054 elements (and

deep connections to 2d conformal field theory, called moonshine). It only has 194

conjugacy classes, though. What’s a conjugacy class?

Conjugacy classes. The second way to chop up a group is into conjugacy classes.

Two elements g1, g2 ∈ G are conjugate if g1 = g−1g2g for some g ∈ G. Conjugacy defines

an equivalence relation (it is reflexive g ∼ g, symmetric g1 ∼ g2 =⇒ g2 ∼ g1, and

transitive g1 ∼ g2, g2 ∼ g3 =⇒ g1 ∼ g3), so we may divide the group into equivalence

(or conjugacy) classes, Cg = {kgk−1, k ∈ G}: G = Ce∪̇Cg1∪̇ · · · ∪̇Cgl , where ∪̇ denotes

disjoint union. The identity is always its own conjugacy class. In an abelian group,

each class has one element. More generally, the number of elements of Cg divides |G|,
since Zg ≡ {h ∈ G|h−1gh = g} ⊂ G is a subgroup (called the centralizer of g, the set

of elements of G that commute with g), and the number of elements of Cg is |G|/|Zg|.
Why: Cg = {kgk−1, k ∈ G}. But if and only if k ∈ Zg, it doesn’t generate a new

element of the conjugacy class. (This is a special case of the “orbit-stabilizer theorem”

which we’ll use again and prove a little more carefully in §1.4.)

In words and pictures: two elements g1,2 are conjugate g1 = k−1g2k if g2 looks like

g1 to an observer who has been transformed by k.

Examples: two rotations in SO(3) are conjugate if they are rotations by the same

angle [R(n̂, θ)] = [R(n̂′, θ)], possibly about different axes. (The element by which we

conjugate rotates n̂ to n̂′. More generally, two elements of a matrix group are conjugate

if they have the same eigenvalues (the eigenvalues of R(n̂, θ) are determined by θ).

Conjugacy classes of Sn are specified by the cycle structure. All elements of with

kj j-cycles are conjugate to each other in Sn. For example, conjugating (23) by (12) =

(12)−1 gives (using the rules above for multiplying cycles)

(12)(23)(12) = (123)(12) = (312)(12) = (31)(12)(12) = (31).
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(12)(234)(12) = (1234)(12) = (3412)(12) = (341)(12)(12) = (341).

The effect is merely to interchange the locations of elements 1 and 2 in the cycle

structure, (1)(23)
(12)7→ (2)(13), and (1)(234)

(12)7→ (2)(134). The same is true if 1 and 2

are in the same cycle

(12)(123)(12) = (12)(12)(23)(12) = (32)(21) = (321) = (213).

Since any permutation is a product of cycles of length two, any conjugation is simply a

rearrangement of the elements within a fixed cycle structure. (This fact will be easier

to understand by thinking about representations.)

Given that cycles label conjugacy classes of Sn, let’s think about how to label cycle

decompositions. A cycle decomposition of an element of Sn specifies a partition of

n =
∑

j jkj, a set of numbers that add up to n. A useful notation for this is the

Young diagram (or Ferrer diagram in the older literature). If there is a j-cycle, draw

a column of boxes of height j; left-justify the columns, and order them by decreasing

j. So for example, the conjugacy class containing (12)(34)(5) in S5 can be labelled

, and the class with 5 1-cycles (the identity) is . The total number of boxes is

n. The number of elements of the conjugacy class {kj} is n!∏
j j
kj kj !

. The factors in the

denominator come from the fact that the cyclic order within a cycle doesn’t matter

(jkj), and that the order of cycles of the same length doesn’t matter (kj!).

1.4 Group actions (and statistical mechanics)

Suppose we have an action of a finite group G on a finite set X. A bit formally, this

means a map
G×X → X

(g, x) 7→ gx
that respects the group properties (e.g., (hg)x = h(gx))7.

Sometimes it is useful to write g(x) for the action of g on x. This formal definition

matches the intuitive idea of, say, rotations of the vertices of a cube, or permutations

of a set of elements. We’ve already seen an example in the illustration (1.4).

Orbits. Each element x ∈ X is part of an orbit of G, Gx ≡ {gx, g ∈ G}. The

number of elements in the orbit of x need not be G because some elements of G may

map x to itself. The set of such g ∈ G which fix x is a subgroup, Gx, called the stabilizer

subgroup of x. (Check it.) Being a subgroup, its order divides |G|, and the size of the

orbit of x is therefore

|Gx| = |G|/|Gx| , (1.5)

7Alternatively, a group action of G on a set of order |X| = n is a group homomorphism from

G → Sn. In particular, every gx must be undo-able (so gx can’t be gy for x 6= y ∈ X), and the

identity must map each point in x to itself.
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(an integer!). (This number is sometimes called the index of the subgroup.) The fancy

way to say this fact is that elements of the orbit of x, Gx, are in 1-1 correspondence

with cosets of G by elements of the stabilizer subgroup Gx. This fact is sometimes

called the ‘orbit-stabilizer theorem’8

Notice that Gx = G(gx), ∀g ∈ G. By the Sudoku property, two orbits are ei-

ther identical or non-overlapping. Denote the set of distinct orbits X/G. So we can

decompose X into a disjoint union of these distinct orbits:

X = ∪A∈X/G{x ∈ A}.

Example. Any group has an action on itself in various ways, such as h→ gh (left

action by g) or h→ ghg−1 (conjugation by g). Consider the case where X = G and its

action is by conjugation x→ gxg−1. In this context, we’ve seen all of the above before.

Claim: the orbits are conjugacy classes. The stabilizer subgroup Gx is the centralizer

group Z(x). Elements of a conjugacy class Cx are in 1-1 correspondence with cosets of

G by Z(x). The fixed point set of an element g is {x ∈ G|gxg−1 = x} = {x ∈ G|gx =

xg} = Z(g) is also the centralizer of g.

The Lemma that is not Burnside’s.9 How many orbits are there?

Claim: # of orbits ≡ |X/G| = 1

|G|
∑
g∈G

|Xg| (1.6)

where Xg ≡ {x ∈ X|gx = x} is the set of fixed points of g.

[End of Lecture 3]

Proof: First, the fact that X is a disjoint union of its orbits under G means that

|X/G| =
∑

A∈X/G

1 =
∑

A∈X/G

∑
x∈A

1

|A|
=
∑
x∈X

1

|Gx|
.

Now we use (1.5) to write

|X/G| =
∑
x∈X

|Gx|
|G|

.

8Here is a proof that |G| = k|Gx| = |Gx||Gx|,∀x ∈ X, which also shows the bijection I referred to

above between elements of the conjugacy class and cosets by the centralizer. Let Gx = {xi · · ·xk} 3
x1 = x. For all g, gx = xi for some i = 1..k = |Gx|. So let Gi = {g ∈ G|g(x) = xi}. Then we

can decompose G = G1∪̇G2∪̇ · · · ∪̇Gk (with G1 = Gx, the stabilizer group of x). I claim that all of

these objects have the same size, |Gi| = |Gx|. Pick h ∈ Gi, which means hx = xi. Here’s a bijection:

φ :
Gx → Gi
g 7→ hg ≡ φ(g)

. φ(g) = hg ∈ Gi since hgx = hx = xi. The inverse of φ is just φ−1 :
Gi → Gx
g 7→ h−1g

.

Therefore |G| = k|Gx| = |Gx||Gx|.
9I’d like to thank Jin-Long Huang for introducing me to this fact. He used it to excellent effect for

a paper we wrote involving the structure of entanglement in 3d states with topological order.
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Finally, ∑
x∈X

|Gx| = |{(g, x) ∈ G×X|gx = x}| =
∑
g∈G

|Xg|

and we arrive at (1.6). �

In the case where X = G and the action is by conjugation, not-Burnside’s Lemma

gives a (not-too surprising) formula for the number of conjugacy classes

# of conjugacy classes =
1

|G|
∑
g∈G

|Xg| = 1

|G|
∑
g∈G

|Z(g)|.

Overkill. Consider n objects of which we want to select k without worrying about

the order. Let’s figure out how many ways there are to do this using the not-Burnside

lemma. Let X = Sn; by declaring that we take the first k objects of (π1, π2, · · · πn), this

is the set of ways to pick out k objects while keeping track of the order of all n objects.

There is an action of G = Sk × Sn−k on X, where the element of Sk (Sn−k) permutes

the first k (last n− k) items. This is the ‘gauge group’ – two choices are equivalent if

they are related by the action of G. To apply not-Burnside’s lemma to this choice of G

and X we need to count fixed points. But the only element with fixed points is (e, e),

which fixes all n! elements. So the number of orbits (the number of ways to choose k

elements of n irrespective of order) is

1

|Sk × Sn−k|
∑

(σ,π)∈Sk×Sn−k

|X(σ,π)| = 1

k!(n− k)!
(n! + 0 + · · ·+ 0) =

(
n

k

)
.

You are not surprised by this conclusion. This same technology can be used to

count much less trivial things, such as: how many non-isomorphic graphs are there

with k vertices?

Weighted not-Burnside lemma. A generalization of the not-Burnside lemma

allows us to keep track of more information about the things we’re counting than just

the number of orbits. [I recommend these two lectures on this subject, which this

discussion follows.] It’s usually described in terms of coloring a set, but it can just as

well be described in terms of statistical mechanics models: Suppose we have a system

of spins (up or down, + or −) living on the vertices of a square, but – here is a wrinkle –

we regard configurations related by a rotation of the square as identical. (Don’t worry

about exactly why; one reason would be if the spins were identical bosons pinned to

the corners of the square.) So we could apply the ordinary not-Burnside lemma with

G = {rotations of 2}, X = {spin configurations on 2} to find

#of orbits =
1

4

(
|X0|+ |X90|+ |X180|+ |X270|

)
=

1

4

(
24 + 2 + 4 + 2

)
= 6.
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This agrees with an explicit enumeration:

+ +

+ +

+ +

+ −
+ +

− −
+ −
− +

+ −
− −

− −
− − (1.7)

But you can see that there is more structure here: we have

• 1 orbit with 4 + and 0 −,

• 1 orbit with 3 + and 1 −,

• 2 orbits with 2 + and 2 −,

• 1 orbit with 1 + and 3 −,

• 1 orbit with 0 + and 4 −.

Suppose we were doing equilibrium statistical mechanics at fixed temperature. Then

we could weigh these configurations by a Boltzmann weight that depends on the mag-

netization:

Z =
∑

configs

e−βH(config).

The tricky point here is that according to our definition, a configuration (a physical

state of the system) is an orbit of the rotation group. Notice that the number of +

and − are constant on each orbit. This is a crucial property: the Hamiltonian on spin

configurations is gauge invariant – it is invariant under the group operation by which

we want to identify configurations.

So let’s introduce fugacities p and m for + and − respectively. Then an orbit with

n+ +s and n− −s contributes pn+mn− to the partition sum. First let’s do it by hand.

Looking at the list (1.7) above, the partition sum is

Z = 1p4m0 + 1p3m1 + 2p2m2 + 1p1m3 + 1p0m4. (1.8)

(In combinatorics, this partition function is called a weight sum, or generating func-

tion.)

Here’s the theorem: given an action of G on X, and a G-invariant weight function

W (x) (that is, W depends only on the orbit of x by G),

Z ≡
∑

orbits,O∈X/G

W (O) =
1

|G|
∑
g∈G

∑
x∈Xg

W (x).

Notice that when W (x) = 1 this reduces to the ordinary non-Burnside lemma. Here’s

the proof: Since the weight is G-invariant, each subset of orbits with a given weight W
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itself carries an action of G. Use the ordinary not-Burnside lemma in each such sector

with weight W , and then add the results, weighted by W .

Let’s check that it reproduces the result (1.8).

Z =
1

4

(∑
x∈X0

W (x) +
∑
x∈X90

W (x) +
∑

x∈X180

W (x) +
∑

x∈X270

W (x)

)
.

Every config is fixed by the identity, so the four spins are independently summed:∑
x∈X0 W (x) = (p + m)4. A 90◦ or 270◦ rotation require all the spins to be the

same, so
∑

x∈X90 W (x) = p4 + m4 =
∑

x∈X270 W (x). A 180◦ rotation requires pairs of

antipodal spins to be the same, so
∑

x∈X180 W (x) = (p2 +m2)2. Adding these together,

you can check that this reproduces Z.

Polya’s enumeration theorem. A useful sharpening of the weighted not-Burnside

lemma, which streamlines its application, is the Polya enumeration theorem. It requires

introducing a bit of technology first. When a group acts on a set of n = |X| elements,

as we’ve been discussing, each of its elements is mapped to a permutation σ ∈ Sn,

since clearly it must permute the elements of X. This permutation therefore has a cy-

cle decomposition, with ci cycles of length i. Let z(σ) ≡ zc11 z
c2
2 · · · zcnn for some formal

variables zi. (These ci are the same as what I called kj earlier.) The cycle index or

cycle indicator of the action of G on X is

Z(G, X) ≡ 1

|G|
∑
σ∈G

z(σ),

a bit like a partition function.

An example is extremely helpful. Take G = D4 and X = {vertices of 2}. There

are 8 elements:

(1.9)

so

Z(D4,2) =
1

8

(
z4

1 + 2z2
1z2 + 3z2

2 + 2z4

)
.

It is a fun exercise to compute the cycle index for e.g. the action of a group on itself

by left multiplication.
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So far, this has been a definition. Now, if G acts on a set X, then G also acts on a

spin system living on X. That is, we could put a little variable that takes k different

values at each element of X. Call the set of configurations of these variables Y (in

the combinatorics literature, they are called colorings of X). So an element of Y is

y = {(x, s(x))|x ∈ X}, where s(x) ∈ {1 · · · k} is a spin configuration, or an assignment

of a color to each element of X. The canonical action of σ ∈ G on Y is:

σ̄ (y) ≡ σ̄ ({(x, s(x))|x ∈ X}) ≡ {(σ(x), s(x))|x ∈ X} ∈ Y. (1.10)

Note that on the RHS here we do not write s(σ(x)), which would be just a relabelling

of the spins.

Now suppose we want to enumerate orbits of G on Y . For example, suppose we want

to compute the kind of partition function we evaluated above, where we introduce a

fugacity for each color, or suppose we want to enumerate how many different necklaces

we can make with some number of different colors of beads... (many more examples

on the homework).

Polya enumeration theorem:∑
orbits,O∈Y/G

W (O) = Z(G, X)|zi=bi1+···bik ,

where bi is the fugacity for the ith color (that is, W (y) = b
# of x s.t. s(x) = 1
1 b

# of x s.t. s(x) = 2
2 · · · ).

Proof: By the weighted not-Burnside lemma, the LHS is∑
orbits O∈Y/G

W (O) =
1

|G|
∑
σ∈G

∑
y∈Y σ̄

W (y).

If y ∈ Y σ̄ is a fixed point of σ̄ it means the following, by (1.10):

y = {(x, s(x))|x ∈ X} = {(σ(x), s(x))|x ∈ X}. (1.11)

Since σ is a permutation, we can relabel the elements of y as

y = {(x, s(x))|x ∈ X} = {(σ(x), s(σ(x))|x ∈ X)}.

Therefore (1.11) says s(x) = s(σ(x)) for all x ∈ X. This is the very sensible state-

ment that all the elements of a given cycle of σ have the same color. And elements

participating in different cycles are colored independently. Therefore∑
y∈Y σ̄

W (y) = (b1 + · · ·+ bk)
c1(b2

1 + · · ·+ b2
k)
c2 · · · (bn1 + · · ·+ bnk)cn = z(σ)|zi→bi1+···+bik .

�
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Here’s an example. Let’s enumerate configurations of the 3-state Potts model (this

just means k = 3) on the square, modulo all symmetries of the square, D4. A physical

realization is: we have some spin-1 (three states) identical bosons which for some

reason formed a square-shaped molecule, and we want to know its partition function

in a Zeeman field (and spin-spin interactions are negligible for some reason). Using the

Polya enumeration theorem and (1.9),

Z = Z(D4,2) =
1

8

(
z4

1 + 2z2
1z2 + 3z2

2 + 2z4

)
|zi→Ri+Gi+Bi

where I called R,G,B the fugacities of the three spin states (for spin-one particles in

a Zeeman field, R = e−βh, G = 1, B = e+βh). This is an homage to the most canonical

application of this theorem, which is counting necklaces. The number of configurations

(necklaces with four beads) with 2 red, 1 green and 1 blue is the coefficient of R2GB

in this polynomial, which (I recommend Mathematica’s Coefficient command) is 2.

For (perhaps too many) more applications of this line of thought, see hw 2.

[End of Lecture 4]
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2 Representations

A representation R of a group G associates to each g ∈ G a linear operator DR(g) on

some vector space V (sometimes called the carrier space), such that

• DR(g1)DR(g2) = DR(g1g2)

• and in particular DR(e) = 1, the identity operator on V

i.e., more succinctly, the map R : g 7→ DR(g) is a group homomorphism, from G to

GL(n,C)), where C is the complex numbers. Here n = dimV , the dimension of V as a

vector space over C, is the dimension of the representation. We’ll always be interested

in vector spaces over C (though sometimes it will be interesting to ask when we can

make the matrices real). As we’ll see, a given group can have many representations, of

various dimensions.

There are several strong motivations for thinking about representations. Most

importantly, representation theory is arguably the main point of contact between group

theory and quantum physics, where the vector space in question is generally the Hilbert

space of a physical system, V = H. And the linear operators in question realize

transformations of the system (like translations or rotations or anything else you can

think of) which must take H → H. A special role is played by unitary representations,

where all of the D(g) are unitary D(g)D(g)† = 1, since these preserve the norms of

states10.

More generally, though, by studying its representations, we can study groups using

linear algebra. As usual in QM, a linear operator D in a particular basisH = spani{|i〉}
determines a matrix, with elements

(D)ij = 〈i|D |j〉 .

Therefore, in a basis, the group operation becomes matrix multiplication:

(D(g1g2))ij = (D(g1)D(g2))ij = 〈i|D(g1) 1︸︷︷︸
=
∑n
k=1 |k〉〈k|

D(g2) |j〉 =
∑
k

(D(g1))ik (D(g2))kj .

10You might object that in QM we often don’t care about the overall phase of the wavefunction,

and hence we shouldn’t be too worried if the group law is only satisfied up to a phase:

DR(g1)DR(g2) = eiφ(g1,g2)DR(g1g2)

instead of the rule given above. Indeed. Such a thing is called a projective representation and there is

a lot to say about them. Be patient and wait for §2.7.
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Some examples. Every group has the trivial representation, which I’ll denote by

1: D(g) = 1,∀g ∈ G. It is well-named.

Here is a nontrivial 1d representation of Zn = 〈g|gn = 1〉: D1(e) = 1, D1(g) =

ω,D1(g2) = ω2 · · · , where ω ≡ e2πi/n. For n > 2, another one has D2(g) = ω2.

Any group has its regular representation, defined as follows. Associate an orthonor-

mal basis with the elements of the group, so the carrier space isHG ≡ span{|g〉 , g ∈ G}.
Then we can define, quite naturally,

Dreg(g1) |g2〉 ≡ |g1g2〉

where the argument of the ket on the RHS is the group product. (Notice that we could

have instead defined it by right multiplication.) Check that this is a representation.

Its dimension is |G|. For example, for Z3, the matrix elements are

Dreg(e) =

1

1

1

 , Dreg(g) =

 1

1

1

 , Dreg(g2) =

 1

1

1

 . (2.1)

Any action of G on a finite set X, |X| = n gives a representation of G of dimension

n. We could describe this by introducing a Hilbert space span{|x〉 , x ∈ X} spanned by

orthonormal states labelled by elements of X. The representation operators are then

D(g) |x〉 = |g(x)〉.

Both of the previous examples are a special kind of representation called a permu-

tation representation, where the matrices Dij have a single nonzero entry in each row

and column.

New reps from old. Given two representations R1,2 of G, there are two ways

to make a new representation. The direct sum R1 ⊕ R2 acts on the direct sum of the

carrier spaces, and has matrices

DR1⊕R2(g) =

(
DR1(g) 0

0 DR2(g)

)
.

The ‘0’s in this matrix are dimR1×dimR2 and dimR2×dimR1 matrices. The dimensions

add: dim(R1 ⊕R2) = dimR1 + dimR2

The direct product R1 ⊗ R2 lives on the direct product of the carrier spaces, and

the matrices are

〈iα|DR1⊗R2 |jβ〉 = (DR1⊗R2)iα,jβ ≡ (DR1 ⊗DR2)iα,jβ ≡ (DR1)ij (DR2)αβ

where I use different alphabets to index the basis states of the two spaces to emphasize

that they can be completely unrelated. Notice that it is useful to think of iα or jβ

here as a single object, a multi-index. dim(R1 ⊗R2) = dimR1 · dimR2.
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Representations of Sn. We’ll have a lot to say about representations of Sn. To

get started, let

sign(π) ≡ (−1)π ≡ (−1)k2+k4+··· = (−1)# of even-length cycles of π

be the sign (or signature) of the permutation π. Notice that sign(π1)sign(π2) =

sign(π1π2) (just check that the rules for combining cycles in §1.2 preserve the num-

ber of even-length cycles mod two, since they can only annihilate in pairs), so sign is

a 1d representation of Sn.

By the way, the kernel of the map
Sn → Z2

π 7→ sign(π)
specifies a subgroup of Sn

11.

That is, the subset of even permutations {π ∈ Sn|sign(π) = +1} ≡ An, the alter-

nating group12. It is an invariant subgroup, and the quotient group Sn/An is (not

coincidentally) just Z2.

Another important representation of Sn is called the defining (or fundamental)

representation, which is n-dimensional. The carrier space isH ≡ span{|j〉 , j = 1 · · ·n},
where the |j〉 are orthonormal. The definition of D(π) is deceptively simple:

D(π) |j〉 = |πj〉 .

For example, for n = 3, the action of the element (123) isD(123) |1〉 = |2〉 , D(123) |2〉 =

|3〉 , D(123) |3〉 = |1〉. Similarly D(12) |1〉 = |2〉 , D(12) |2〉 = |1〉 , D(12) |3〉 = |3〉. The

matrix elements are

D(e)ij =

1 0 0

0 1 0

0 0 1


ij

D(123)ij =

0 0 1

1 0 0

0 1 0


ij

D(321)ij =

0 1 0

0 0 1

1 0 0


ij

(2.2)

D(12)ij =

0 1 0

1 0 0

0 0 1


ij

D(23)ij =

1 0 0

0 0 1

0 1 0


ij

D(31)ij =

0 0 1

0 1 0

1 0 0


ij

Now here’s a simple proof that the cycle structure of a permutation is a prop-

erty of its conjugacy class: in the defining representation, conjugation is a similarity

transformation – it is a just a change of basis. For example, conjugating by D(12)

implements the basis change that switches basis vectors 1 and 2, as you can see from

11By ‘kernel’ of a group homomorphism, I mean the set of elements that map to the identity; this

is always a subgroup. In fact, it is always a normal subgroup. Exercise.
12A simple group is a group with no proper invariant subgroups. The fact that An is simple for

n ≥ 5 implies that there is no solution of the general quintic equation by radicals. This result, which

played an important role in the development of understanding of group theory on this planet, is due

to Ruffini, Abel and Galois.
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(2.2). Moreover, since we can make any permutation by a sequence of interchanges

(order-two elements), and by conjugation by interchanges we can make every possi-

ble rearrangement of the elements within a cycle, each conjugacy class consists of all

possible permutations with the same cycle structure.

Equivalence. When are two reps different? Notice that we didn’t specify a basis

of V . So changing basis of V shouldn’t change representation, though it will certainly

change the representation matrices. So, since, for any invertible matrix S, the replace-

ment D(g) 7→ D′(g) = S−1D(g)S, detS 6= 0 (a similarity transformation, aka change

of basis) gives a representation with the same multiplication rules, we declare D′ and

D equivalent. (It’s crucial that we use the same S for every g!)

2.1 Irreps

Reducibility. A representation is reducible if it has an invariant subspace. An invari-

ant subspace is W ⊂ V such that D(g) |w〉 ∈ W,∀ |w〉 ∈ W, g ∈ G. The existence of

such a subspace means we can make a smaller representation out of just the action on

W , as follows. Let PW be the projector onto W ⊂ V . This means P 2
W = PW . The

statement that W is an invariant subspace can be written

PWD(g)PW = D(g)PW , ∀g ∈ G. (2.3)

But this says that the projected operators DW (g) ≡ PWD(g)PW form a representation.

For example, in the regular representation, the vector |u〉 ≡
∑

g∈G |g〉 is mapped

to itself by all of the D(g)s. For the Z3 example in (2.1), in the given basis, this is

the vector

1

1

1

, and the (rank one) projector PW = |u〉〈u| onto this subspace has the

matrix representation

1 1 1

1 1 1

1 1 1

. This shows that for any group,

Rregular = 1⊕R|G|−1 ,

where 1 denotes the trivial 1d representation and the other summand is some repre-

sentation of dimension |G| − 1. So the regular rep is reducible.

If a representation is not reducible, it is called an irreducible representation, or

irrep. As Stone and Goldbart say, the irreps of a group are the atoms – the elementary

particles – of representation theory, and the irreps of commonly-occurring groups are

going to become our good friends.
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A representation is completely reducible (I believe it is sometimes called decompos-

able if it can be decomposed (by a similarity transformation S) into a direct sum of

irreps:

S−1D(g)S =

D1(g) 0 0

0 D2(g) 0

0 0
. . .


(the same S for every g!), i.e. D = D1 ⊕ D2 ⊕ · · · . For example, there is a basis

transformation that takes the Z3 regular representation to

D′(e) =

1

1

1

 , D′(g) =

1

ω

ω2

 , D′(g2) =

1

ω2

ω

 , ω = e2πi/3, (2.4)

which shows that for Z3, Rregular = 1⊕ 11 ⊕ 12, a sum of three 1d irreps. You can find

S just by diagonalizing the original D(g)s. Since they commute (Z3 is abelian), they

can be simultaneously diagonalized by one S. (Note that this argument shows that all

irreps of any abelian group must be one-dimensional.)

Now why do I make a big deal about completely reducible? Some matrices can’t

be diagonalized – the alternative is that the matrices have a block structure in their

Jordan normal form, like (
D1(g) B

0 D2(g)

)
.

An example where this happens is the following 2d rep of the group of integers under

addition: D(x) =

(
1 x

0 1

)
. It is reducible because D(x)P = P with P =

(
1 0

0 0

)
(which in turn implies PD(x)P = P = D(x)P , the condition for the projector onto

an invariant subspace (2.3)), but it is not completely reducible (i.e. indecomposable)

because D(x) (1 − P ) 6= 1 −P – the transformations preserve the subspace but not its

complement.

This pathology is possible because Z is non-compact. This annoyance is ruled out

for unitary representations, since unitary matrices are normal (commute with their

dagger) and hence can be diagonalized.

Theorem: any unitary rep is completely reducible.

Proof: If the rep is reducible at all, there’s a projector P such that PD(g)P =

D(g)P, ∀g ∈ G. But the adjoint of this equation is PD(g)†P = PD(g)†,∀g ∈ G. For a

unitary rep, D(g)† = D(g)−1 = D (g−1), so this says PD(h)P = PD(h),∀h = g−1 ∈ G.

This is true for each g iff (1 − P )D(g)(1 − P ) = D(g)(1 − P ), which says that 1 − P
always also projects onto an invariant subspace. �
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And

Theorem: for a compact group, every representation is equivalent to a unitary repre-

sentation. Recall that compact means that we can do G-invariant sums and get finite

answers; in particular this includes any finite group.

Proof: The proof is satisfyingly constructive: Let S ≡
∑

g∈GD(g)†D(g). This op-

erator is hermitian (S† = S) and S ≥ 0, so it has a square root:
√
S (recall that

a function of a hermitian operator can be defined by the spectral representation: if

S =
∑

d d|d〉〈d|, then
√
S =

∑
d

√
d|d〉〈d|). I claim that not only is S ≥ 0, but S > 0 –

all of its eigenvalues are positive, d > 0. (If it were otherwise, there would be a vector

v with 0 = Sv, which means

0 = v†Sv =
∑
g∈G

||D(g)v ||2 =⇒ D(g)v = 0,∀g .

But this would violate the requirement that D(e) = 1.) Therefore, we can define

D′(g) ≡
√
SD(g)

√
S
−1

which are unitary:

D′(g)†D′(g) =
√
S
−1
D(g)†

√
S
√
SD(g)

√
S
−1

= · · · = 1.

I won’t spoil the fun by writing out the steps here. �

For a compact but non-discrete group, the same argument goes through with∑
gD(g)†D(g) replaced by

∫
g
D(g)†D(g). This ability to take averages over a com-

pact group has many consequences and is a stratagem we will use all the time.

To understand reducibility, a big help is Schur’s lemma: Suppose we are given

collections of linear operators Aα : U → U,Bα : V → V each of which act irreducibly

(think of α as labelling group elements), and

Λ : U → V such that ΛAα = BαΛ, ∀α. (2.5)

(Such a Λ is called an intertwining operator.) Then either (a) Λ = 0 or (b) Λ is 1-1

and onto (invertible), dimU = dimV and Aα = Λ−1BαΛ.

This very useful statement is true for a simple reason. The condition (2.5) says that

ker (Λ) ⊂ U and Im(Λ) ⊂ V are invariant subspaces of {Aα} and {Bα} respectively13

So by the irreducibility assumption, either ker Λ = U, ImΛ = 0 or ker Λ = 0, ImΛ = V .

�
13A little more explicitly: if |a〉 ∈ ker Λ, Λ |a〉 = 0. Then ΛAα |a〉 = BαΛ |a〉 = 0, so Aα |a〉 ∈ ker Λ,

too.
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A corollary is: if {Aα} act irreducibly on V and

ΛAα = AαΛ (2.6)

then Λ = λ1V (λ could be zero). Here’s why: (2.6) implies (Λ− x1)Aα = Aα(Λ− x1).

But det(Λ− x1) is a polynomial in x of degree dimV , which therefore has at least one

root, say at x = λ. But this means that Λ−λ1 is not invertible, and by Schur’s lemma

must vanish. �

A consequence of Schur’s lemma is that each irrep can be put in a canonical

form. A basis change on an irrep that preserves the representation matrices satis-

fies S−1D(g)S = D(g),∀g ∈ G. But then Schur’s lemma says that S = λ1. So we can

(and will from now on) assume that whenever we speak about a particular irrep, we

choose the same list of unitary representation matrices.

Orthogonality of matrix elements. Our most important application of Schur’s

lemma is the following. Let Da(g) : Va → Va be an irrep of dimension da = dimVa.

The following equation is sometimes called the Grand Orthogonality Theorem:

1

|G|
∑
g∈G

(
Da(g−1)

)
ij

(
Db(g)

)
kl

=
1

da
δjkδilδ

ab (2.7)

for any two irreps. For unitary reps, we can replace the first factor by (Da(g−1))ij =

(Da(g))†ij, so
1

|G|
∑
g∈G

(Da(g))†ij
(
Db(g)

)
kl

=
1

da
δjkδilδ

ab (2.8)

Proof: For any operator M : Vb → Va, let ΛM ≡
∑

gD
a(g−1)MDb(g). Then

Da(g)ΛM = ΛDb(g), ∀g,M , by relabelling the summation variable. Schur’s lemma

applies so14

ΛM
il =

∑
g

(
Da(g−1)

)
ij
Mjk

(
Db(g)

)
kl

= λ(M)δilδ
ab.

Since this is true for every such M , take M to be 0 everywhere and 1 in the jk entry,

so ∑
g

(
Da(g−1)

)
ij

(
Db(g)

)
kl

= λjkδilδ
ab.

To determine the prefactor λjk, set a = b and contract i = l (by contract the two indices

i and l I mean multiply by δil and sum over both) to find δjk|G| = λjkda. �

One more quick application of Schur’s lemma: Each representation operator D(g)

commutes with all the others D(g)D(h) = D(h)D(g), and therefore on an irrep must

14More explicitly: Schur implies either ΛM = 0 or da = db and Da(g) = ΛDb(g)Λ−1 which means

the irreps are the same, which means ΛM = λ1.
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be proportional to the identity. And for an abelian group, every subspace is an in-

variant subspace. This means every irreducible representation of an abelian group is

1-dimensional.

[End of Lecture 5]

2.2 Characters

The character of a representation R is a function that eats group elements and spits

out numbers:

χR(g) ≡ trDR(g) =
∑
i

(DR(g))ii .

These objects have many virtues. In particular we will see that a representation is

specified by its character, up to trivial relabellings.

• Characters are basis independent, i.e. unchanged by a similarity transformation,

trS−1DS = trD by cyclicity of the trace.

• Characters are class functions – χ(g) only depends on the conjugacy class of g:

χ(g−1hg) = trD(g−1hg) = trD(g−1)D(h)D(g) = trD(h) = χ(h)

using the group law and cyclicity of the trace.

• χR(e) = dimR.

• Characters play nice with the operations ⊗ and ⊕:

χD1⊗D2(g) = χD1(g)χD2(g), χD1⊕D2(g) = χD1(g) + χD2(g) . (2.9)

• Characters of different irreducible representations are orthonormal, in the sense

that
1

|G|
∑
g∈G

χRa(g
−1)χRb(g) = δab,

and hence they are different for different representations. For unitary represen-

tations, this is the same as

1

|G|
∑
g∈G

χRa(g)?χRb(g) = δab. (2.10)
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This last crucial fact follows from the Grand Orthogonality Fact (2.7) just by contract-

ing indices i = j and k = l. Notice that by the class function property, the relation

can be rewritten as

1

|G|
∑

conjugacy classes,α

nαχRa(α)?χRb(α) = δab (2.11)

where nα is the number of elements in the conjugacy class labelled α. So characters

are orthogonal with respect to the inner product on conjugacy classes defined by

〈χ1, χ2〉 ≡
1

|G|
∑
α

nαχ1(α)?χ2(α). (2.12)

The character table is square. By the character table of a group, I just mean

χaα ≡ χRa(g ∈ Cα) regarded as a matrix. The boldface statement is:

The number of irreps of G is equal to its number of conjugacy classes.

Proof: We already know from (2.11) that the number of of conjugacy classes nC is at

least as big as the number of irreps, nR: the LHS is a matrix of rank nR, but the RHS

is a matrix of rank (at most) nC .

The goal of the following argument is to show that the number of conjugacy classes

can’t be bigger than the number of irreps. [This an adaptation of Prop. 2.30 of

Fulton and Harris.] If there were a class function f which did not come from the

character of a representation (such as a function which was 1 on an extra conjugacy

class), by (2.10), it would have 0 = 〈f, χa〉 for all irreps Ra. But then consider the

object S =
∑

g∈G f(g)Da(g). It commutes with all of the representation matrices

Da(h)S = SDa(h),∀h ∈ G. Here’s why:

Da(h)S =
∑
g

f(g)Da(hg) =
∑

g′=h−1gh

f(hg′h−1)Da(g′h) =
∑
g′

f(g)Da(g′)Da(h) = SDa(h).

But then Schur’s lemma says S = λ1V a , and taking the trace of both sides (and using

cyclicity of the trace and integration by parts),

λda = trS =
∑
g

f(g)χa(g) = 〈f, χā〉? = 0.

(At the last step I used the fact that χR(g)? = χR̄(g) is the character of the represen-

tation R̄ with operators D(g)?.) So λ = 0 and so S = 0. Now we defined S = Sa

above for a particular irrep labelled a, but the conclusion that Sa = 0 is true for every

irrep. In fact, we could define SR =
∑

g∈G f(g)DR(g) for any representation and the

conclusion would be the same (since any representation is a direct sum of irreps). But
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the matrix elements of the unitary irreps provide an orthonormal basis for the set of

all functions on the group – this is the content of the Grand Orthogonality Theorem.

From this we can conclude that f = 0. �

This result means that the characters of the irreps are a basis of class functions on

G. Using (2.10), then, an arbitrary class function can be decomposed as

F (g) =
∑

irreps,a

χa(g)cFa , cFa =
1

|G|
∑
g∈G

χRa(g
−1)F (g). (2.13)

Cyclic groups and Fourier series. You may notice that this maneuver (2.13) is

just like Fourier decomposition. This is not a coincidence. Consider the case G = Zn.

Since it is abelian, the conjugacy classes each contain one element. The irreps are

Dk

(
g`
)

= ωk`, k = 0..n− 1, ` = 0..n− 1 (ω ≡ e2πi/n), and the characters are χk
(
g`
)

=

ωk`, too. Then in this special case (2.13) is Fourier decomposition:

F (`) =
n−1∑
k=0

ωk`Fk, Fk =
1

n

n−1∑
`=0

ω−k`F (`).

Characters are orthonormal in another sense as well:∑
irreps,a

χRa(gα)?χRa(gβ) =
|G|
nα
δαβ (2.14)

where again nα is the number of elements in the conjugacy class labelled α. Once

we know the character table is square, (2.14) follows from (2.11): the latter says that

Sαa ≡
√

nα
|G|χRa(gα) is a unitary matrix, S†S = 115.

An important practical consequence of complete reducibility is that any unitary

representation is

R =
⊕

irreps,a

Ra ⊕ · · · ⊕Ra︸ ︷︷ ︸
mRa times

 = R1 ⊕ · · · ⊕R1︸ ︷︷ ︸
mR1 times

⊕R2 ⊕ · · · ⊕R2︸ ︷︷ ︸
mR2 times

⊕ · · · ≡
⊕

irreps,a

R⊕m
R
a

a =
⊕

irreps,a

V R
a ⊗Ra

(2.15)

where dimV R
a = mR

a . The only data here are the mR
a , the number of times irrep a

appears in R. Using (2.9), (2.15) implies that the character of R is

χR(g) = mR
1 χ1(g) +mR

2 χ2(g) + · · · . (2.16)

15S is square (it is the character table with some rescaling) so SS† = 1 as well. Here is a proof:

S ∈ GL(N,C) and S†S = 1 says V † ∈ GL(N,C) is its left inverse in this group. But in a group

left-inverse is the same as right-inverse as you showed on the homework.
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And therefore we can pick off the coefficients by taking the overlaps

mR
a = 〈χRa , χR〉 ≡ 1

|G|
∑
g∈G

χRa(g)?χR(g).

Consider for example the regular representation Rreg of any group G. From the

definition, χRreg(g) = δg,e|G| – by the sudoku rule, any element other than e must move

every other element. Therefore

mRreg
a =

1

|G|
∑
g∈G

χRa(g)?χRreg(g) = χRa(e) = da.

Recalling that dim(Rreg) = |G|, this means that

|G| =
∑

irreps,a

d2
a,

an important constraint on the dimensions of the irreps of any group.

Now we must see some examples of character tables. One way to construct them

is to know the representation matrices for every irrep, and just take the traces for one

element of each conjugacy class. We can do this for Z3 = 〈g|g3 = e〉:

Z3 nC 1 ω ω2

e 1 1 1 1

g 1 1 ω ω2

g2 1 1 ω2 ω

I am using Zee’s convention for character tables: each column corresponds to an irrep,

each row to a conjugacy class. Rows are orthogonal with respect to the ordinary

(complex) dot product. Columns are orthogonal with respect to the inner product

(2.12), so I include a column with nC , the number of elements of each conjugacy

class. Notice that the characters of the identity conjugacy class (the first row) give the

dimensions of the irreps: da = χa(e). Check that
∑

a d
2
a = |G|. Notice that for Z3 the

characters are complex numbers – we’ll learn that this means that these representations

are not real representations.

The more common situation, though, is we’re figuring out what the irreps are at

the same time. For example, for S3, we know there is a trivial rep, and we know

there’s the alternating rep (−1)π, which I’ll call 1′. For 1d reps, the character is the

representation. Since there are three conjugacy classes, this leaves only one more rep,

which must satisfy 6 = 1 + 1 + d2, so it’s 2-dimensional. From here we can figure out
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the character table just by demanding the orthogonality conditions:

S3 nC 1 1′ 2

(1) = · 1 1 1 2

(12) = Z2 3 1 −1 x

(123) = Z3 2 1 1 y

−→

S3 nC 1 1′ 2

(1) = · 1 1 1 2

(12) = Z2 3 1 −1 0

(123) = Z3 2 1 1 −1

We can determine x and y by demanding that the first two rows and the first and

last row are orthogonal. In this table, I’ve added a new column. For each conjugacy

class, I put the subgroup generated by its elements. Having worked hard to build this

character table, let’s use it in some examples.

Collider physics of representation theory. Earlier we referred to irreps as

the elementary particles of representation theory. Here is the analog of a collider

experiment: given two irreps Ra and Rb, we can make a new, generally reducible rep

by taking their tensor product:

Ra ⊗Rb = ⊕cR⊕m
ab
c

c

which in turn has a decomposition into irreps. To find the multiplicity mab
c of a given

irrep c in this product, we use the orthonormality of the characters:

mab
c = 〈χc, χa⊗b〉 =

1

|G|
∑
g∈G

χc(g)?χa⊗b(g) =
1

|G|
∑
g∈G

χc(g)?χa(g)χb(g).

This gives a sort of product law on the irreps of any group – an algebra of irreps. It’s

a product that is harder to visualize than a group product, since superpositions are

allowed.

For example, for S3 we have the following. For any rep, a⊗ 1 = a. In this case we

can just element-wise multiply the columns of the character table and compare:

χ1′χ1′ = χ1, χ2 ⊗ χ1′ = χ2, χ2 ⊗ χ2 =

4

0

1

 = χ1 + χ1′ + χ2.

Simple application. Suppose we have a tight-binding model on an equilateral

triangle. What are the degeneracies of the levels?

What is the symmetry group of the equilateral triangle, i.e. the group of transfor-

mations that maps it to itself? Besides the identity, we can rotate by 2π/3 or 4π/3

about the center (this is a Z3 subgroup), or we can make a reflection across the three

medians (each of these is a Z2 subgroup). These operations permute the three vertices:

the Z3 subgroup are the permutations (123) and (132), while the reflections are (12),
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(23) and (31). The symmetry group of the regular n-sided polygon is called Dn, so

we’ve just learned that D3 = S3.

The vertices transform in the defining, reducible 3 representation of S3. To answer

the question about degeneracies, we need to know how does this compose into irreps.

So let’s compute its character:

χ3

 (1)

(12)

(123)

 ≡
 χ3 ((1))

χ3 ((12))

χ3 ((123))

 =

3

1

0

 .

(In the first expression I’ve ‘vectorized’ the character function, partly to avoid the awful

notation with nested parens in the middle expression.) Where did the numbers come

from? The key point is that the character is a trace – a sum over diagonal elements,

elements which are mapped to themselves by the representation matrix, fixed points.

Because it is a permutation representation (that is, it is also a group action), the

character for the 3 of a given operation is just the number of vertices that it fixes.

More generally, the character for the defining representation of Sn is χn(α) = the

number of one-cycles in the conjugacy class α.

So we know that the 3 of S3 has a decomposition of the form (2.15), and that its

character has a decomposition of the form (2.16) and we want to know the ma. So we

need to solve the equation3

1

0

 =

1

1

1

m1 +

 1

−1

1

m1′ +

 2

0

−1

m2 =

1 1 2

1 −1 0

1 1 −1

m1

m1′

m2

 ,

with integer ms. In this case it’s easy to do by inspection, but there’s a better general

way. Rewrite it in the form of a matrix equation3

1

0

 = χ

m1

m1′

m2

 ≡ χm,

or, with indices, χ3
α = χα

am3
a. Here χ is the character table regarded as a (here) 3× 3

matrix, χα
a. Then the solution is just

m = χ−1

3

1

0

 , that is, ma =
(
χ−1
)
aα
χ3′(α)

(sum on α implied). In this case, χ−1 = 1
3!

1 3 2

1 −3 2

2 0 −2

, and therefore

m1

m1′

m2

 =

1

0

1

,
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i.e. 3 = 1 ⊕ 2. (We knew already that (1, 1, 1) was an invariant subspace, so it’s not

surprising to find a trivial rep, 1, in there.)

Notice that it’s basically impossible to get the wrong answer here16. If you make a

mistake, like switching the order in which the reps appear in midstream, you’ll almost

certainly get non-integer answers for the degeneracies. Since the entries of the matrix

χ−1 are not integers, it can seem rather like a miracle, and definitely is a huge constraint,

that (χ−1)aα χR(α) must be an integer for any representation R and each irrep a.

Therefore, there is a twofold degenerate level of the tight-binding model on the

equilateral triangle. How do I know this? The statement that D3 is a symmetry of

this Hamiltonian means [H,D3(g)] = 0 for all g ∈ G. Thus the Hamiltonian is an

intertwiner for this representation! So, by Schur’s lemma, on each irrep it must be

proportional to the identity matrix. This means that it has degeneracies of the size of

each irrep that appears in the decomposition of the Hilbert space.

Let’s be bold and generalize to the tight-binding model on the regular n-gon,

with symmetry Dn = 〈a, b|an = e, b2 = e, bab = a−1〉. This symmetry group has a

Zn = 〈a|an = e〉 subgroup. Just using that we can get quite far in this case, since

the adjacency (hopping) matrix is just H = (D(a) + D(a)†). What are the eigenval-

ues of D(a)? This is the same as reducing it into irreps, which we’ve seen for the

cyclic group is the same as Fourier decomposition: D(a) =
∑

k ω
k|k〉〈k|, with |k〉 =

1
n

∑n
`=1 ω

−`k |`〉 , k = 1..n. Therefore the eigenvalues of H are 2 cos 2πk/n, k = 1..n.

To understand a bit more about this answer let’s ask how D(b) acts on these states.

(Notice that we could have used the character table for the full Dn instead, but chose

not to.) Let’s take D(b) to act as the reflection

D(b) |i〉 = |−i〉 = |n− i〉 .

Therefore

D(b) |k〉 =
1

n

n∑
`=1

ω−`k |n− `〉 =
1

n

n∑
`=1

ω`k |`〉 = |−k〉 .

The fact that [H,D(b)] = 0 guarantees that the states |±k〉 have the same energy, it

is a parity symmetry.

[End of Lecture 6]

Building an irrep from the character table. So we’ve shown that S3 must

have a 2d rep with characters χ2

 (1)

(12)

(123)

 =

 2

0

−1

. But what are the representation

16Actually, I must confess that I did have an error in my notes here for a little while. I noticed it

only when I added the collider example above.
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matrices? Let’s try to build them in the basis where (123) and (321) (which commute

with each other since they are inverse) are both diagonal. Since they each generate a

Z3 subgroup, their eigenvalues must be cube roots of unity {ω, ω2} (other than 1). So

what could they be but

D(123) =

(
ω 0

0 ω2

)
, D(321) =

(
ω2 0

0 ω

)
.

Switching the two would work, but that’s just a basis transformation. The characters

are χ2(123) = trD(123) = ω + ω2 = −1 which is right. For D(12) we need a trace-

less 2× 2 matrix which under conjugation interchanges the two matrices above (since

(12)(123)(12) = (321)). It must be D(12) = σx. This is enough information to specify

the rest of the matrices, since (12) and (123) generate the whole S3 = D3. If you are

curious, D(23) = D(123)D(12)D(321) =

(
0 ω2

ω 0

)
, also traceless and unitary. You can

guess D(13).

To appreciate how highly constrained the representation matrices are, consider the

Grand Orthogonality fact∑
g

Da(g−1)ijD
b(g)kl =

|G|
da
δabδilδkj

with a = 2 and b = the trivial representation. This says that for all ij∑
g

Da(g)ij = 0.

Furthermore, with b = the sign representation 1′, we have another set of (four) con-

straints: ∑
g

(−1)gDa(g)ij = 0.

Building character tables without knowing the irreps. I also want to em-

phasize how strongly constrained is the character table of a group. If I call N ≡ the

number of irreps of G = the number of conjugacy classes of G, there are actually

2N2 constraints on these N2 numbers: For each pair of rows (conjugacy classes, α, β,

including α = β) we have

N∑
a=1

χa(α)?χa(β) = δαβ|G|/nα (2.17)

and for each pair of columns (irreps, a, b, including a = b) we have

N∑
α=1

nαχa(α)?χb(α) = δab|G|. (2.18)
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Similarly, we can work out the character table for S4. I give two solutions. One is

completely systematic, but uses some prior information about the group. The other

attempts to use only subgroup structure and the row and column orthogonality, but

uses some educated guesses.

S4 character table, method one.

1. The first step is to work out the conjugacy classes and their sizes. For Sn these

are Young diagrams with n boxes, and the number of elements in conjugacy class

nα = n!∏
j j
kj kj !

where the diagram has kj j-cycles (≡ columns of height j). Don’t

forget to include the 1-cycles in this formula.

2. Next, we decompose the order of the group into a sum of squares, the dims of

the irreps. For |S4| = 24 = 12 + 12 + 22 + 32 + 32, there is only one way to do this

with five numbers. At this point the information we have is:

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1

(12)(34) = Z2 3 1

(123) = Z3 8 1

(1234) = Z4 6 1

3. The characters of the sign representation 1 are easy: it’s −1 for the odd permu-

tations:
S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1

(12)(34) = Z2 3 1 1

(123) = Z3 8 1 1

(1234) = Z4 6 1 −1

4. A representation of S4 that we know is the defining 4 dimensional representation.

We’ve seen that it’s reducible since the uniform state (the ones vector) is invariant.

Its character is

χ4


e

(12)

(12)(34)

(123)

(1234)

 =


4

2

0

1

0

 =


1

1

1

1

1

+


3

1

−1

0

−1

 .
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Since this is a permutation representation, the first equation follows by counting

fixed points. We’ll see the importance of the second equation in a moment. Its

norm is therefore

〈χ4, χ4〉 =
1

24

(
1 · 42 + 6 · 22 + 3 · 02 + 8 · 12 + 6 · 02

)
=

16 + 24 + 8

24
= 2.

This means that it contains two irreps. That is, we’ve confirmed that there is a

3-dimensional irrep (which we knew from the diophantine equation). Moreover,

since 4 = 1 + 3 we have χ4 = χ1 + χ3. Thus we know

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 1

(12)(34) = Z2 3 1 1 −1

(123) = Z3 8 1 1 0

(1234) = Z4 6 1 −1 −1

Notice that our answer for χ3 that we found by this trick has norm 1 and is

orthogonal to the other already-known characters.

5. One more trick. The tensor product 1′ ⊗ 3 gives a 3-dimensional representation

with character χ1′⊗3 = χ1′χ3. Its norm is 1 so it is an irrep, and it is orthogonal

to χ3, so this must be 3′ = 1′ ⊗ 3. So we have

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 w 1 −1

(12)(34) = Z2 3 1 1 x −1 −1

(123) = Z3 8 1 1 y 0 0

(1234) = Z4 6 1 −1 z −1 1

Notice that χ3′ = χ3⊗1′ is orthogonal to χ3 (and the other columns we know

already).

6. From here, row orthonormality of each row with itself gives

4 + |w|2 = 24/6 = 4, 4 + |x|2 = 24/3 = 8, 2 + |y|2 = 24/8 = 3, 4 + |z|2 = 24/6 = 4

so we learn w = 0, |x| = 2, |y| = 1, |z| = 0.

One more generally-useful piece of information: Since every permutation is conju-

gate in Sn to its inverse (it has the same cycle structure), χ(g) = χ(g−1) = χ(g)?,

the characters are all real.
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So we have x = ±2, y = ±1:

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 0 1 −1

(12)(34) = Z2 3 1 1 ±2 −1 −1

(123) = Z3 8 1 1 ±1 0 0

(1234) = Z4 6 1 −1 0 −1 1

Orthogonality between rows 1 and 3 gives 1 + 1 + 2x − 3 − 3 = 0 so x = 2.

Orthogonality between rows 1 and 4 gives 1 + 1 + 2y = 0 so y = −1.

S4 character table, second method. Here is another series of (mostly deductive)

steps that solves this puzzle without using prior knowledge of some irreps.

1. The first step is to work out the conjugacy classes and their sizes. For Sn these

are Young diagrams with n boxes, and the number of elements in conjugacy class

nα = n!∏
j j
kj kj !

where the diagram has kj j-cycles (≡ columns of height j). Don’t

forget to include the 1-cycles in this formula.

2. Next, we decompose the order of the group into a sum of squares, the dims of

the irreps. For |S4| = 24 = 12 + 12 + 22 + 32 + 32, there is only one way to do

this. At this point the information we have is:

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1

(12)(34) = Z2 3 1

(123) = Z3 8 1 x

(1234) = Z4 6 1 y

3. In this enlarged table, I’ve also indicated the subgroup generated by elements of

each conjugacy class. This is valuable information because it means, for example,

that the characters in 1d reps of an element generating a Zn must be nth roots

of unity. More generally, if gn = 1, then DR(g)n = 1, so all of the eigenvalues of

DR(g) are nth roots of unity, so χR(g) = trDR(g) is the sum of these nth roots

of unity17. In the special case where R is one-dimensional, there is just one term

in the sum.

17Incidentally, this shows that every entry in the character table for a finite group is a sum of (finite)

roots of unity and hence an algebraic integer.
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So x ∈ {1, ω, ω2} But column orthogonality with the trivial representation forbids

x = ω or ω2, since none of the other conjugacy classes can cancel this contribution.

So x = 1.

The same argument says y ∈ {±1,±i}, but by column orthogonality with the

first column, y can only be ±1. Therefore

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 a

(12)(34) = Z2 3 1 b

(123) = Z3 8 1 1

(1234) = Z4 6 1 ±1

4. Column orthonormality of 1′ with itself then says 12 + 6|a|2 + 3|b|2 + 8 + 6 = 24,

from which we conclude |a| = |b| = 1. We already knew a, b ∈ {±1} since those

conjugacy class elements generate Z2 subgroups. Column orthogonality between

the first two columns gives

1 + 6a+ 3b+ 8± 6 = 0

which is only solved by b = 1, a = −1, y = −1. Therefore

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 a b c

(12)(34) = Z2 3 1 1

(123) = Z3 8 1 1

(1234) = Z4 6 1 −1 d e f

5. Row orthonormality for the second row says 12 +(−1)2 +|a|2 +|b|2 +|c|2 = 24/6 =

4, so |a|2 + |b|2 + |c|2 = 2. Row orthogonality between the first and second rows

says 2a+3b+3c = 0. The same arguments for the last row say |d|2+|e|2+|f |2 = 0

and 2d+ 3e+ 3f = 0 and in addition 2 + a?d+ b?e+ c?f = 0. Hang on a second:

why am I bothering to write complex conjugates here? Since every permutation

is conjugate in Sn to its inverse (it has the same cycle structure), the characters

are all real.

At this point, let’s guess that these objects are not only real but integers18. Then

solution of these equations is (a, b, c) = (0, 1,−1) and (d, e, f) = (0,−1, 1). (We

18This guess will turn out to work here, but the characters need not be integers. We already have

seen examples where they are nth roots of unity. More generally they are always algebraic integers –

roots of polynomials with integer coefficients. We will give a proof of this statement around equation

(2.26).
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could have switched the two but that just amounts to a relabelling of 3 and 3′,

which we haven’t defined yet in any other way.) There might be others, but let’s

try it and see what happens.

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 0 1 −1

(12)(34) = Z2 3 1 1 l m n

(123) = Z3 8 1 1 g h i

(1234) = Z4 6 1 −1 0 −1 1

6. Row orthogonality between the unknown rows and the last row gives 1−1−h+i =

0, 1− 1−m+ n = 0, so h = i,m = n

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 0 1 −1

(12)(34) = Z2 3 1 1 l m m

(123) = Z3 8 1 1 g h h

(1234) = Z4 6 1 −1 0 −1 1

7. Orthonormality for the 4th row says 12 +12 +g2 +2h2 = 24/8 = 3, which requires

g2 +2h2 = 1. The only integer solution is h = 0, g = ±1, so let’s try that. r1 ⊥ r4

then requires 2 + 2g = 0 so g = −1. r3 ⊥ r4 then requires 2 + gl = 0 so l = 2.

r1 ⊥ r3 then requires 2 + 4 + 6m = 0 so m = −1.

The final result is:

S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 0 1 −1

(12)(34) = Z2 3 1 1 2 −1 −1

(123) = Z3 8 1 1 −1 0 0

(1234) = Z4 6 1 −1 0 −1 1

In the discussion above, we imagine we are given a group (say a presentation of

it, or some other definition) and from that we can determine its character table. An

interesting question is whether we can figure out all possible character tables without

starting from the information of the list of all possible groups! Such a method is called

‘bootstrap’: the idea is that we impose just essential consistency conditions on the
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thing we want to find and try to carve out the space of allowed values of the thing.

This strategy has been very successful in various areas of physics, such as the study

of scattering amplitudes, of conformal field theory, of topological phases of matter.

Here, for each N , we would like to find N + N2 numbers (nα ∈ Z+ and χαa ∈ C, with

a = 1..N, α = 1..N) satisfying the 2N2 conditions (2.17) and (2.18). Some questions:

Is the fact that nα||G| for each α automatic from this input, or should we impose that

separately? Is the fact that χαa is an algebraic integer automatic from this input?

Cube example. Finally we return to the motivating example at the beginning of

the notes – the tight-binding model on the vertices of the cube. The group of rotations

that map the cube to itself is called O (for octahedron). Why octahedron? Put a vertex

in the center of each of the six faces of the cube, and draw edges between vertices in

pairs of faces that share an edge. Put a face for every vertex of the cube. Voila, an

octahedron. The cube and the octahedron are dual under this operation that exchanges

p-cells of one with (D− p)-cells of the other. (It is an avatar of Poincaré duality.) For

our purposes here, the important point is that the cube and the octahedron share the

same symmetry group.

But what is the group, O? Here is an inventory of the elements, besides the identity:

• Draw a line through the centers of two opposite faces. There is a Z4 subgroup of

π/2 rotations fixing this line. Since there are 3 choices of pairs of opposite faces,

this gives (4− 1) · · · 3 = 9 elements. There are 6 order-4 elements and 3 order-2

elements. Each of these fix 2 faces.

•

Draw a line from a vertex to the farthest vertex (this is called a

‘large diagonal’). There is a Z3 subgroup of 2π/3 rotations fixing this

line. There are 4 pairs of opposite vertices, so this gives (3−1) ·4 = 8

elements. These fix no faces. To visualize better the order-3 elements,

consider the cube viewed from a large diagonal, as at right.

• Draw a line from the midpoint of an edge to the midpoint of the farthest parallel

edge. There is a Z2 subgroup of π rotations fixing this line. There are 2 pairs

of opposite edges in each of 3 directions, so this gives (2 − 1) · 6 = 6 elements.

These fix no faces.

Altogether we find 1 + 9 + 8 + 6 = 24 elements. Different choices of faces, vertex and

edge in the above list produce elements that are conjugate to each other.
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Since 24 = 4! we might guess that this group is isomor-

phic to S4. What are the four things being permuted? The

large diagonals of the cube. The groups of elements above

correspond respectively to the conjugacy classes (1234) and

(12)(34) together (order 4 and order 2), (123) (order 3) and

(12) (order 2). (To verify that the π rotation about the line

between the midpoints of opposite edges indeed exchanges

two of the four long diagonals I had to play with a 6-sided

die for a while.)

O = S4 nC 1 1′ 2 3 3′

(1) = · 1 1 1 2 3 3

(12) = Z2 6 1 −1 0 1 −1

(12)(34) = Z2 3 1 1 2 −1 −1

(123) = Z3 8 1 1 −1 0 0

(1234) = Z4 6 1 −1 0 −1 1

Given the above inventory of the elements, it is not hard to compute the characters

of this 6-dimensional representation coming from the action on the faces of the cube.

Again we count fixed points:

χΓF


(1)

(12)

(12)(34)

(123)

(1234)

 ≡


χΓF ((1))

χΓF ((12))

χΓF ((12)(34))

χΓF ((123))

χΓF ((1234))

 =


6

0

2

0

2

 !
= Cm.

[End of Lecture 7]

The last equation specifies the multiplicities mΓ
a of each irrep in this reducible

representation, and C is the character table regarded as a 5× 5 matrix. We conclude

m = C−1


6

0

2

0

2

 =
1

24


1 6 3 8 6

1 −6 3 8 −6

2 0 6 −8 0

3 6 −3 0 −6

3 −6 −3 0 6




6

0

2

0

2

 =


1

0

1

0

1

 ,

that is, ΓF = 1⊕ 2⊕ 3′. Notice that the dimensions add up correctly. A less elegant

way to think about the step where we took the inverse of the character table is that
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we solved the equation
6

0

2

0

2

 = m1


1

1

1

1

1

+m1′


1

−1

1

1

−1

+m2


2

0

2

−1

0

+m3


3

1

−1

0

−1

+m3′


3

−1

−1

0

1

 .

On the homework, you can do the case where we act on the faces of the octagon (or

vertices of the cube).

This does not quite answer the problem stated at the beginning of the class. To

answer that question (e.g. in the incarnation: starting with an initial set of numbers on

the faces of the cube, if at each time-step we replace each temperature by the average

of its four neighbors, what is the temperature after t steps and what is the error in the

estimate?), we must know not only the degeneracies but also the eigenvalues.

We know one eigenvector: which functions on the faces transform in the trivial

representation? Ones that are uniform. This state |u〉 = 1√
6

∑
j |j〉 has eigenvalue 1

under H = 1
4

∑
〈ij〉 |i〉〈j|. (I normalize H in this way so that its operation corresponds

to replacing the value on a face with the average of its neighbors.)

Since H is hermitian, all its other eigenvectors
∑

j ψj |j〉 have to be orthogonal

to this one. This means that they have to satisfy
∑

j ψj = 0. With a small further

geometrical insight, we can now solve the whole problem: consider functions that are

the same on opposite faces. There is a 2-dimensional space of such functions that are

orthogonal to the uniform function (there are 3 sets of opposite faces, and we require

a+ b+ c = 0), this is the 2. Finally, there is a 3-dimensional space of functions where

opposite faces have opposite values – this is the 3.

What happens if we act with H on a state in the 3? A face with value b has

neighbors with values a,−a, c,−c, so the final value is a− a+ c− c = 0. H annihilates

a state in the 3.

Acting on a state in the 2, a face labelled b turns into a+a+c+c
4

= 1
2
(a + c) = −1

2
b,

where I used the a+ b+ c = 0 constraint.

Thus: the eigenvalues are: 1, 0, 0, 0,−1
2
,−1

2
. So now we can answer the question:

what is the final value? First write the H operator in its spectral representation

H =
∑

λ λPλ where Pλ is the projector onto the subspace with eigenvalue λ. Then

repeated action of H on an initial state |f0〉 =
∑

j f0(j) |j〉 gives

|fn〉 = Hn |f0〉 =
∑
λ

λnPλ |f0〉 .

50



Since 1n � 0n,
(
−1

2

)n
, this rapidly approaches P1 |f0〉 = |u〉〈u|f0〉 = 1

6

∑
k f0(k)

∑
j |j〉.

The numbers all approach the mean of the initial numbers. What about the rate of

approach to the final configuration? The 3 doesn’t contribute at all after the initial

step, and after t steps, the contribution of the 2 is suppressed by a factor of 2−t.

You might not be entirely satisfied by the use of an extra piece of geometric insight

here. It is actually possible to answer the question completely systematically with

a little bit more work. In particular, using only the characters and the reducible

representation matrices, we can construct projection operators onto the irreps (actually

onto the subspace composed of all copies of a given irrep).

Reflections. Actually, the symmetry group of an abstract, undecorated cube is

larger than O. O just contains the rotations. If we also allow reflections, we add

one more generator I’ll call P , which we can describe in terms of its action on the

coordinates of the space in which the cube is embedded with its center at the origin as

D(P ) : (x, y, z) → (−x,−y,−z). This is not a rotation because detD(P ) = −1. (P

stands for ‘parity’.)

If we allow such reflections, the symmetry group is then O×Z2. This is a common

situation in crystallography, and so it is worth recording the character table forG×Z2 =

G×〈P |P 2 = e〉. Each conjugacy class of G produces two conjugacy classes, C and CP ,

and each irrep of G produces two irreps: one which is even under P and one which is

odd. 19

G× Z2 R
+
a R−a

Cα χaα χaα
PCα χaα −χaα

(2.19)

19Digression and diatribe on names and crystallography. In the context of crystallography,

instead of + and − these are labelled with subscripts g and u, which are the first letters of the German

words ‘gerade’ and ‘ungerade’ (for ‘even’ and ‘odd’). What a waste of two perfectly good letters. It

is almost as bad as s, p, d, f... in spectroscopy. In that context, O× Z2 is called Oh.

While I’m at it, I have to complain some more about the crystallographers in the guise of teaching

you some of their notation. I’ve said that the symmetry group of the regular n-gon was called Dn,

the dihedral group. There is a large group of people who will instead call it Cnv. These people (some

of them are even my friends) also use Cn to denote Zn.
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What is an object that has O symmetry but not O × Z2

symmetry? At right is a picture of such an object which I

got from Dan Arovas, who got it from here. I guess it can be

called a ‘chiral cube,’ since it has a handedness.

2.3 Projection operators

The characters give a means to find not only how many of a given irrep appear in a

representation, but actual projectors into those irreps. Here it is: given a reducible

representation with representation operators D,

Pa =
da
|G|
∑
g∈G

χa(g)?D(g). (2.20)

This operator projects onto Ra ⊕Ra ⊕ · · ·︸ ︷︷ ︸
ma times

. Note that Pa = P †a . These projectors are

orthogonal PaPb = δabPa by virtue of the GOT (see the homework). This formula has

a strong air of plausibility about it, but next we discuss some technology that makes

it inevitable.

Group algebra. The regular representation actually has more structure. Let’s

denote the basis vectors by gi, so a general element of the vector space is x =
∑|G|

i=1 xigi,

xi ∈ C. Define a multiplication rule on this space by

gx =

|G|∑
i=1

xiggi,

where ggi is another basis element. This is called the group algebra, C[G]. Algebra

just means a group where you can add as well as multiply (and multiply by scalars),

or a vector space where two vectors can also be multiplied to give another vector.

Here’s a reason this is useful. Any representation D(g) of the group is also a repre-

sentation of the group algebra. (A representation of an algebra just means an algebra

homomorphism – a map which plays nicely with all the structure of the algebra.)

D (x1g1 + x2g2 + · · ·) = x1D(g1) + x2D(g2) + · · · . (2.21)
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Now consider the following elements of the group algebra:

eaij =
da
|G|
∑
g∈G

(
Da
ij(g)

)?
g,

where Da
ij(g) are the matrix elements for irrep a. What happens when we multiply by

another element? I claim that

heaij =
da∑
k=1

(
Da(h)T

)
ik

eakj (2.22)

where
(
MT

)
ik
≡Mki is the transpose operation. The steps involved are: relabel sum-

mation variables g′ ≡ hg, just as in the character-table-is-square proof (in fact this con-

struction is also a proof of that fact) and use the fact that Da(h−1g) = Da(h−1)Da(g)

is a representation. Then (2.22) implies (using the Grand Orthogonality Fact) that

eaije
b
kl = δabδjke

a
il. (2.23)

This is the multiplication rule for the set of matrices eαβ with zeros everywhere ex-

cept for a 1 in the αβth entry. They form a basis for the algebra (since there are∑
irreps,a dimR2

a = |G| of them and they are orthonormal and hence linearly inde-

pendent), so an arbitrary element is g =
∑

aij

(
Da(g)T

)
ij

eaij (as you can check by

expanding with arbitrary coefficients g =
∑

aij caij(g)eaij, multiplying the BHS by ebkl
and solving for the coefficients caij(g) using (2.23) and (2.22)). To see the projection

property, consider an arbitrary vector |v〉 in the carrier space, and construct

|v, ika〉 ≡ D̂(eaik) |v〉

(I am using (2.21) to get a linear operator on V from a group algebra element). In the

given rep, this transforms into

D̂(g) |v, ika〉 = D̂(g)D̂(eaik) |v〉 = D̂(geaik) |v〉
(2.22)
= D̂(eajk) |v〉Da(g)ji = |v, jka〉Da(g)ji.

So if it isn’t zero, |v, ika〉 transforms in the rep Ra.

Finally, the projectors onto irreps are

Pa =
∑
i

eaii =
da
|G|
∑
g∈G

χa(g)?g.

They satisfy PaPb = δabPa (using (2.23)), and
∑

a Pa = e, the identity element of

the group algebra C[G] (straight from the definition using row orthogonality). Acting

in a given reducible representation using (2.21), this becomes the projector we wrote
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above. Notice that this object can be constructed just from the character table, without

knowing explicitly the matrices for the irreps (unlike the eaij) – we only need to know

the matrices for the representation we’re decomposing.

Example. So in the example of the equilateral triangle, using the matrices in (2.2),

P1 =
1

6

(∑
g

D(g)

)
=

1

3

1 1 1

1 1 1

1 1 1


P1′ =

1

6
(D(e) + (D(123) +D(321))− (D(12) +D(23) +D(31))) = 0

P2 =
2

6
(2D(e)− (D(123) +D(321))) =

1

3

 2 −1 −1

−1 2 −1

−1 −1 2

 .

So you can see that P1 = |u〉〈u|, the projector onto the ones vector. These projectors

are orthogonal PaPb = δabPa. Once we have the projectors, it’s easy to figure out the

eigenvalues of a matrix that commutes with the symmetry (as long as the multiplicities

ma are not too large). The tight-binding hamiltonian on the equilateral triangle is

H = −t
3∑
i=1

(|i〉〈i+ 1|+ |i+ 1〉〈i|)

where the arguments of the kets are understood modulo 3. In fact this operator has a

lot in common with P2:

H = tP2 − 2tP1.

Its eigenvectors are therefore the two basis elements of the 2 plus an orthonormal

vector, which is the ones vector. The eigenvalues and eigenvectors are therefore:

2 has energy t, 1 has energy − 2t.

We conclude that the first excited state is doubly degenerate, and the gap above the

groundstate is 3t. No matrices were (explicitly) diagonalized in the course of this

calculation. [End of Lecture 8]
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Classical mechanics examples. [Zee III.2, Arovas §2.7, Georgi, 2d edition, §1.16,

1.17] Representation theory is more obviously useful in quantum mechanics than in

classical mechanics, since the former is basically just linear algebra (!), whereas the

latter is a horrible monstrosity that can involve lots of non-linear things. This last

statement is not true if we restrict our attention to small oscillations about equilibrium.

For a collection of N particles (say equal mass for simplicity) in d dimensions, with

xia is the deviation from equilibrium of the ath particle in the ith direction, Newton’s

equation is

ẍia = −
∑
bj

H ia,jbxjb (2.24)

where H is a real symmetric matrix since it comes from the second derivatives of the

potential. We can regard A ≡ ia as a multi-index. Plugging in xA(t) = xAeiωt (2.24) is

HABxB = ω2xA, and we want to find the normal modes xA and their spectrum – the

eigenvectors and eigenvalues of the HAB.

If the equilibrium configuration and H have enough symmetry, G, we can do this

without even writing down the matrix HAB, never mind diagonalizing it. xA lives in

a dN -dimensional representation R of G. Decomposing R = ⊕aV R
a ⊗ Ra into irreps

that occur mR
a = dimV R

a times reduces this to a problem of diagonalizing a collection

of ma ×ma matrices.

Warmup: d = 1, N = 2. Here G = S2, no matter where the

equilibrium is. The representation on (x1, x2) is D(e) =

(
1

1

)
, D(12) =

(
0 1

1 0

)
. The

character is χ

(
e

(12)

)
=

(
2

0

)
, since the swap fixes no one. The character table of

S2 = Z2 is

S2 nC 1 1′

(1) · 1 1 1

(12) Z2 1 1 −1

. Therefore R = 1⊕ 1′. If the potential is just a function

of the particle separation, one eigenvector is obvious: the uniform vector is a singlet,

with eigenvalue 0, since it doesn’t stretch the springs – this is called a zeromode. The

other eigenvector must be orthogonal to this, so it is

(
x

−x

)
, with eigenvalue 2.
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Let’s do d = 2, N = 3 with the equilibrium configuration an

equilateral triangle, like a symmetrical triatomic molecule.

This preserves G = D3 = S3. It is a dN = 6-dimensional

representation with character

χ6

 e

(12)

(123)

 =

6

0

0

 .

This is not quite a permutation representation, but it is still possible to compute the

trace of the operators by counting. The identity fixes all 6 coordinates, hence the

6. The rotation operation which maps the picture back to itself involves a rotation

by 2π/3 combined with a relabelling (3 → 1 → 2). This fixes noone. Similarly, the

reflection operation also involves a relabelling and fixes no one.

There is another useful way to think about this 6d rep: it is 6 = 2 ⊗ 3, where 3

is the fundamental (reducible) rep of S3, and 2 is the irrep. Why is this? Well, this

picture actually provides a construction of the 2 of S3: it comes from the action of S3

on a vector

(
x

y

)
by 2π/3 rotations and reflections of the plane. The 6d rep above is

the product of this with the 3 because of the relabelling required to put the particles

back where they started20.

You can see from the character that it’s actually the regular rep of S3. Using the

inverse of the character table, we extract (χ−1)
α
a χ6(α) =

1

1

2


a

, so 6 = 1⊕1′⊕2⊕2.

(A rep of dim da appears da times in the regular rep.) So in this example, in principle

we actually have to diagonalize a 2× 2 matrix acting on the two 2s.

Actually, we don’t. If the potential is really just a function of the particle sepa-

20I have to admit that I find this confusing. There are two other possibilities for the nature of

the 6d rep here. One possibility is that we don’t act on the labels at all, in which case the rep is

(1⊕ 1⊕ 1)⊗ 2 = 2⊕ 2⊕ 2 with character 3χ2 =

 6

0

−3

.

The third possibility is the one discussed in Tony Zee’s book, which gives the charac-

ter

6

2

0

 = χ−1
S3

2

0

2

. I believe this answer arises because he takes the reflection D(23)

to act as (x1, y1, x2, y2, x3, y3) 7→ (x1, y1, x3, y3, x2, y2) rather than (x1, y1, x2, y2, x3, y3) 7→
(−x1, y1,−x3, y3,−x2, y2), the latter of which is indeed traceless. Notice that the latter operation

fixes the equilibrium position of particle 1, but not the general configuration which has x1 6= 0.

These answers are different! I believe the one in the text above is the correct one.
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rations, there are some zeromodes: translating everyone in x or y doesn’t stretch the

springs. This is



1

0

1

0

1

0


,



0

1

0

1

0

1


. Similarly, if we rotate all three particles about their

center of mass, the springs don’t stretch. These three modes account respectively for

one of the 2s and for one of the singlets.

The other singlet is not a zeromode, but is quite understandable: it is the breathing

mode, where all the particles move radially away from their center of mass. Since H is

ral and symmetric, the final 2 is determined by the fact that it has to be orthonormal

to these other 4 modes.

The little arrows I drew in this figure were all calculated just using group theory,

using (2.20). We need the explicit matrix representation of the irreps. Fortunately,

using 6 = 2⊗ 3, we have (D6(g))im,jn = (D3(g))i,j (D2(g))m,n . The matrices for the 3

are in (2.2). The matrices for the 2 are just 2π/3 rotations and reflections21.

Putting this together (I recommend mathematica), we find, just by adding, that P 1

is a rank-one matrix whose image is spanned by the vector (1/2,−
√

3/6,−1/2,−
√

3/6, 0, 1/
√

3)

(the image of the projector can be found by acting on an arbitrary vector). (Note that

the rank of a projector is just its trace, since its eigenvalues are all zero or one.) These

three pairs of numbers are the directions of the three arrows in the bottom left mode

labelled 1.

Similarly, P 1′ is a rank one projection matrix whose image describes the picture

labelled 1′. P 2 is a rank-4 projector. The projector for the multiplet of zeromodes is

21If you insist: the generators are represented by D2(23) =

(
−1 0

0 1

)
and D2(123) =

(
c s

−s c

)
, with

c = cos(2π/3) = −1/2, s = sin(2π/3) =
√

3/2.
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Tx +Ty = 1
3
|u〉〈u| ⊗

(
1 0

0 0

)
+ |u〉〈u| ⊗

(
0 0

0 1

)
= |u〉〈u| ⊗ 12 where |u〉 is the (normalized)

ones vector. The projector on the nontrivial bit is then P 2 − Tx − Ty, whose image is

two dimensional and spanned by the bottom right pictures (pick a random vector, act

on it with P 2−Tx−Ty, and normalize it; then pick another one and do Gram-Schmidt

to get a second orthogonal basis vector).

Here are the normal modes for the case with 4 atoms in a square, made using the

same code (basically just changing some 3’s to 4’s):

Comment on accidental degeneracy. Back to QM on a Hilbert space H, carry-

ing a representation D of G. If [H,D(g)] = 0,∀g ∈ G, the spectrum of H decomposes

into multiplets of G (this just means irreps), H = span{|a, µ, `〉}. Here there are three

kinds of indices: a labels an irrep of G, µ = 1..da labels states within that irrep, and

finally ` = 1..ma labels different invariant subspaces transforming under the same rep

Ra. In this basis

〈a, µ, `|H |a′, µ′, `′〉 = δaa′δµµ′H
a
``′ .

(This is a version of the Wigner-Eckhart theorem.) The matrices Ha are ma × ma

and contain any information about H that goes beyond group theory of G (e.g. if G is

trivial, it is all of H). Note that nothing about group theory guarantees that the basis

|`〉 is orthonormal – that’s up to you.

Now: when can there be degeneracies between multiplets? Collisions between levels

of a given Ha – between copies of the same irrep – require tuning 3 parameters in Ha
``′

and therefore basically doesn’t happen. This is just ordinary level-repulsion. Here’s

why: focus on the two levels that might collide and forget about the rest. The general

hermitian 2 × 2 matrix is then h2 = d01 + ~d · ~σ with spectrum d0 ±
√
|~d|2. The two

levels only collide if 0 = dx = dy = dz – three real conditions on the parameters.

However, if for some reason someone forbids the off-diagonal terms in h2, then fewer

conditions are required. How could this happen? Suppose there is a symmetry, say
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we know [h2, σ
z] = 0. Then this requires dy = dz = 0, and we only need to tune one

parameter dx to get a collision.

Back to the general case, a collision of levels of Ha and Hb 6=a can happen at codi-

mension 1 in the space of hamiltonians. G-symmetry forbids the off-diagonal terms

that would mix the levels.
For example, consider a tight-binding model on the vertices

of a triangular prism, whose cross-section is an equilateral

triangle. This has D3 symmetry (and actually a bit more be-

cause there’s a also a reflection exchanging the two triangles –

this group is called D3h = D3×Z2 by the crystallographers).

The Hilbert space transforms in the 3⊕3 = 2⊕1⊕2⊕1 of

D3. The character for this 6d representation of D3h is a 6 and

five 0s – the first three entries are just the character of the 3

of D3, and then the elements that permute the two triangles

have no fixed points. You can see from (2.19) that this means

that the decomposition into irreps of D3h is 2+⊕1+⊕2−⊕1−
(using the notation of (2.19) for representations of D3×Z2).

Call t1 the hopping along the triangles and t0 the hopping

between the triangles. I claim that by tuning one parameter

t1/t0 to 3
2

then a 1+ collides with a 2− to form what is some-

times called a ‘supermultiplet’ (this name should be avoided

– everything in physics is super-something). (For more detail

of this example, see Dan Arovas’ notes page 83.)

Algebra of classes. Here is another application of the group algebra, which I’ll

denote C[G] here. Consider the following object in the group algebra, associated with

a conjugacy class Cα of size nα:

Cα ≡
1

nα

∑
g∈Cα

g.

This object commutes with all the elements of the group algebra:

g−1Cαg = Cα

since conjugation by g takes each element of Cα to another one. The set of elements

of the group algebra that commute with all the others is called the center of the group

algebra, Z(C[G]). It is a subalgebra and a subgroup. An arbitrary element in the
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center of the group algebra can be written22 in terms of the Cα:

x =
∑
α

xαCα.

But consider what happens if we multiply two of these objects

CαCβ = CβCα ∈ Z(C[G])

– we get another element of the center of the group algebra, which can itself be expanded

as

CαCβ =
∑
γ

cγαβCγ.

cγαβ = cγβα. This product on the conjugacy classes is called the algebra of classes. It is

a remarkable thing.

Notice that earlier we found a product on the irreps (by taking tensor products and

decomposing) and now we’ve found a product on the conjugacy classes. There are some

very strong relations between irreps and conjugacy classes. In particular, the character

table is an invertible matrix taking one space to the other. Might these products be

related?

Since the linear operators Cα all commute, the matrices (Cα)γ β = cγαβ all commute

with each other and can be simultaneously diagonalized. Can you guess who their

eigenvalues and eigenvectors are?

In fact,

CαP
a = λaαP

a (2.26)

where Pa is the projector onto irrep a, Pa = da
|G|
∑

g∈G (χa(g))? g. And the eigenvalues

are proportional to the characters: λaα = χaα
χae

where χae = da is the character of the

identity element. [End of Lecture 9]

If you know the algebra of classes cγαβ, you can use this fact (2.26) to determine the

character table, just by diagonalizing the matrices, and using
∑

α nα|χaα|2 = |G| and

22To see why, consider such an arbitrary element of the center of the group algebra. It must satisfy

x =
∑
i

xigi
!
= h−1xh =

∑
i

xih
−1gih, ∀h ∈ G. (2.25)

The point is that in order for x to be in the center, the xi must be constant on conjugacy classes.

By definition: h−1gih is some other element gj of the same conjugacy class with gi and we must have

xi = xj in order to satisfy (2.25). And every element within each conjugacy class can be obtained

from a given element by conjugating with some h. Thanks to Brian Tran and Ahmed Akhtar for

providing the proof.
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χae > 0 to fix the normalization. (Starting from scratch, this may not be the best way

to go.)

Characters are algebraic integers. The equation (2.26) implies that any charac-

ter of a finite group element is an algebraic integer: the entries of the matrices (Cα)γ β
are rational numbers (actually the denominators only come from the factor of 1/nα
in the definition of the Cα), and (after rationalizing denominators) the characteristic

polynomial for such a matrix has integer coefficients. The eigenvalues χaα
χae

are the roots

of this polynomial and hence are algebraic integers. Since χae = da is an integer, this

means χaα is an algebraic integer.

Fusion of classes and fusion of irreps. So, is the algebra of classes the same as

the (semi-)ring23 of irreps? The key to answering this question is called the Verlinde

formula (in a slightly broader context). Here’s the idea. In terms of the characters,

the fusion rules for irreps are:

χaχb = mc
abχc. (2.27)

Since χaχb = χbχa the matrices (ma)b
c all commute mamb = mbma and can be simul-

taneously diagonalized:

ma = SΛaS
−1, or with indices, (ma)b

c = Sαb (Λa)
β
α (S−1)cβ, with (Λa)

β
α = λβaδ

β
α. (2.28)

But now we use the fact that m0 = 1, where 0 denotes the trivial representation. This

says S = m0S, or

Sαa = mc
a0S

α
c

(2.28)
=
∑
β

Sβ0 λ
β
a (S−1)cβS

α
c︸ ︷︷ ︸

=δαβ

= Sα0 λ
α
a

from which we conclude a relation between the eigenvalues and eigenvectors of ma:

λαa =
Sαa
Sα0
. (2.29)

Plugging this back into (2.28) gives

mc
ab =

∑
α

SαaS
α
b (S−1)cα
Sα0

.

Now who is the matrix that diagonalizes the fusion coefficients? Look at (2.27)

again, and rewrite it as

(ma)b
cχc(α) = χa(α)χb(α).

23Some words about terminology that you should ignore: What’s the difference between a ring and

an algebra? (This sounds like the setup to a bad joke.) The latter allows us to multiply by elements

of an arbitrary field (here C). Why do I say ‘semi-ring’? A ring is supposed to have inverses. But the

additive inverse of χa is −χa, which is not the character of any actual representation. It is sometimes

called the character of a ‘virtual representation’.
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This says that the eigenvalues of the ma are the characters χαa – and so are the eigen-

vectors! Here the conjugacy class α is the label on the eigenvector and eigenvalue.

(Personally, I find this equation so simple as to be confusing.) So we have proved that

the fusion coefficients are:

mc
ab =

∑
α

χαaχ
α
b (χ−1)cα
χα0

. (2.30)

Here χα0 = trtrivial repD(α) = 1. This is a special case of the Verlinde formula, which

is usually regarded as a statement about conformal field theory. These manipulations

work for any compact group. For more on this point of view, see here.

By the same sequence of steps, a similar formula to (2.30) holds for cγαβ. 24 More-

over, we’ve proved that the structure constants for the algebra of classes cγαβ and for

the ring of irreps mc
ab have the same eigenvalues (and hence, by (2.29), eigenvectors).

So at least in this sense, they are the same.

24Here is a more direct proof of that formula. Consider the object Λαa ≡ 1
nα

∑
g∈Cα D

a(g), where

Da(g) is an irrep and Cα is a conjugacy class. Just like in our argument that the character table is

square, this object commutes with all of the representation matrices Da(h)Λαa = ΛαaD
a(h),∀h ∈ G.

Here’s why: Λαa is just the object I called S in that argument made from the class function fα(g) that

is only nonzero on the character α: fα(g) =

{
1, g ∈ Cα,
0, else

. Or, explicitly:

Da(h)Λαa =
1

nα

∑
g∈Cα

Da(hg) =
1

nα

∑
g′=h−1gh

f(hg′h−1)Da(g′h) =
1

nα

∑
g′

f(g)Da(g′)Da(h) = ΛαaD
a(h).

So by Schur’s lemma, it is

Λαa = λαa1a

where 1a is the identity operator on the carrier space of irrep a. Taking the trace of the BHS, λαa =
χαa
da

,

so

Λαa =
χαa
da

1a. (2.31)

Now the class algebra CαCβ = cγαβCγ implies that for each a, ΛαaΛβa = cγαβΛγa. But then (2.31)

implies λαaλ
β
a = cγαβλ

γ
a. Therefore for all a, χαaχ

β
a/da = cγαβχ

γ
a.

Now we multiply both sides by χ̄δa and sum over a, using the fact (row orthogonality) that∑
a χ

α
a χ̄

β
a = δαβ |G|nα to get

cγαβ =
∑
a

nγ
da|G|

χαaχ
β
a χ̄

γ
a.

By the same logic, a more direct proof of the formula for mc
ab follows by starting with mc

abχ
α
c =

χαaχ
α
b multiplying both sides by nαχ̄

α
d (where χ̄a ≡ χā = χ?a), and summing over α using column

orthogonality
∑
α nαχ̄

α
dχ

α
c = |G|δdc to get

mc
ab =

∑
α

nα
|G|

χαaχ
α
b χ̄

α
c .

This also avoids the need to introduce χ−1. But they are related by the fact that
√

nα
|G|χ

α
a is unitary.
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2.4 Real versus complex representations

[Zee §II.4, Stone-Goldbart problem 14.24] Given a representation R of G with linear

operators D(g), let R̄ be the representation made from D(g)?. You can check that

this is also a representation25. Its characters are χR̄(g) = χR(g)?. In particle physics,

if we have a particle in representation R, then R̄ is the representation in which the

antiparticle transforms.

A representation R is not complex if D? ∼ D (that is, if ∃ a similarity transformation

S such that D(g)? = SD(g)S−1 for all g ∈ G). If, in addition, there exists a basis where

D(g)ij ∈ R,∀g ∈ G, then the representation D is called real. A representation which

is not complex but not real is called pseudo-real. For example (with apologies for the

sudden appearance of a continuous group), consider the two dimensional (defining)

representation of SU(2), in which an arbitrary element is represented by U =

(
a −b?
b a?

)
with |a|2 + |b|2 = 1. Without the condition on the norms, UU † = 1 is unitary (in U(2)),

and detU = |a|2 + |b|2 = 1 is the condition to be in SU(2) (“special unitary”). Notice

that there are three real parameters specifying an element of SU(2). The conjugate

representation of the 2 then has representation matrices

U? =

(
a? −b
b? a

)
= ε−1

(
a −b?
b a?

)
ε, ε ≡

(
0 −1

1 0

)
which is a similarity transformation showing that 2 ∼ 2. But: there is no basis with

Uij ∈ R, because a 2×2 real unitary matrix with determinant 1 has only one parameter

(for real a, b, a2 + b2 = 1 describes a circle). (For an example of a finite group with a

pseudoreal rep, consider the subgroup of π-rotations in SU(2). The 2d rep is still 2d.)

If D? ∼ D then χR̄(g) = χR(g)? = χR(g), the characters are real. So if any

character of R is a complex number, then R is a complex representation26. However,

a representation with χR = χR̄ could still be not real, i.e. it could be pseudoreal.

How to tell? For everything that follows, we assume R is a unitary rep. Suppose

we have two objects x, y in the representation R (think of them as column vectors),

x 7→ D(g)x, y 7→ D(g)y.

Claim: ∃ a G-invariant bilinear yTSx⇔ R is not complex.

25Notice that D(g)† would not make a representation, since D(g)†D(h)† = (D(h)D(g))† = D(hg)†

– they multiply in the wrong order. Thanks to Ahmed Akhtar for reminding me of this.
26The converse is also true: if χR̄(g) = χR(g)∀g ∈ G then R ∼ R̄, i.e. R is pseudoreal. This is

because the number of times the rep R appears in the decomposition of R̄ is 〈χR̄, χR〉 = 〈χR, χR〉. So

it is the same as R.
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⇐ : If D? = SD(g)S−1 then D(g)T = SD(g)†S−1, so yTSx 7→ yTD(g)TSD(g)x =

yTSD(g)†S−1SD(g)x = yTSx.

⇒ : If ∃S such that yTSx 7→ yTD(g)TSD(g)x
!

= yTSx, ∀x, y then D(g)TSD(g) =

S ⇔ SD(g)−1S−1 = (D(g)T )−1 = D(g)?, so the representation is not complex.

Another way to state the claim is: If the trivial rep appears in the decomposition

of R⊗R, then R is not complex.

This claim also explains one reason why we might care. Suppose we are in the situ-

ation described in the introduction, where we have a field theory of a certain collection

of fields φ with a certain collection of symmetries G (assume discrete, for simplicity). A

central question in this situation is: are the fields massive or massless? In the context

of particle physics this means the corresponding particles are massive or massless and

you can see why we care about that. In a condensed matter context, this determines

whether the correlation length is finite. Such terms are constrained by the fact that

the fields φ transform in some representation R of G.

Suppose we are in the situation where the fields describe particles which are their

own antiparticles, where R = R̄. This could be the case for neutrinos. A sufficient

condition for such fields to be massive (in the absence of some tuning) is then if the

symmetries allow us to add a term of the form φTφ to the Lagrangian density (i.e. add∫
dDxφT (x)φ(x) to the action) – the existence of an invariant bilinear S in R⊗R.

To understand more about the nature of our friend S, suppose an irrep D ∼ D?

is not complex. Then SD(g)S−1 = D?(g). Taking transpose of the BHS gives

D(g−1)
unitary

= D(g)† = D(g)?T = (S−1)TD(g)TST . ThereforeD(g−1) = (S−1)TD(g)TST

for all g, including g−1, so

D(g) = (S−1)TD(g−1)TST = (S−1)TSD(g)S−1ST = (S−1ST )−1D(g)S−1ST .

The key point here is that taking inverse twice is doing nothing. Since this is true for all

g, Schur’s lemma implies S−1ST = η1, i.e. ST = ηS. But S = (ST )T = (ηS)T = η2S.

Therefore η = ±1, that is, S is either totally symmetric or totally antisymmetric. I

claim that these two cases are real and pseudoreal, as defined above. That is, if η = 1,

then there is a basis where D(g) is real for all g. Note that an invertible AS matrix is

even dimensional, so the latter case only occurs for even-dimensional reps.

First S ∝ a unitary matrix, i.e. S†S = 1. Here’s why: ∀g, S = D(g)TSD(g) and

S† = D(g)†S†D(g)?. Therefore

S†S = D(g)†S†D(g)?D(g)T︸ ︷︷ ︸
=1

SD(g), ∀g,
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so Schur’s lemma implies S†S ∝ 1. So rescale S so that it’s unitary from now on.

Now, If η = +1 I claim that W ≡
√
S is also unitary and symmetric27. From this

it follows that W−1 = W † = W ? which implies

W 2D(g)W−2 = D(g)? =⇒ WD(g)W−1 = W−1D(g)?W = W ?D(g)?(W−1)? = (WD(g)W−1)?

is real!

D ∼ D? says

SD(g)S−1 = D?(g) = (DT (g))−1 ⇔ DT (g)SD(g) = S, ∀g ∈ G

So, if we were feeling fancy, we could regard the similarity transformation S as a

matrix representation of a G-invariant (invertible) quadratic form. Note that for an

irrep, Schur’s lemma says there can only be one such form, up to scaling: If there were

two, DT (g)S1,2D(g) = S1,2, then for any x ∈ C, (S1 − xS2)D(g) = D?(g)(S1 − xS2),

so S1 − xS2 is an intertwiner between R and R?. But det(S1 − xS2) has a root, λ, so

can’t be an isomorphism and we conclude S1 = λS2.

Frobenius-Schur indicator. For any matrix X of the correct shape and G com-

pact, let SX ≡ 1
|G|
∑

g∈GD
T (g)XD(g). This is G-invariant in the sense that

SX 7→ DT (h)SXD(h) =
1

|G|
∑
g∈G

D(h)TD(g)TXD(g)D(h) = SX , ∀h ∈ G.

So yTSXx is a G-invariant bilinear! According to the claim above, this means SX = 0

if R is complex.

Now choose X = eil where (eil)jk = δijδkl, the matrix with a 1 in the il entry and

0 everywhere else. Then

(Seil)jk =
1

|G|
∑
g

(DT eilD(g))jk =
∑
g

(D(g)T )ji(D(g))lk =
∑
g

D(g)ijD(g)lk

This equation is true for all ijkl (the indices il are implicit on the LHS). Now contract

j = l: ∑
g∈G

D(g)ijD(g)jk =
∑
g∈G

D(g2)ik.

27Here’s why: Take the log: S = eiH . S is unitary means H = H† is hermitian. S is symmetric

means S = ST = eiH
T

means that HT = H + 2πn1, n ∈ Z. But taking the transpose doesn’t

change the diagonal elements, so n must be zero. (Alternatively, take transpose of both sides, to

get H = HT + 2πn1; combining this with the original equation, we conclude that n must be zero

[Thanks to Hongrui Li for this argument].) Then W = eiH/2 is unitary since H is hermitian, and

WT = eiH
T /2 = W .

In the case with η = −1, this doesn’t work: we require S = eiG with GT
?
= G + iπ1, which would

give
√
S
T

= eiπ/2
√
S (if it were even possible to find such a G, which it is not, by the argument

above).
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This is 0 if R is complex. We can make a simpler indicator by taking the trace, which

is
∑

g∈G χ(g2). [End of Lecture 10]

If instead, R is not complex, we must have STX = ηSX :

ST =
1

|G|
∑
g∈G

D(g)TXTD(g) = η
∑
g∈G

D(g)TXD(g).

For our friend X = eil above, this gives

(Seil)jk =
∑
g∈G

(D(g)T )jl︸ ︷︷ ︸
=D(g)lj

D(g)ik = η
∑
g

(D(g)T )ji︸ ︷︷ ︸
=D(g)ij

D(g)lk.

This equation is a huge set of constraints. Contract i = j to get∑
g∈G

D(g2)lk = η
∑
g∈G

χ(g)D(g)lk

and now when we contract l = k we get∑
g∈G

χ(g2) = η
∑
g∈G

χ(g)2.

But using the fact that R is not complex, χR = χ?R, and character orthogonality says

the RHS is |G| since R is an irrep.

Therefore (drumroll), the Frobenius-Schur indicator for an irrep R is

ηR ≡
1

|G|
∑
g∈G

χR(g2) =


0, R complex

1, R real

−1, R pseudoreal

.

Two checks that this makes sense: If [g1] = [g2] (g1 and g2 are in the same conjugacy

class) then [g2
1] = [g2

2]. For the trivial rep, ηR = 1.

The same techniques allow us to answer questions like: How many square roots does

a given group element have? In how many ways can a group element be written as a

product of two squares? How many homomorphisms are there from the trefoil knot

group (the fundamental group of the complement of the trefoil knot, 〈a, b|a2 = b3〉) to

G?

To see the idea of how to do these things, rewrite the FS indicator as

ηa =
1

G

∑
g∈G

χa(g
2) =

1

|G|
∑
h∈G

σ(h)χa(h)

where σ(h) ≡ the number of elements g ∈ G satisfying g2 = h. Now multiply the BHS

by χ?a(h
′), sum over a and use character orthogonality to isolate the desired σ(h).
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2.5 Induced representations

Given a rep DW (h) : W → W of H ⊂ G, we can make a (reducible, in general)

rep of G. The carrier space is W × VG/H , where VG/H ≡ span{|x〉 , x ∈ G/H}, so the

dimension of this induced representation is dimW · |G/H|. Here’s the idea: recall (from

the homework) that G acts on G/H by x = {g1, g2, · · · } 7→ {gg1, gg2, · · · }. Select a

representative ax ∈ G of each x ∈ G/H. Then the action of G on G/H can be written

as gax = agxh, with h ∈ H, where agx is the representative of gx. Here’s the definition

of the rep of G: For h ∈ H, let

D(h) |n, 0〉 ≡ |m, 0〉DW
mn(h). (2.32)

Here 0 means the coset with the identity. This is just the ordinary rep of H, acting

trivially on the other index. For the particular representatives we’ve chosen, let

D(ax) |n, 0〉 ≡ |n, x〉 . (2.33)

Now determine the rest by requiring it to be a rep of G. In practice you can just impose

this demand as needed, but it’s actually possible to find a formula for the action on a

general element:

D(g) |n, x〉 = D(g)D(ax) |n, 0〉 = D(gax) |n, 0〉 = D(agxh) |n, 0〉 (2.34)

= D(agx)D(h) |n, 0〉 = D(agx) |m, 0〉DW (h)mn = |m, gx〉DW (h)mn. (2.35)

You can check that it’s a representation D(g1g2) |n, x〉 !
= D(g1)D(g2) |n, x〉.

A good way to write the action is to describe its action on a general state |f〉 ≡∑
nx fn(x) |n, x〉 as fn(x) 7→ DW

nm(h)fm(g−1x), where h is defined by gax = agxh.

Here’s the simplest possible example: take H = Z2 = 〈σ|σ2 = e〉 ⊂ G = Z4 =

〈τ |τ 4 = e〉 with the inclusion σ = τ 2, and consider the nontrivial rep of Z2, with

D(σ) = −1. The set Z4/Z2 has two elements, which we can label by e, τ , so the

induced rep is two-dimensional, with carrier space span{|e〉 , |τ〉} (we don’t need a

label for the 1d rep of H). Then D(τ) |e〉 = |τ〉 from (2.33). And then D(τ) |τ〉 =

D(τ)D(τ) |e〉 = D(τ 2) |e〉 = D(σ) |e〉 = − |e〉. So in this basis

D(e) =

(
1

1

)
, D(τ) =

(
0 1

−1 0

)
, D(τ 3) =

(
−1

−1

)
, D(τ) =

(
0 −1

1 0

)
.

The character is


2

0

−2

0

 = χ


0

1

0

1

 where χ is the character table for Z4. So this is

11 ⊕ 13, where I’ve labelled the irreps of Z4 as Dk(g
`) = ωkl.
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A less trivial example: the (reducible) 8 of S4 acting on the vertices of the cube is

IndS4
Z3

(trivial rep of Z3), induced from the trivial rep of a Z3 subgroup of 2π/3 rotations.

Notice that there are eight cosets, |S4/Z3| = 8, so this gives a rep of the right dimension.

Another hint is that the Z3 subgroup fixes a pair of vertices. Similarly, the Z2 subgroup

that fixes a pair of edges induces the 12-dimensional rep on the edges, and the Z4

subgroup that fixes a pair of faces induces the 6-dimensional rep on the faces. The

general idea, for example in the case of vertices, is to think about the world from the

point of view of a single vertex: the subgroup of S4 that fixes the vertex is Z3 (which

acts trivially on it), so this is the subgroup to consider. In the language of Wigner, Z3

is the ‘little group’ of the vertex.

Frobenius reciprocity. So this gives a way to make a reducible rep of G from

irreps of H. It is easy to make a reducible rep of H from irreps of G: an irrep of G

is also a rep of H ⊂ G, which is in general reducible. Interestingly, there is a close

relation between these two operations – they are adjoints of each other in a certain

sense, which I want to explain next.

If f(h) is a function on H, we can extend it to a function on G just by setting

f(g) = 0 if g /∈ H. To make a class function on G, just average over orbits by

conjugation: IndGH [f ](s) ≡ 1
|H|
∑

g∈G f(g−1sg). Now apply this to χW (h) ≡ trWD
W (h)

the character of the rep of H. I claim that the result is just the character of the induced

representation IndGH [W ]:

χIndGH [W ](g) = IndGH [χW ](g).

Finally, consider a rep DV (g) : V → V of G. Let’s call ResGH(V ) the rep of H ⊂ G

that this produces, just by restricting to elements of H, DV (h) : V → V . Given two

functions on (any compact) G, there is an inner product

〈φ1, φ2〉G ≡
1

|G|
∑
g∈G

φ1(g−1)φ2(g).

(This is the same as the inner product for characters.)

Now, given ψ, φ class functions on H and G respectively, I claim that〈
ψ,ResGH [φ]

〉
H

=
〈
IndGH [ψ], φ

〉
G
.

That is, the two maps Res and Ind are adjoints with respect to this inner product.

(This fact is called Frobenius reciprocity.) This is a cool thing: taking φ and ψ to be

the characters of irreps Vb of G and Wa of H, it says that the number of times irrep

Wa of H appears in the decomposition of irrep Vb of G (when regarded as a rep of H)

is the same as the number of times irrep Vb of G appears in the decomposition of the

rep of G induced from the irrep Wa of H.
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Promise of physics applications. The operation of making induced represen-

tations (the fancy word for it is ‘functor’) is especially useful for constructing unitary

representations of non-compact groups from reps of their compact subgroups. Exam-

ples relevant to physics are the symmetry group of euclidean space E(d) (translations

and rotations) and the Poincaré group (translations and rotations and boosts). Perhaps

more later on this.

Here is a brief preview: The symmetry group of R2 is sometimes called E(2) (for

Euclidean) and includes translations and rotations. It has a subgroup E(2) ⊃ SO(2).

The irreps of SO(2) are labelled by the (integer) angular momentum m. The rep of E(2)

induced by the inclusion SO(2) ⊂ E(2) is labelled by |p,m〉, where p ∈ E(2)/SO(2) =

R+. This is the magnitude of the momentum.

Similarly, the Poincaré group (the Lorentz group and translations in R3,1) con-

tains an SO(3) subgroup. The states of a massive spin-J particle arise as the induced

representation from the spin-J representation of SO(3) = span{|σ〉 , σ ∈ {−J,−J +

1, · · · J − 1, J}}. The resulting states are labelled by an element ~β ∈ SO(1, 3)/SO(3)

(an element of SO(1, 3) can be labelled by a rotation vector ~θ and a boost vector
~β; the quotient by SO(3) precisely gets rid of the rotation part). One way to think

about the role of the SO(3) subgroup that we started with is that it is the subgroup of

Poincaré that preserves the 4-momentum of the massive particle (in the rest frame it is

kµ0 = (m, 0, 0, 0)µ, but by conjugating by a boost the subgroup preserving any timelike

4-vector is the same). The ~β labels the boost that takes kµ0 to an arbitrary timelike

4-vector: kµ(β) = Λ(β)µνk
ν
0 .

For a massless particle, instead the momentum has a form conjugate to pµ =

(E, 0, 0, E)µ, a timelike vector. The subgroup of the Lorentz group preserving this

is only the SO(2) of rotations about ẑ. Each (unitary) rep of SO(2) (labelled by

the integer angular momentum) induces a corresponding (unitary) rep of Lorentz and

Poincaré.
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2.6 Representations of Sn and Young tableaux

[Georgi, 2d edition §1.24] Recall that for any group, the number of irreps is the number

of conjugacy classes. For Sn we saw that conjugacy classes are in 1-1 correspondence

with Young diagrams with n boxes. This suggests, and it’s true, that the irreps can

also be labelled by Young diagrams. Let’s construct an irrep of Sn for each Young

diagram with n boxes.

There are n! ways to put the numbers 1, 2, · · ·n into the boxes of a Young diagram,

like
6 5 3 2
1 7
4

. We can associate (in an arbitrary way) each such arrangement with a

permutation (so if I arbitrarily number the boxes from left to right and top to bottom,

then

(
1 2 3 4 5 6 7

6 5 3 2 1 7 4

)
is the permutation in the example above), which in turn specifies

a basis state of the regular representation,

∣∣∣∣(1 2 3 4 5 6 7

6 5 3 2 1 7 4

)〉
. Recall that all the irreps

fit into the regular representation, with each rep Ra appearing da times.

Important notation warning: For legibility below, I will denote

e.g.

∣∣∣∣(1 2 3 4 5 6 7

6 5 3 2 1 7 4

)〉
≡ |6532174〉. This is not cycle notation.

Now to find the invariant subspaces of the regular rep D(π) |i1i2 · · · 〉 = |πi1πi2 · · · 〉,
just make states where we

• symmetrize in the rows, so for example
∣∣ 1 2

〉
≡ (|12〉+ |21〉) /

√
2, (where here

|12〉 denotes the basis vector of the regular rep associated with the identity ele-

ment of S2) and

• antisymmetrize in the columns, so for example

∣∣∣∣ 1
2

〉
≡ (|12〉 − |21〉) /

√
2.

You can see that these are invariant subspaces. A more complicated example is∣∣∣∣ 1 2
3

〉
≡ (|123〉+ |213〉 − |321〉 − |231〉) /

√
4.

Claim: states made from the same Young diagram span an invariant subspace under

the action of Sn in the regular representation. This is because

DRreg(π)

∣∣∣∣ 1 2
3

〉
=

∣∣∣∣π1 π2

π3

〉
,
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so the action of Sn preserves the symmetrization structure.

For example, the states | 〉 and | 〉 specify 1d representations of S2, the trivial and

sign representation, respectively.

For S3, | 〉 ∝ |123〉+ 5 terms is the 1d trivial representation, while
∣∣ 〉 ∝ |123〉 −

|231〉 + · · · =
∑

π∈Sn(−1)π |π〉 is the sign representation. The interesting case is the

Young diagram . Writing out the definitions of each of the 6 states gives:

∣∣∣∣ 1 2
3

〉
∣∣∣∣ 3 2

1

〉
∣∣∣∣ 2 3

1

〉
∣∣∣∣ 1 3

2

〉
∣∣∣∣ 3 1

2

〉
∣∣∣∣ 2 1

3

〉



=



1 1 −1 −1 0 0

−1 −1 1 1 0 0

0 0 1 1 −1 −1

0 0 −1 −1 1 1

−1 −1 0 0 1 1

1 1 0 0 −1 −1





|123〉
|213〉
|321〉
|231〉
|132〉
|312〉


(2.36)

The matrix here has rank two: rows 12, 34 and 56 are just minus each other (related

by interchanging labels in the same column of the tableaux), and there is one more

relation which says the sum over the orbits of the cyclic permutation (rows 135 and

246) gives zero. This leaves a two dimensional representation of S3.

Why did this happen? The independent vectors in the list (2.36) correspond to

ways of placing the numbers 1, 2, . . . , n in the boxes of the Young diagram such that

in each row and column the numbers are ordered – the point is that labellings where

they are out of order are obtained by the action of permutations on this set. Such a

thing is called a Young tableau. So we have (ignore the ⊕ signs if you wish, really I am

just listing the basis elements of the irreps that we get from this construction)

S2 : 1 2 ⊕ 1
2

= 1⊕ 1′

S3 : 1 2 3 ⊕
(

1 2
3

, 1 3
2

)
⊕

1
2
3

= 1⊕ 2⊕ 1′

S4 : 1 2 3 4 ⊕
(

1 2 3
4

, 1 3 4
2

, 1 2 4
3

)
⊕
(

1 2
3 4

, 1 3
2 4

)
⊕

 1 2
3
4

,
1 3
2
4

,
1 4
2
3

⊕ 1
2
3
4

= 1⊕ 3⊕ 2⊕ 3′ ⊕ 1′. (2.37)

Notice that
∑

a d
2
a = |G|. It’s not obvious from what I said (but it’s true) that each
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irrep appears exactly once from this construction, even though it appears da times in

the regular rep.

So what is the dimension of the irrep of Sn associated with a given Young diagram,

λ? dimRλ = # of Young tableaux for the given diagram. To count the tableaux, we

use the following hook rule: In each box of the Young diagram put its hook length, the

number of boxes below and to the right, including the box itself. (The name comes

from the fact that the hook length is the number of boxes through which a hook passes,

where a hook starts at the bottom of the column of the box, makes a right turn at

the box, and passes out of the diagram to the right.) For example, for , we have

5 2 1
2
1

[WARNING: this is not a Young tableau]. The dimension of the associated

representation is dimRλ = n!∏
boxes hook lengths

. In this example, dimR = 5!
5·22 = 6.

Warning: as we will see, there is also a relationship between Young diagrams and

irreps of various Lie groups. The formula for the dimension is not the same!

[End of Lecture 11]
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2.7 Projective representations

[Dan Arovas’s notes §2.1.5] In quantum mechanics a state is often only defined up to

a multiple of a phase eiφ. So you might think that we can relax a bit the definition of

a representation to allow

D(g)D(h) = ω(g, h)D(gh) (2.38)

where ω(g, h) ∈ U(1) is a phase |ω(g, h)| = 1. We must still demand associativity:

D(g)D(h)D(k) = (D(g)D(h))D(k) = ω(g, h)D(gh)D(k) = ω(g, h)ω(gh, k)D(ghk)

= D(g)(D(h)D(k)) = D(g)ω(h, k)D(hk) = ω(g, hk)ω(h, k)D(ghk)

from which we conclude

1 =
ω(g, h)ω(gh, k)

ω(h, k)ω(g, hk)
. (2.39)

A function ω : G×G→ U(1) satisfying this associativity condition is called a cocycle.

A set of D(g)s with nontrivial cocycle is called a projective representation.

When are two such things equivalent and what does trivial mean? By rephasing the

generators D(g) 7→ γ(g)D(g), with γ : G→ U(1), (2.38) becomes γ(g)D(g)γ(h)D(h) =

ω(g, h)γ(gh)D(gh), so

ω(g, h) 7→ ω(g, h)
γ(gh)

γ(g)γ(h)
.

So if ω(g, h) = γ(g)γ(h)
γ(gh)

for some function γ : G→ U(1), then this is actually equivalent

to an ordinary (linear) representation of G.

To crystallize what we’ve just learned, define Ωp ≡ Ωp(G,U(1)) ≡ maps from

G×G× · · ·G︸ ︷︷ ︸
p times

→ U(1). An element of Ωp is called a p-cochain. We can construct a

(co)chain complex, which is a sequence of maps with the property that the image of

one is contained in the kernel of the next:

Ω1 δ1−→ Ω2 δ2−→ Ω3 (2.40)

γ 7→ δ1γ(g, h) =
γ(h)γ(g)

γ(gh)
(2.41)

ω 7→ δ2ω(g, h, k) =
ω(g, h)ω(gh, k)

ω(h, k)ω(g, hk)
.

You can check that Imδ1 ⊂ ker δ2. So ω ∈ ker δ2 is a cocycle, defining a projective rep-

resentation. The equivalence relation is the map δ1. Therefore, inequivalent projective

reps correspond to elements of the quotient

ker δ2 ⊂ Ω2

Imδ1 ⊂ Ω2
≡ H2(G,U(1)).
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This object is called the 2nd group cohomology of G. It is a group under multiplication.

Time for some examples.

Example 1: G = Z2×Z2 = 〈σ, τ |σ2 = e, τ 2 = e, στ = τσ〉, and D(σ) = iX,D(τ) =

iY,D(στ) = iZ. Notice that, even though this is an abelian group, we don’t need

to have ω(g, h) = ω(h, g). In fact D(σ)D(τ) = −D(τ)D(σ). This is a projective

representation of Z2 × Z2 by π rotations in the 2-dimensional rep (a spinor) of SU(2).

In fact it is an ordinary representation of a much smaller group with only eight elements,

namely Q8.

Something I should mention for cultural background. In general, a projective rep-

resentation of G is an ordinary rep of a larger ‘covering’ group G̃. Such a situation

arises when we have an extension G̃ of G by an abelian group A, which is defined by

an exact sequence (meaning a complex with trivial cohomology)

1 −→ A
ψ−→ G̃

π−→ G −→ 1.

The complex being exact means that there is trivial cohomology: Imψ = ker π, and

similarly for the other steps. This means that Imψ ⊂ G̃ is a normal subgroup, and

G̃/A = G is a group (namely G). (So for example Sn is an extension of An by Z2.

) An extension is central if Imψ ⊂ Z(G̃), the center of G̃, when this is the case,

representations of G̃ give projective reps of G. Each element of G is associated with

|A| elements of G̃; this describes the possible ambiguities in the phase of the product

of two elements of G.

Here it is in detail for the example above (on its side):

1 1

↓ ↓
Z2 1 −1

↓ ↓ ↓
Q8 1 −1 i j k −i −j −k
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Z2 × Z2 1 1 τ σ τσ τ σ τσ

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 1 1 1 1 1 1 1 1

Even, fixing G and A, G̃ is not unique. An equivalent (up to rephasing) projec-

tive representation of Z2 × Z2, with D(σ) = X,D(τ) = Z can be lifted to a linear

representation of D4.

Example 2: G = U(1) = {eiθ, θ ∈ [0, 2π)}. Representations of U(1) are (all one

dimensional) of the form Uq(θ) = eiqθ with q ∈ Z. Why do we need q ∈ Z? Consider
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what happens if q ∈ Z + 1
2
. Then it’s still true that U(θ)U(θ′) = U(θ + θ′) as phases,

but θ+ θ′ need not remain in the fundamental domain [0, 2π). Putting it back in that

range gives

U(θ)U(θ′) = U((θ + θ′)2π)ω(θ, θ′), ω(θ, θ′) =

{
1, θ + θ′ ∈ [0, 2π)

−1, θ + θ′ ∈ [2π, 4π)
.

Example 3: G = SO(3). A spinor representation, that is, one with half-integral

angular momentum, is a projective representation of SO(3). For example for the 2, the

representation matrices are

U(θ, n̂) = e−i θ
2
n̂·~σ Taylor

= cos θ/2− in̂ · ~σ sin θ/2

where ~σ are the Paulis and we used (n̂ · ~σ)2 = 1. To see that this is a projective rep

of SO(3), notice that U(2π, n̂) = −1. Moreover, UσaU † = Rabσ
b, where Rab is the

representation matrix for the same rotation in the 3 (vector rep). Since U and −U
map to the same element, you can see that it is double-valued. So these groups fit in

to the exact sequence

1 −→ Z2 −→ SU(2) −→ SO(3) −→ 1

where the Z2 is generated by the matrix

(
−1

−1

)
. So SO(3) = SU(2)/Z2.

Example 4: Magnetic translations. Ordinary translations are realized on say

the Hilbert space of a free particle in d dimensions by the linear operators T̂ (~x) =

ei~p·x/~ = e~x·
~∇. So for example T̂ (~x)ψ(~r) = ψ(~r + ~x) (this is Taylor’s theorem) and

T̂ (~x)T̂ (~x′) = T̂ (~x + ~x′). The group is G = Rd under ordinary vector addition. It was

important here that [pi, pj] = 0.

Take d = 3 and turn on a uniform magnetic field ~B = ~∇ × ~A. The canonical

momentum is replaced by ~p → ~π = ~p + e
c
~A. These satisfy [πi, πj] = −i~e

c
εijkB

k.

Operators that commute with the free hamiltonian H = π2

2m
are the ‘guiding center

momenta’ ~κ ≡ ~π − e
c
~B × ~r which have commutation relations [κi, κj] = +i~e

c
εijkB

k.

The magnetic translation operators, which represent the symmetry transformation by

a finite amount, are T̂B(~x) ≡ ei~κ·~x/~ and satisfy

T̂B(~x)T̂B(~x′) = e−iπ ~B·~x×~x′/φ0T̂B(~x+ ~x′),

where φ0 = ~c
e

is the Dirac quantum of magnetic flux. So this is a projective represen-

tation of translations.
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Example 5: 1d SPT states. This is the most ambitious example. A 1d SPT state

(SPT stands for ‘symmetry-protected topological’) is a symmetric gapped groundstate

of a local many-body hamiltonian H which has a symmetry G28. ‘Gapped’ means that

the first excited state has an energy larger than the groundstate by an amount (the

gap) that stays finite in the thermodynamic limit. We assume that the Hilbert space is

H = ⊗xHx, a product of local Hilbert spaces of dimension d <∞ (say d = 2), and we

assume that the symmetry is represented on H as U =
∏

x ux (this is called an ‘on-site’

representation, as opposed to something that acts on many sites at once).

A trivial SPT state is one whereH can be deformed – through

G-symmetric hamiltonians – to one like H0 = −
∑

xXx (Xx

is the pauli matrix acting on the qubit at site x) without

closing the gap. (Two states that are related in this way

are said to be in the same phase (with symmetry G).) The

crucial property of H0 is that its groundstate is a product of

symmetric states, |trivial〉 = ⊗x |+〉x (Xx |+〉x = |+〉x).

SPT states are featureless in the bulk – they are paramagnets, i.e. don’t break any

of the G symmetry (and they don’t have topological order, i.e. anyonic excitations);

the signature of a nontrivial SPT is something happening at the boundary of the

system, specifically a projective representation of G there. An example: take a chain of

qubits, with H = −
∑

i Zi−1XiZi+1. This has G = Z2 × Z2 symmetry with generators

Ue =
∏

i even Xi, Uo =
∏

i oddXi. The groundstate is called a cluster state. We can

understand this model completely from the following fact:

H = SH0S
†, S =

∏
i

CZi,i+1 (2.42)

where CZij ≡ eiπ
4

(1−Zi)(1−Zj) = CZji is the control-Z operation: in the Z basis (Z |s〉 =

(−1)s |s〉 , s = 0, 1), it acts as Z on the second bit only if the first bit is 1. Or, most

simply,

CZ |s1s2〉 = (−1)s1s2 |s1s2〉 .

Notice that CZij = CZji. The key algebraic fact for purposes of (2.42) is

XiCZijXi = CZijZj (2.43)

conjugating by Xi spits out a Zj. So the groundstate of H is |Ψ〉 ≡ S |trivial〉. The

trick is that on a circle (with periodic boundary conditions), [Ue,o, S] = 0, so this state

is symmetric. But the individual unitaries CZi,i+1 making up S do not commute with

the symmetries, as you can see from (2.43). Now think about what happens if there is

28In d > 1 I would have to add the further restriction that an SPT state has short-range entangle-

ment. This would take us too far afield.
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a boundary: In the middle of the chain, these extra Zjs all cancel. But at the two ends,

there are leftover Zs. This means that the action of Z2 × Z2 on the groundstate(s) of

the open chain is essentially the projective representation described above:

Uo |Ψ〉 ≡ X1X3 · · ·CZ12CZ23 · · · |trivial〉 = CZ12Z2Z2CZ23 · · · |trivial〉 = |Ψ〉 .

Ue |Ψ〉 ≡ X2X4 · · ·CZ12CZ23 · · · |trivial〉 = Z1CZ12CZ23Z3Z3 · · · |trivial〉 = Z1 |Ψ〉 .

UoUe |Ψ〉 = X1X3 · · ·Z1 |Ψ〉 = −Z1Uo |Ψ〉 = −Z1 |Ψ〉 .

UeUo |Ψ〉 = Z1 |Ψ〉 .

So Uo and Ue don’t commute when acting on the groundstate of the edge!29 Instead,

they form a Heisenberg algebra (like XZ = −ZX), which has no 1d representations,

only a 2d irrep, here with basis {|Ψ〉 , Z1 |Ψ〉}.

The physical consequence of this is that there are degenerate doublets at the ends

of the chain. A very similar (but harder to show analytically) phenomenon is realized

in spin-1 Heisenberg chains. Such a system has a symmetry group SO(3), but has a

nontrivial SPT phase (called the Haldane phase) where the ends of the chain carry

degenerate doublets – the 2 is a projective representation of SO(3), as described above.

Evidence for these degenerate doublets have been observed, e.g., in Y2BaNi1−xMgxO5.

More generally, we can invoke a fact about gapped ground states in 1d: such a state

can be written as a matrix product state:

=

χ∑
a1,2...=1

· · ·Mσ1
a1a2

Mσ2
a2a3
· · · |· · ·σ1, σ2 · · ·〉 ≡Mσ

a1a2
(2.44)

σ = 1..d, a = 1..χ. χ, the range of the auxiliary index, is called the bond dimension.

This encodes the groundstate (a vector with dL components,) in terms of χ2 numbers

(times L if theMs for different sites are different). In such a state, each site is manifestly

entangled with the rest of the system only through its neighbors. The statement that

any gapped groundstate of a 1d local Hamiltonian can be written this way is a result

of Hastings.

We want this state to be invariant under the action of U =
∏

x u (so that it is a

paramagnet). Each u acts on a single site: ux |σx〉 = uσxσ′x |σ′x〉.

U

χ∑
a1,2...=1

· · ·Mσ1
a1a2

Mσ2
a2a3
· · · |· · ·σ1, σ2 · · ·〉 =

χ∑
a1,2...=1

· · ·Mσ1
a1a2

uσ1σ′1
Mσ2

a2a3
uσ2σ′2

· · · |· · ·σ1′ , σ2′ · · ·〉

29You may be puzzled about how it can be that two operators both of the form
∏
X can fail to

commute. The trick is that there is another end of the chain. Ue and Uo actually do commute on the

groundstate of the whole chain, but because of a cancellation of signs coming from the two endpoints,

which can be on opposite sides of the galaxy.
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Clearly it would be invariant if at each site

Mσ1
a1a2

uσ1σ′1

?
= Mσ′1

a1a2
.

But this is more than we need. Suppose instead that at each site we can factorize the

effects of u as

Mσ1
a1a2

uσ1σ′1
= ga1a′1

M
σ′1
a′1a
′
2

(
g−1
)
a′2a2

.

The gs may form a projective representation of G, since the phases will cancel in

the previous expression – it’s like the action of u is fractionalized. Then for a closed

chain, the effects of the transformation would cancel between each pair of Ms, by

But if there were a boundary, there would be dangling gs. This

leads to a classification of 1d SPTs in terms of H2(G,U(1)). For more on this I

recommend these notes. Under some assumptions, SPTs in d dimensions are classified

by Hd+1(G,U(1)).

In this context, the group operation on the cohomology is realized just by stack-

ing the representative systems on top of each other, and adding generic G-invariant

couplings between them.

[End of Lecture 12]
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3 Lie groups and Lie algebras

3.1 Lie algebra and structure constants

[Zee, §I.3; Georgi §2,3,6,7,8; Stone-Goldbart §15.3] Recall that a Lie group is a group

where we can do calculus. You already know the key idea for understanding the

representation theory of Lie groups from your study of quantum mechanics. In that

context, you know that given a hermitian operator H, you can make a unitary operator

U(t) = eitH , actually a one-parameter family of unitary operators. This is a solution of

the Schrödinger equation for time evolution −i∂tU = HU (I’ve set ~ = 1 because why

wouldn’t I?) with the initial condition U(0) = 1. This produces a finite transformation

U(t) from the information about the infinitesimal transformation U(ε) = 1 + iεH. The

story becomes more interesting if we have multiple such hermitian operators (we’ll

learn to call them generators of the Lie algebra) which do not commute.

Suppose g(~s) ∈ G depend smoothly on a set of dG ≡ dimG real parameters.

‘Smoothly’ means we can do all the calculus we want. We’ll set the useful convention

for our parameters that g(0) = e, the identity in G. In any representation R of G,

then, D(g(~s))|s=0 = D(e) = 1. Near the identity, the smoothness assumption says we

can Taylor expand:

D(~ε)
Taylor

= 1 + iεAXA +O(ε2), XA = −i∂sAD(~s)|s=0.

The factor of i is a convention so that for a unitary rep, D†D = 1 =⇒ XA = (XA)† the

XA are hermitian (rather than anti-hermitian). If the coordinates aren’t redundant,

the XA will be linearly independent. Note that the XA are dimR× dimR matrices.

As you can see, we can add XAs with complex coefficients – they form a vector

space. Actually there is some more structure – there is also a product on this vector

space, so it forms an algebra, the Lie algebra g associated with G.

Geometrical aside: Here we have defined the objects XA in

a representation, so they are just matrices whose size is the

dimension of the carrier space. It is possible to define the Lie

algebra generators more abstractly, without a choice of repre-

sentation, as a basis of tangent vectors to the group manifold

at the identity element. If these words don’t mean anything

to you, please just ignore them. We don’t lose much by fo-

cussing right away on a representation, since that’s where

most of the physics is, anyway.
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So the key step, Lie’s central idea, is to think of a finite

transformation as a succession of infinitely many infinitesimal

transformations. The identity

lim
N→∞

(
1 +

☼
N

)N
= e☼

is still true if ☼ is a matrix, ☼ = isAXA. So

D(~s) = lim
N→∞

(
1 +

isAXA

N

)N
= eisAXA

.

Multiplying elements along the same direction ~s is easy, D(λ1~s)D(λ2~s) = D((λ1 +

λ2)~s) = D(λ2~s)D(λ1~s), since that’s just like the eitH example above. Any choice of

~s · ~X generates a 1-parameter abelian subgroup.

But in general, D(~s)D(~t) 6= D(~s+ ~t). To see what happens instead, I claim that

D(~s)D(~t) = eisAXA

eitAXA

= eirAXA

(3.1)

for some choice of rA. This is because these exponentials form a representation of G0 ≡
{g ∈ G, connected by a path to e}, the component of G connected to the identity,

which is a subgroup of G. (Note that (3.1) is not true of the exponential map on a

general manifold.) By the smoothness assumption, we can use calculus to find ~r. A

useful trick is to rescale ~s,~t by the same small parameter ε; then terms in the Taylor

expansion at the same order in ε must match on the BHS. At the end we can set ε = 1.

i~r · ~X = ln (1 +K) = K − 1

2
K2 +O(ε3) with

K ≡ ei~s· ~Xei~t· ~X − 1 = i~s · ~X + i~t · ~X − 1

2
(~s · ~X)2 − 1

2
(~t · ~X)2 − ~s · ~X~t · ~X +O(ε3).

This would be just linear i~r · X ?
= i~s · ~X + i~t · ~X if [XA, XB] = 0. In general, this is

not the case, and instead

i~r ·X = i~s · ~X + i~t · ~X − 1

2
[~s ·X,~t · ~X] +O(ε3)

and therefore

[~s ·X,~t · ~X] = −2i
(
~r − ~s− ~t

)
· ~X ≡ i~u · ~X.

In order for this to be true for all s, t, since the {XA} span the vector space, we require

uA = sAtBfABC where

[XA, XB] = ifABCX
C
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– the generators must form an algebra under commutators. That is, the commutator of

two generators is a linear combination of generators. This is the product operation on

g I referred to above. Notice that the ordinary matrix product XAXB is not necessarily

such a linear combination of Xs. I claim that this one relation, obtained at O(ε2), is

enough to guarantee that the group law is obeyed to all orders in ε. The idea is that we

know the only deviation from linearity (~r
?
= ~s+~t) comes from commutators, and if the

commutator is again an element of the algebra, then so are any repeated commutators.

Comments on BCH formulae. To see this more explicitly, we can derive an

explicit formula for e−AeA+B, which would be eB if [A,B] = 0. This is a version of the

Baker-Cambell-Hausdorff formula.

Given a matrix A, define the matrix operator adA, which implements the adjoint

action of A, by

adAB ≡ [A,B].

Note that this operator is a derivation, in the sense that it satisfies the product rule

adA(BC) = (adAB)C +B(adAC) (3.2)

and, because the trace of a commutator vanishes (for finite-dimensional matrices, at

least),

tr ◦ ad = 0

one can “integrate by parts” under the trace. So adX is very much like a matrix version

of a derivative “in the X direction”.

First note that exp ad = Adexp. By this I mean

etABe−tA = etadAB ≡ F (t). (3.3)

The proof is just: the BHS satisfies Ḟ (t) = [A,F (t)], F (0) = B, which has a unique

solution. The left hand side is the group version of the adjoint action, which we might

write as AdgB ≡ gBg−1, so that (3.3) can be written (WLOG at t = 1, and on the

right as an operator equation, since it’s true for all B) as

exp (adA)B = Adexp(A)B or exp (adA) = Adexp(A) . (3.4)
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Next we are going to derive a BCH-like formula

eA+B = eAG (3.5)

where G would be eB if [A,B] = 0, and we will see explicitly that G depends only on

adnAB, repeated commutators. To do this, let

G(s) ≡ e−sAes(A+B).

Then

∂sG(s) = −AG(s) + e−sA(A+B)esAe−sAes(A+B) = B(s)G(s)

with

B(s) ≡ e−sABesA = e−sadAB.

The equation ∂sG(s) = B(s)G(s) is familiar from perturbation theory in quantum

mechanics; to solve it, observe that

G(s) = G(0)+

∫ s

0

dtB(t)G(t) = G(0)+

∫ s

0

dt1B(t1)G(t1)+

∫ s

0

dt1

∫ t1

0

dt2B(t1)B(t2)G(t2) · · ·

and therefore the solution is

G(s) =
∞∑
n=0

∫ s

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnB(t1)B(t2) · · ·B(tn).

By introducing the notion of time-ordering T B(t1)B(t2) ≡

{
B(t1)B(t2), t1 ≥ t2

B(t2)B(t1), t2 > t1
, this

can be repackaged as

G(s) =
∞∑
n=0

1

n!

∫ s

0

dt1

∫ s

0

dt2 · · ·
∫ s

0

T B(t1)B(t2) · · ·B(tn) = T e
∫ s
0 dtB(t).

Therefore

G(s) = T e
∫ s
0 dtB(t)G(0) .

Since G(0) = 1 we get

e−AeA+B = G(1) = T e
∫ 1
0 dte

−tadAB

which is the form we were after. This is maybe not the most useful expression. But you

can see explicitly that only objects of the form adnAB appear, so if A,B are generators

of a Lie algebra, the whole thing is determined by the commutator algebra.
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A more common and perhaps slightly more useful form of the CBH formula is

log
(
eXeY

)
= X +

∫ 1

0

dtg
(
eadXetadY

)
(Y ), g(z) ≡ log z

1− 1/z
, (3.6)

and g(A) for a linear operator A is defined by its Taylor series about z = 1. The proof

involves some more-generally-useful ingredients. First,

∂te
X+tY |t=0 = eX

1− e−adX

adX
(Y ) .

This follows by writing eX+tY =
(
eX/m+tY/m

)m
(for any m) and differentiating using

the product rule30:

∂te
X+tY |t=0 =

m−1∑
k=0

(
eX/m

)m−k−1
∂te

X/m+tY/m|t=0

(
eX/m

)k
(3.7)

= e
m−1
m

X

m−1∑
k=0

1

m
e−

k
m

adXY (3.8)

m→∞→ eX
∫ 1

0

dse−sadXY = eX
1− e−adX

adX
Y. (3.9)

From this it follows by the chain rule that

e−Z(t)∂te
Z(t) =

1− e−adZ(t)

adZ(t)

∂tZ(t). (3.10)

Now let Z(t) ≡ log eXetY . Then we have eZ(t) = eXetY and

e−Z(t)∂te
Z(t) =

(
eXetY

)−1
eXetY Y = Y.

Comparing this to (3.10), we have

Y =
1− e−adZ(t)

adZ(t)

∂tZ(t).

This implies

∂tZ(t) =

(
1− e−adZ(t)

adZ(t)

)−1

Y.

30As Georgi emphasizes, the following form of this identity (the same as the first expression in (3.9))

is quite appealing:

∂te
X+tY |t=0 =

∫ 1

0

dse(1−s)XY esX .

Since the derivative doesn’t commute with the exponential, we don’t know on which side to put it.

So we just average over all possibilities! What else could it be?
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But now g(z) =
(

1−z−1

log(z)

)−1

, so (3.6) follows by integrating up the BHS over t. Note

that we need to use (3.4) to write the argument of g(z) as z = e−adZ(t) = eadXetadY .

For more details, see the book by Hall, §5.3-5.5.

So a Lie algebra looks like [XA, XB] = ifABCXC . The fABC are called the structure

constants of the Lie algebra. Under some assumptions, they encode the whole structure.

They have the following properties.

• Since [A,B] = −[B,A], fABC = −fBAC .

• For unitary reps (any rep for a compact group), [XA, XB]† = −if ?ABCXC =

−ifABCXC so fABC = f ?ABC , the structure constants are real.

• The Jacobi identity is

0 = [XA, [XB, XC ]] + 2 cyclic permutations.

It follows just by writing out all 12 terms and cancelling them in pairs. (It is true

for any three matrices, not just for the Lie algebra generators.) In terms of the

structure constants it says

fBCDfADE + fABDfCDE + fCADfBDE = 0. (3.11)

In terms of the adjoint action, it has the clearest statement:

[adX , adY ] = ad[X,Y ]. (3.12)

The crucial point is that representations of the Lie algebra g are representations

of G0 (and the difference between G and G0 is some finite-group problem which we’ve

already solved). And the former are much easier to understand. To be clear, by a

representation of a Lie algebra, I mean a set of matrices D(XA) whose commutators

satisfy the Lie algebra31 – a homomorphism from the Lie algebra to GL(n) for some

n, the dimension of the representation. To get from this a representation of the Lie

group, use the same carrier space, and just exponentiate arbitrary linear combinations

of these matrices: D(g(θA)) = eiθAD(XA).

Here, then, is an example of a representation of any Lie group, the adjoint repre-

sentation. This is just the map X → adX , which is a representation of g because of

31As you may have noticed by now I will often just write XA for the matrices themselves, when I

really mean D(XA) in some representation.
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(3.12). More prosaically, consider TA with matrix elements (TA)BC ≡ −ifABC . The

Jacobi identity in the form (3.11) can be rewritten as

[TA, TB] = ifABCTC

so these matrices satisfy the Lie algebra. The dimension of this rep is the number of

generators of the Lie algebra, which is dG, the dimension of the group. [End of

Lecture 13]

A good way to think about the adjoint rep is a bit like the regular representation

of a finite group: it has a basis |XA〉 labelled by generators – the carrier space is

span{|XA〉} – and the action of a generator is

Dadj(XA) |XB〉 = |[XA, XB]〉 . (3.13)

(Often you’ll see XA in place of D(XA) here.) Other ways to write this are

Dadj(XA) |XB〉 = |[XA, XB]〉 = |ifABCXC〉 = ifABC |XC〉 = (TA)B
C
∣∣XC

〉
,

so you see it agrees with the definition above.

For any (unitary) rep we can define an inner product on the Lie algebra by

trRX
AXB = κAB.

Since this is a symmetric matrix, we can diagonalize it by a similarity transformation,

by taking linear combinations (XA)′ = LABX
B. (Nothing specified a basis for the Lie

algebra so far.) In terms of the new X ′s, the inner product is kAδAB. If the kA are

nonzero, we can rescale the generators to set |kA| = λ for all A (for some constant λ

to be chosen later). But we cannot change the signs of the kA. I claim that kA > 0

for all A for a compact Lie group with no U(1) factors, explanation later. The short

version is that if kA > 0, then the Lie algebra is a subalgebra of so(n) for some n, and

we agree that SO(n) is a compact group. In this case, the range of the parameters sA

has some restriction, since there will exist some s? for which eis?·X = 1.

Now, if trXAXB = λδAB, then multiplying the BHS of the Lie algebra by XD and

taking trace gives

fABC = − i

λ
tr[XA, XB]XC = fBCA = −fBAC = −fACB = −fCBA

– the structure constants in such a basis are totally antisymmetric in all three indices.

(If you like, we used the tr ◦ ad = 0 (IBP) identity.) Furthermore, the adjoint rep is

unitary in this basis – the TA are imaginary and antisymmetric, hence hermitian. Note

that the inner product in the adjoint rep is

〈XA|XB〉 ∝ tradjT
ATB.
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Concrete example: SO(n). Recall that O(n) = {n×n real matrices R with RTR = 1}.
The component connected to the identity, “O(n)0” in the notation above, is SO(n) =

{R ∈ O(n), detR = 1}.

Following the strategy advocated above, now consider an infinitesimal rotation:

R(θ) = 1 + A+ · · · .

1
!

= RTR = (1 + AT )(1 + A) + · · · = 1 + AT + A+ · · ·

which says A = −AT is antisymmetric.

For n = 2, there is only one antisymmetric matrix, up to scalar multiples: J =(
0 1

−1 0

)
, so A = θJ (with some foresight in the naming of variables). So R = 1 +

θJ +O(θ2) =

(
1 θ

−θ 1

)
+O(θ2). For finite θ, this is

R(θ)
Lie
= lim

N→∞

(
1 +

θJ
N

)N
= eθJ

Taylor
= 1 + θJ +

θ2

2
J 2 + · · · =

∞∑
k=0

θkJ k

k!

Since J 2 = −1, we have J 2` = 1(−1)`,J 2`+1 = (−1)`J , so

R(θ) =
∞∑
`=0

θ2`(−1)`

(2`)!
1 +

∞∑
`=0

θ2`+1(−1)`

(2`+ 1)!
J = cos θ1 + sin θJ =

(
cos θ sin θ

− sin θ cos θ

)
≡ eiθJ

where J ≡ −iJ is hermitian. This is the familiar form of a 2d rotation matrix in

terms of the angle of rotation θ. Since there is only one generator of the Lie algebra,

SO(2) is an abelian group. Notice that this maneuver fails to reach all of O(n), such

as Z =

(
1 0

0 −1

)
, which has detZ = −1.

For n = 3, any antisymmetric matrix is a linear combination of these three:

J 1 =

0

1

−1

 , J 2 =

 1

0

−1

 , J 3 =

 1

−1

0


(where I only write the nonzero entries), A = θAJ A ≡ iθAJA. More compactly,

(Ji)jk = εijk, the Levi-Civita symbol – totally antisymmetric and equal to 1 for ijk =

123. So R(θA) = eθ
AJA = eiθAJA ∈ SO(3). If you like, compare this expression with

the definition of Euler angles; do not ask me to do it.

Since we have more than one generator for n > 2, we can study the commutator

algebra. Consider R = 1 + A+ · · · . If R′ is another rotation, then

RR′R−1 = (1 + A)R′(1 − A) + · · · = R′ + [A,R′] + · · ·
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If R′ is also close to the identity, R′ = 1 +A′+· · · , then RR′R−1 = 1+A′+[A,A′]+· · · .
For n = 3, A = θ · J , A′ = θ′ · J . Since ([A,A′])T = −[A,A′], this extra term is also an

antisymmetric 3 × 3 matrix, and hence can be expanded in the J s: [A,A′] = θ′′ · J .

Let Ji ≡ −iJi as above. By explicit calculation, [J1, J2] = iJ3 = −[J2, J1], plus its

cyclic images32, which can be summarized nicely as

[Ji, Jj] = iεijkJk (3.14)

where εijk is the Levi-Civita symbol again. This is the Lie algebra so(3) = su(2). Notice

that the real matrices satisfy [Ji,Jj] = εijkJk with no i. The commutator of two real

antisymmetric matrices is real antisymmetric (though the ordinary product is not!).

A confession and a definition: Actually the matrices R that we’ve been writing

are the representation matrices D(~θ)ij for the n, the n-dimensional fundamental (or

defining) representation of SO(n). An object that transforms in this rep is called a

vector of SO(n). I emphasize that the algebra (3.14), however, is satisfied by the

generators in any representation.

For general n: an arbitrary real antisymmetric matrix is a linear combination A =∑
r<sArsJ(rs) of these

(
J(rs)

)ij ≡


0, everywhere except

1, in the rs entry

−1, in the sr entry to make it AS

= δriδsj − δsjδri.

This is zero for r = s, and J(rs) = −J(sr) so there are n(n−1)/2 = dim SO(n) of these.

To make hermitian generators, let J(rs) = −iJ(rs). So an arbitrary element of SO(n)

(rather, its representative in the n) is

R(~θ) = exp

(
i
∑
r<s

θ(rs)J(rs)

)
.

Notice that J(rs) generates a rotation in the rs plane. In 3d, there is this weird accident

that specifying a plane is the same as specifying which direction is normal to it, so we

can label the generators J(ij) = Jkεijk.

The SO(n) Lie algebra looks more complicated than it is. Think about n = 4.

Then [J(12), J(34)] = 0 since they act on orthogonal subspaces. And we already know

[J(12), J(23)] = iJ(31) since this is part of so(3). More generally, there are three cases,

depending on how many labels (0,1, or 2) the two victims have in common. If there are

32One way to see that the algebra must be invariant under cyclic permutations x → y → z is that

this transformation is accomplished by R(ŷ, π/2) ◦R(ẑ, π/2), an element of SO(3).
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0 or 2, the commutator vanishes. In the remaining case, the shared index gets erased:

[J(rs), J(rq)] = iJ(sq) (no sum on r). Other cases are related by the antisymmetry

of the commutator or the labels on J . This information can be (rather inelegantly)

summarized by the equation

[J(rs), J(pq)] = i
(
δrpJ(sq) + δsqJ(rp) − δspJ(rq) − δrqJ(sp)

)
. (3.15)

The structure on the RHS follows from the antisymmetry under either r ↔ s or p↔ q

or (rs)↔ (pq).

Let’s think more about the case of so(4). Let Ji ≡ 1
2
J(jk)εijk, Ki ≡ Ji4. These satisfy

the algebra

[Ji, Jj] = iεijkJk, so(3) ⊂ so(4)

[Ki, Kj] = iεijkJk

[Ji, Kj] = iεijkKk, K is a vector of SO(3)

The first equation is not a surprise. The second equation follows, up to a constant,

from the fact that under (~x, x4) 7→ (~x,−x4), ~J 7→ ~J, ~K 7→ −K, so the RHS can’t have

any K. The third equation is the statement that Kk transforms as a vector of SO(3)

under conjugation. What is the finite transformation? Under a rotation in SO(3),

Kj 7→ eiθiadJiKj ' Kj + iθi[J i, Kj] +O(θ2)
?
= R(θ)KjR(θ)−1, R(θ) ≡ eiθ·J . (3.16)

To see the equality with the ?, we are using exp ad = Ad exp. Or more directly, observe

that (after rescaling θi → sθi) the BHS satisfies the ordinary differential equation

∂sF (s)j = i[sθiJ i, Kj], with initial condition F (s = 0)j = Kj,

which has a unique solution. For example, e−iϕJ3
K1e

iϕJ3
= cosϕK1 + sinϕK2.

One more step about SO(4): let ~J± ≡ 1
2
( ~J ± ~K). These each satisfy the SO(3)

algebra, and they commute [J i+, J
j
−] = 0. Therefore so(4) = so(3) ⊕ so(3), meaning

that as vector spaces, we take the direct sum, and also that the generators of the

different summands commute. (Note that people (including me will sometimes write

so(3) × so(3) for this relation instead. This would be more accurate as a statement

about the groups obtained by exponentiating these algebras.)

A very similar analysis applies to the (non-compact) Lorentz groups SO(p, q) for

various p, q. The analog of RTR = 1 is

ηµσ = Λµ
νηνρ(Λ

T )ρσ = (1 + A)µ
νηνρ(1 + AT )ρσ + · · ·

which says Aµ
νηνσ + ηµρ(A

T )ρσ = 0. Generators like µν = ij with both indices along

positive directions are antisymmetric, while generators labelled µν = i0 with one nega-

tive direction are symmetric. These are rotations and boosts, respectively. Notice that
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hermiticity requires the symmetric generators to be real, so the exponentiated version

looks like eηB with η ∈ R, rather than eiθJ . This is the origin of the non-compactness.

Notice something very weird about SO(3): this is the adjoint representation of SO(3)

(in fact the ad in (3.16) is the reason for the name), but it is also the fundamental

3-dimensional representation.

Simplicity and semi-simplicity. An invariant subalgebra of a Lie algebra g

is a subalgebra h ⊂ g that is closed under commutators with elements of g: h =

span{X ∈ g|[X, Y ] ∈ h,∀Y ∈ g}. The point of this definition is that exponentiating the

elements of an invariant subalgebra exp(h) = H ⊂ G produces an invariant subgroup:

If h = eiX , g = eiY for X ∈ h and Y ∈ g, then g−1hg = eiX′ ∈ H with

h 3 X ′ = e−iYXeiY = e−iadYX =
∞∑
k=0

(−i)k

k!
adkY (X).

Notice that by the definition, adkY (X) ∈ h for all k.

0 and g are trivial invariant subalgebras. If g has no nontrivial invariant subalgebras

it’s called simple. This is a good definition because then eg is a simple group. The

adjoint rep of a simple algebra is irreducible. If it weren’t, an invariant subspace is

spanned by a subset of the generators V = span{Tr}, V ⊥ = span{Tx}. The definition

of ‘invariant subspace’ would then say (TA)xr = 0 = −ifAxr for all A = r, x. Therefore

there would be two invariant subalgebras with structure constants fxx′x′′ and frr′r′′ .

A one-dimensional invariant subalgebra, generated by a single element XA, means

a U(1) factor in the group (if the group is compact). This means fABC = 0 for all

B,C and (therefore) also that trT †ATA = 0 (evaluate it in the adjoint rep). So the

inner product degenerates and the theory breaks down. Such U(1) factors are invisible

to the structure constants. A Lie algebra with no abelian invariant subalgebras is

called semi-simple. A semi-simple Lie algebra is a direct sum of simple algebras (direct

sum as a vector space, and also with the implication that the commutator between

different summands vanishes). This means that every XA has some other generator

with which it fails to commute, and (therefore by the total antisymmetry of fABC)

every XA appears on the right hand side of some linear combination of commutators.

Since abelian factors are well-understood, from now on we will restrict our attention

to such a situation without comment.

Big picture of representation theory of Lie groups. There are two ap-

proaches to representation theory of Lie groups, which can be called tensor methods

and the Cartan-Weyl method. In the former, we make reps by tensoring together the

fundamental rep and symmetrizing in various ways. In the latter, we choose a com-

plete set of commuting operators in the Lie algebra (called the Cartan subalgebra) and
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diagonalize them; then their eigenvalues label the basis states of any rep, and we use

the rest of the generators as raising and lowering operators, just like in the familiar

theory of SU(2) representations. They both have their virtues.

[End of Lecture 14]

3.2 Irreps of SO(n) by tensor methods

So far we’ve encountered two representations of SO(n), the fundamental, vector repre-

sentation n and the adjoint, of dimension n(n − 1)/2. (For n = 3 they are the same

rep.) Recall that a vector is something that transforms like vi 7→ Rijvj.

What happens if we take n⊗n? An object T in the n⊗n is, by definition, something

that transforms like

T ij 7→ D(R)ij,klT
kl = RikRjlT kl.

Such a thing is a called a 2-index (or rank-two) tensor. where the representation matrix

D(R)ij,kl is n2 × n2. Is it reducible?

Yes: if we consider just the antisymmetric bit Aij ≡ T ij − T ji, the linear action of

R on it preserves the antisymmetry in the indices. So this is an n(n−1)/2-dimensional

invariant subspace.

Similarly, the symmetric bit Sij ≡ T ij + T ji maps to itself. So, so far we have

n ⊗ n = Λ2n ⊗ Sym2n. This n(n + 1)/2-dimensional subspace is, however, itself

reducible. This is because of the existence of the invariant symbol δij. It is an invariant

symbol in the sense that RikRjlδkl = δij (this is the definition of R ∈ SO(n)). So

S ≡ Sii = Sijδij 7→ RikRjlδijS
kl = S

– this is a 1d invariant subspace. So we’ve just decomposed

n⊗ n = 1⊕ n(n− 1)

2
⊕ n(n + 1)

2
− 1.

For SO(3), this is 3⊗ 3 = 1⊕ 3⊕ 5.

There is a second invariant symbol for SO(n), which comes from the following

formula for the determinant of an n× n matrix:

εi1···inM i1j1 · · ·M injn = εj1···jn detM,

where ε is the completely antisymmetric Levi-Civita symbol, with ε12···n = 1. Since for

a rotation matrix RTR = 1 =⇒ detR = 1, we have

εi1···inRi1j1 · · ·Rinjn = εj1···jn . (3.17)
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Using the ε tensor, we can trade a p-index AS tensor Ai1···ip for a (n− p)-index tensor:

Bip+1···in = εi1···inA
i1···ip .

If A is a tensor in the sense of transforming as Ai1···ip 7→ Ri1j1 · · ·RipjpAj1···jp , then using

(3.17) and RTR = 1, so is B. This means that for n = 3, the antisymmetric 2-index

object 3 in the decomposition of 3 ⊗ 3 is not actually a new irrep – it’s equivalent

to the vector by the transformation: Aij ≡ εijkAk. (Which is also the adjoint rep of

SO(3)! It’s as if three space dimensions is special somehow.)

More generally, who is this n(n− 1)/2 rep? It transforms as

Aij 7→ RikRjlAkl = RikAklR
T
lj = (RAR−1)ij.

Let’s write R = eθ
AJA , so the RHS here is A 7→ A+ θA[J A, A] + · · · . But now A itself

is a real antisymmetric tensor, so can be expanded in the basis of J s that we found

earlier: A =
∑

B A
BJ B for some numbers AB (in fact n(n− 1)/2 of them). Therefore

A 7→ A+ θA[J A,J B]AB + · · · = θAfABCJCAB + · · · .

The change in the coefficient of J C in A is

δAC = θAfABCAB = θA(fA)C
BAB

Thus, the generators of this representation are the matrices (fA)C
B = fABC , which we

called the adjoint rep earlier.

3.3 Casimirs

Suppose given matrices XA representing g, a semi-simple Lie algebra [XA, XB] =

ifABCXC . Recall that semisimple means that trX†AXB = κAB (this is called the Killing

form) is invertible: (κ−1)AB κBC = δAC . Then consider the matrix

C2 ≡ κ−1
ABXAXB .

I claim that [C2, XA] = 0 for all A = 1 · · · dimG by the total antisymmetry of fABC .

(To check this, I recommend using the basis where κAB = λδAB.) Therefore, if this is

an irrep R, Schur tells us that C2 = c2(R)1. Such an operator that commutes with all

the generators is called a Casimir, and this particular one c2(R) is called the quadratic

Casimir of the rep R.

For example, for SU(2) normalized in the usual way, this is just

J2 ≡ J2
x + J2

y + J2
z .

We can figure out what is the quadratic Casimir of the spin-j rep momentarily.

Actually, a theorem of Racah says that a rank-r Lie algebra has r such Casimir

operators. I’ll define the rank of a Lie algebra in just a moment.
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3.4 Cartan-Weyl method

[Georgi; Di Francesco, Mathieu, Seneschal, chapter 13] The following procedure works

for any Lie algebra. I will illustrate with SU(2) throughout our first pass. Normalize

the generators as trXAXB = λδAB.

The idea will be just like in quantum mechanics: we have a bunch of linear operators

(like the observables of a quantum system), and we are going to diagonalize a complete

set of commuting operators, and use their eigenvalues to label a basis of states. Choose

a maximal subset of commuting hermitian generators

[Hi, Hj] = 0, Hi = H†i , i = 1..r ≡ rank(G)

This is called a Cartan subalgebra. If we exponentiate them, we get a U(1)r subroup

of G (if G is compact, otherwise it might have some R factors); this is called a Cartan

subgroup, or maximal torus. For SU(2), we can only diagonalize one of the generators,

which we take to be J3; SU(2) has rank one.

So far, this has just been a property of the algebra. In any representation R, we

can then diagonalize the Cartan generators

Hi |µ〉 = µi |µ〉 .

The eigenvalues µi are called weights. The weights are characteristic of R. You should

think of them as a vector of charges under the Cartan generators. For SU(2), the

eigenvalues of J3 are called m = −j,−j + 1 · · · j − 1, j in the 2j + 1-dimensional

representation labelled j.

Now what is the rest of the algebra? I claim that we can choose a basis for the

rest of the algebra that diagonalizes the action of the Cartan generators – a basis of

definite charge, where

[Hi, Eα] = αiEα. (3.18)

The eigenvalues α are called roots, and this is called the Cartan-Weyl basis for the

Lie algebra. The set of roots is a property of the algebra. Notice that the complex

conjugate of (3.18) is [Hi, E
†
α] = −αiE†α, so E†α = E−α has charge −αi, and −α is

also a root. The Eα are not hermitian. For SU(2), these are J± ≡ 1√
2

(J1 ± iJ2), and

(3.18) is [J3, J±] = ±J±, so α = ±1. This equation says J± are eigenvectors of the

adjoint action of J3, i.e. of adJ3 . Notice that J†± = J∓. (The remaining relation is

[J+, J−] = J3.)

In everything that follows we’ll use standard vector notation for these vectors of

dimension r: µ2 = µ · µ =
∑r

i=1 µiµi.
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In the adjoint rep (3.13), it is perhaps more obvious that the αi should be regarded

as eigenvalues of the Cartan generators:

Hi |Hj〉 = |[Hi, Hj]〉 = 0

There are r states of weight zero. A rewriting of (3.18) in terms of states of the adjoint

rep is:

Hi |Eα〉 = |[Hi, Eα]〉 = α |Eα〉

and the nonzero weights of the adjoint rep are the roots.

I claim that (3.18) is a good labelling – there is exactly one generator Eα for each

root α. Demonstration later, around (3.22).

Raising and lowering for SU(2). Bear with me here as I remind us of some

familiar things from SU(2); it will be crucially useful for general Lie groups momentarily.

For SU(2), any finite-dimensional representation has a state of largest J3, call it |j, j〉.
This is called the highest-weight state. States with other J3 eigenvalues can be obtained

by acting with the lowering operator J−:

J− |j, j〉 = Nj |j, j − 1〉 since J3(J− |j, j〉) = ([J3, J−]+J−J3) |j, j〉 = (j−1)J− |j, j〉 .

In a finite-dimensional representation of SU(2), there is only so much lowering we can

do until we must have (J−)x |j, j〉 = 0 for some integer x, which is the dimension of

the representation.

Notice that if we had other labels on our highest weight state |j, j;α〉, we could

orthogonalize them 〈j, j; β|j, j;α〉 = δαβ, and the lowering preserves this orthogonality:

J− |j, j;α〉 = Nj(α) |j, j − 1, α〉 and

〈j, j − 1; β|j, j − 1;α〉N?
j (β)Nj(α) = 〈j, j; β| J+J− |j, j;α〉 (3.19)

= 〈j, j; β| [J+, J−] |j, j;α〉 = 〈j, j; β| J3 |j, j;α〉 = jδαβ.

Since lowering by J− reaches all the states in an irrep, there is no such extra label in

an irrep.

By employing the following identities

J+J− = J2−(J2
3−J3), J−J+ = J2−(J2

3 +J3) (recall that J2 ≡
∑
i

J2
i = c2 is the Casimir),

we can simplify the construction of all finite-dimensional irreps of SU(2). Since the

rep is finite-dimensional, there must be a state with largest J3 eigenvalue, call it |j, j〉.
Then 0 = J+ |j, j〉, so

0 = ||J+ |j, j〉 ||2 = 〈j, j| J−J+ |j, j〉 = 〈j, j|
(
J2 − J3(J3 + 1)

)
|j, j〉 = (c2(j)− j(j + 1)) 〈j, j|j, j〉 .
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Assuming |j, j〉 is normalized (and not zero), we learn that c2(j) = j(j + 1).

Now what happens if we act with the lowering operator on one of the states in this

rep (|j,m〉 ∼ J j−m− |j, j〉, with J3 |j,m〉 = m |j,m〉)? We know J− |j,m〉 ∝ |j,m− 1〉,
and to figure out the norm, look at:

||J− |j,m〉 ||2 = 〈j,m| J+J− |j,m〉 = 〈j,m|
(
J2 − J3(J3 − 1)

)
|j,m〉 = (j(j + 1)−m(m− 1)) 〈j,m|j,m〉 .

(3.20)

Therefore, if the states of this irrep are normalized, the three generators act on them

as

J3 |j,m〉 = m |j,m〉 , J± |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 .

If j ∈ Z/2, then J− |j,−j〉 = 0 and the rep ends, with the 2j + 1 states with m =

{−j,−j + 1, · · · j − 1, j}. Otherwise, we can continue lowering past m = −j and

these states with m < −j have negative norm (by (3.20)), so such a rep is neither

finite-dimensional nor unitary.

Alternatively, we can do it (more directly but less efficiently) without using our

knowledge of the quadratic Casimir. Let’s normalize the state |j − 1〉 = J− |j〉 /Nj (in

the spin j rep):

1 = | |j − 1〉 |2 = 〈j − 1|j − 1〉 = 〈j| J+J− |j〉 /N2
j = 〈j| [J+, J−] |j〉 /N2

j = j/N2
j

so Nj =
√
j. We can go back up: J+ |j − 1〉 = 1

Nj
J+J− |j〉 = 1

Nj
[J+, J−] |j〉 = j

Nj
|j〉 =

Nj |j〉. Similarly,

J− |j − k〉 = Nj−k |j − k − 1〉 , J+ |j − k − 1〉 = Nj−k |j − k〉 .

The overlap factors Nj−k, satisfy a recursion relation:

N2
j−k = 〈j − k| J+J− |j − k〉 = 〈j − k| [J+, J−]︸ ︷︷ ︸

=J3

|j − k〉+〈j − k| J− J+ |j − k〉︸ ︷︷ ︸
=|j−k+1〉Nj−k+1

= j−k+N2
j−k+1.

A nice solution of this recursion (from Georgi) is

N2
j = j

N2
j−1− N2

j = j − 1
...

...
...

N2
j−k− N2

j−k+1 = j − k

N2
j−k = (k + 1)j − k(k+1)

2
= 1

2
(k + 1)(2j − k)

Therefore, writing k = j−m in terms of the J3 eigenvaluem, Nm = 1√
2

√
(j +m)(j −m+ 1).
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Lowering ends when J− |j − `〉 = 0 for some ` (where |j − `+ 1〉 6= 0), which

happens when

0 = Nj−` =
1√
2

√
(2j − `)(` = 1) =⇒ ` = 2j, i .e. j =

`

2
∈ Z/2 .

Thus, this is all the finite-dimensional irreps of SU(2):

{|j,m〉}, J3 |j,m〉 = m |j,m〉 .

where j ∈ Z/2 labels the irrep, and m ∈ {−j,−j+1, · · · j−1, j} labels the state within

the irrep. Thus the irreps of SU(2) have dimensions 1, 2, 3, 4, 5, · · · . These are: (j = 0)

the singlet; (j = 1
2
) the fundamental/spinor/defining rep with generators ~J = ~σ/2;

(j = 1) the adjoint/vector rep with generators (Ji)jk = iεijk; (j = 3
2
) spin 3/2 I don’t

have anything to say about; (j = 2) is the symmetric traceless tensor; · · · The integer-

spin reps are also representations of SO(3); the half-integer spin reps are projective

reps of SO(3).

Raising and lowering more generally. Now we are ready to do raising and

lowering for the general Lie group. The generators E±α raise and lower the weights,

since

Hi (E±α |µ〉) = ([Hi, E±α] + E±αµi) |µ〉 = (µ± α)iE±α |µ〉 .

So, in any rep, the roots are differences of the weights. Note that we don’t have a notion

yet of which is raising and which is lowering. Also, the state µ could in principle have

other labels which I do not write.

The adjoint representation provides some useful notation to study the Lie algebra

in general. [Eα, E−α] = βiHi, and it remains to determine βi. Consider

Eα |E−α〉 = |[Eα, E−α]〉 = |βiHi〉 = βi |Hi〉 .

The second equality follows since the state has weight zero, so must be a linear com-

bination of the Cartan generators. Using the inner product, we can determine

βi =
1

λ
〈Hi|Eα |E−α〉 =

1

λ
trHi[Eα, E−α]

IBP
=

1

λ
trE−α [Hi, Eα]︸ ︷︷ ︸

=αiEα

= αi trE−αEα/λ︸ ︷︷ ︸
=1

= αi.

Therefore [Eα, E−α] = α ·H. This is the analog of [J+, J−] = J3 in SU(2).

So for any Lie algebra, g, each pair of roots ±α produces an SU(2) subalgebra,

which I’ll call su(2)α:

E± ≡ |α|−1E±α, E3 ≡
α ·H
α2

. (3.21)

95



Reps of g restrict to representations of su(2)α. This simple fact is enormously constrain-

ing and will lead to a complete solution not only to the problem of the representation

theory of semisimple Lie algebras, but to their classification. [End of Lecture 15]

Now we can prove that there is only one Eα for each root α: Suppose there were

two, WLOG assume they are orthonormal 〈Eα|E ′α〉 = 0. Acting with E− ∝ E−α on

|E ′α〉 produces a state of weight zero:

E− |E ′α〉 = βi |Hi〉 , (3.22)

but by the same calculation as above, βi = αi 〈E ′α|Eα〉 = 0. This means that |E ′α〉 is

a lowest-weight state for the SU(2) subalgebra (3.21). On the other hand, E3 |E ′α〉 =
α·H
α2 |E ′α〉 = |E ′α〉, so this says that there is a lowest-weight state with J3 eigenvalue +1.

As we saw above, that doesn’t happen – the lowest eigenvalue of J3 in a rep of SU(2)

is always ≤ 0. �

Another general fact about the structure of the general Lie algebra is: if α is a root,

then kα is a root only if k = ±1. Consider the action of the SU(2) subalgebra (3.21)

on the state |Ekα〉:
E3 |Ekα〉 = k |Ekα〉

SU(2)
=⇒ k ∈ Z/2

by our analysis of SU(2) reps above. If k ∈ Z, then Ek−1
−α |Ekα〉 ∝ |E ′α〉, another

generator with the same root, which we just showed doesn’t happen. If k ∈ Z + 1/2,

the state can be lowered to α/2 and we can use the same argument starting with the

SU(2) subalgebra built on Eα/2 (i.e.α/2 and α can’t both be roots. �

In general, for any rep of g, for any root α, the eigenvalues of the diagonal generator

of the SU(2) subalgebra are

E3 |µ〉 =
α · µ
α2
|µ〉 SU(2)

=⇒ 2α · µ
α2

∈ Z.

(Note that the state could have other labels which I don’t write.) Now let’s apply the

representation theory of su(2) starting from this state. There must be some r ∈ Z+ (r

is for ‘raising’) such that(
E+
)r |µ〉 6= 0, but

(
E+
)r+1 |µ〉 = 0.

The weight of this highest-weight state for the su(2) subalgebra is

α · (µ+ rα)

α2
=
α · µ
α2

+ r ≡ j, (3.23)

where I’ve named the rep of SU(2) j. Similarly, there must be some ` ∈ Z+ (` is for

‘lowering’) such that (
E−
)` |µ〉 6= 0, , but

(
E−
)`+1 |µ〉 = 0.
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The weight of this lowest-weight state is

α · (µ− `α)

α2
=
α · µ
α2
− ` = −j. (3.24)

Here we used the relationship mlowest = −mhighest = −j which holds in every SU(2)

representation. Adding together (3.23) and (3.24) gives

2α · µ
α2

+ r − ` = 0 =⇒ α · µ
α2

= −1

2
(r − `) ∈ Z/2, ∀α . (3.25)

Notice that subtracting (3.23) and (3.24) gives r + ` = 2j, so identifies the spin of the

highest-spin representation that overlaps with the state |µ〉. (There can be smaller-spin

reps in there, too. For example, for the state a |j1,m1〉+ b |j2,m2〉, from the definition

above we can see that j = max(j1, j2).)33

(3.25) is a very powerful relation and we are going to use it all the time below. This

notation with rs and `s isn’t great, because we have to remember that these are the

distances from |µ〉 to the top and bottom of its su(2)α rep – they depend on a choice

of weight µ and root α.

We are going to use these rs and `s a lot. Just so there is no confusion, here are

their values for the states of the spin j = 3/2 representation of SU(2):

m r ` r + ` = 2j (`− r)/2 = m

+3
2

0 3 3 +3
2

+1
2

1 2 3 +1
2

−1
2

2 1 3 −1
2

−3
2

3 0 3 −3
2

To see the power of (3.25), let’s apply it to the case of the weights of the adjoint

representation, namely the roots, µ = β:

α · β
α2

= −1

2
(r − `). (3.26)

Since (3.25) applies for every root, we can also write it for the su(2) algebra built on

E±β, to the weight µ = α:
β · α
β2

= −1

2
(r′ − `′). (3.27)

Multiplying (3.26) and (3.27) gives

Z
4
3 (r − `)(r′ − `′)

4
=

(α · β)2

α2β2
= cos2 θαβ ≤ 1

33What I am calling r and ` Georgi calls p and q, but with that notation I can never remember

which one is up and which is down.
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where θαβ is the angle between the two root vectors. This is an extremely strong

constraint: the angle between any two root vectors falls into one of five classes:

(r − `)(r′ − `′) | cos θαβ| θαβ
0 0 π/2

1 1
2

2π
3

or π
3

2 1√
2

π
4

or 3π
4

3
√

3
2

π
6

or 5π
6

4 1 0 or π

The last case where cos2 θ = 1 says θ = 0, π: θ = 0 is ruled out by uniqueness, and

we already know that both α and −α are roots. So it says that the only angles that

can appear are the ones whose trig functions are easy to remember! (Maybe this is the

reason that middle school students are forced to memorize just this particular set of

values of trig functions in precalculus class.) This goes a long way toward classifying

Lie algebras.

Finally, taking the ratio of (3.26) and (3.27) gives

α2

β2
=
r′ − `′

r − `

– the ratios of the lengths of roots (something independent of the annoying normaliza-

tion choices) is correlated with the angles between them. So we can amplify our table

as follows (I assume WLOG that α is longer than β, α2 ≥ β2):

(r − `) (r′ − `′) | cos θαβ| θαβ
α2

β2 Dynkin notation

0 0 0 π/2 indeterminate α β

1 1 1
2

π
3

or 2π
3

1 α β

1 2 1√
2

π
4

or 3π
4

2 α β

1 3
√

3
2

π
6

or 5π
6

3 α β

Notice that if either r − ` or r′ − `′ vanish, they must both vanish, in which case the

roots are just orthogonal, and their relative lengths are not fixed. This is good because

we are allowed to take tensor products, such as SU(2) × SU(2) = exp (su(2)⊕ su(2))

where the generators don’t care about each other34.

An example: su(3). A basis of generators of the Lie algebra su(3) (in the 3-

dimensional fundamental representation) is made up of eight traceless hermitian ma-

trices. (This is because U = eiH is unitary if H is unitary and has detU = 1 if H is

34Since G = eg the tensor product of Lie groups actually means direct sum of their Lie algebras,

that is, the set of generators of the product group is the union of the generators of the factors.

98



traceless.) Here is a set of them:

λ1 = X12 =

 1

1

 , λ2 = Y12 =

 −i

i

 , λ3 = Z12 =

1

−1

,
λ4 = X13 =

 1

1

 , λ5 = Y13 =

 −i

i

 ,

λ6 = X23 =

 1

1

 , λ7 = Y23 =

 −i

i

 , λ8 = (Z13 + Z23)/
√

3 =

1

1

−2

 /
√

3 .

These are called the Gell-Mann matrices; you can see that they generalize the Pauli

matrices, since the first three are just the Pauli matrices padded with zeros. The

names X12, Y12 etc are meant to emphasize this point. They are hermitian. You

can see that λ4 and λ5 will also generate an su(2) algebra, where the third generator

is [λ4, λ5] = 2iλ45 = i(λ3 +
√

3λ8), a linear combination of our two diagonal guys.

Similarly for λ6 and λ7. From this information we can determine the structure constants

fABC . Note that although we are computing them using the matrices in a particular

representation, the structure constants of su(3) are forever (modulo all the annoying

normalization issues).

You can see that two of these guys are diagonal, and no more

can be diagonalized. So we take H1 = λ3/2, H2 = λ8/2. (The

choice of normalization is an annoying thing. With this nor-

malization, trTATB = 1
2
δAB. Since they are already diago-

nal, we can read off the weights. The eigenvector (1, 0, 0)T

has eigenvalues µ1 = (1/2, 1/
√

12) under (H1, H2). The other

two are µ2 = (−1/2, 1/
√

12) and µ3 = (0,−1/
√

3).

The weights above are a property of the 3 representation.

The roots, which are a more universal property of the algebra,

are the differences of the weights:

α3 = µ1 − µ2 = (1, 0), α1 = µ3 − µ2 = (1,−
√

3)/2,

α2 = µ1 − µ3 = (1,
√

3)/2 (3.28)

and their negatives. Notice that the roots form a regular

hexagon, so the angles between them indeed fit into the list

of possibilities we found. The dot and the circle at the origin

represent the weights of the two Cartan generators.

α1 (+)

α2 (+)

α3 (+)

-α1 (-)

-α2 (-)

-α3 (-)
H1

H2
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Now we can construct the rest of the Cartan-Weyl basis for su(3):

E±α3 = (λ1 ± iλ2)/
√

8, E±α2 = (λ4 ± iλ5)/
√

8, E±α1 = (λ6 ∓ iλ7)/
√

8.

I chose these combinations to satisfy [Hi, E±αa ] = ±αaiE±αa , with αa as in (3.28).

These matrices have only one nonzero (off-diagonal) entry, so they only do raising or

lowering. You can check that [Eα1 , Eα2 = Eα3 , but Eα2 , Eα3 ] = 0 = [Eα3 , Eα1 ]. Notice

that the first equation is consistent with charge conservation: α3 = α1 + α2.

Positive and simple roots. Now we will decide who raises and who lowers (this

is not a big deal, but we have to choose a convention). Choose an order for the Cartan

generators (we’ve already done so by calling them H1 and H2). We declare the following

very arbitrary convention: a root α > 0 if its first nonzero entry is positive. (Note that

Zee chooses a different convention in section VI.2.) So with this choice αa=1,2,3 > 0 and

−αa=1,2,3 < 0, so Eαa are raising operators and E−αa are lowering operators. The signs

of the roots are indicated in the figure above. Now we can also say α > β if α−β > 0.

We can use the same convention for weights in general, and therefore we can say which

is the “highest weight” – the one that is bigger than all the others (with our choice of

convention). (The choice of convention will not matter in the end, I promise.)

A root is simple if it can’t be written as a sum of two positive roots with positive

coefficients. So here α1 = (1,
√

3)/2 and α2 = (1,−
√

3)/2 are simple, while α3 =

(1, 0) = α1 + α2 is not. The simple roots (with our convention) are in red in the root

diagram for su(3) above. Other conventions will lead to different simple roots (but

always the same number of them for a given Lie algebra).

Building an irrep. Now here’s one reward for all these definitions (the other

will be an understanding of all semisimple Lie algebras from just their simple roots).

Consider a highest weight state |φ〉 in some representation, with weight µφ (that is,

Hi |φ〉 = (µφ)i |φ〉). Then for any set of simple (hence positive) roots {αk},

|{αk}〉φ ≡ E−α1E−α2 · · · |φ〉

is another state in the representation – unless it’s zero because we lowered too far. So I

want you to think of |φ〉 as like the Fock vacuum |0〉. Just like |0〉 is annihilated by all

the annihilation operators aα |0〉 = 0, the statement that |φ〉 is a highest-weight state

means it is annihilated by all the raising operators E+α |φ〉 = 0 for any positive root

α. And the lowering operators E−α are just like the creation operators a†α |0〉 = |α〉.
Using the Lie algebra, the state |{αk}〉φ is an eigenstate of the Cartan generators and

has weight µφ −
∑

k αk.

To build a whole irrep, then, we just act with all sets of simple roots: Rφ =

span{|{α}〉φ}. The inner product between two such states is

〈{β}|{α}〉 = 〈φ|E†−βn · · ·E
†
−β1

E−α1E−α2 · · · |φ〉 = 〈φ|Eβn · · ·Eβ1E−α1E−α2 · · · |φ〉 .
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In this expression the Eβs are trying to get at the vacuum on the right to annihilate it,

and the only thing in their way are the E−αs. So just we have to use the commutators

[Eβ, E−α] = Nβ,−αEβ−α to move the annihilation operators to the right. It is tedious

but systematic and finite.

Note that there can be more than one linearly-independent state with the same

weight, in which case one must do Gram-Schmidt to obtain an orthonormal basis for

the irrep.

Notice that this construction of the states in an irrep gives, if we want it, an explicit

construction of the representation matrices for the Lie algebra (and hence the group).

[End of Lecture 16]

Now, which φ are allowed for finite-dimensional representations? Just like for su(2),

if we start in a random place we’ll just keep lowering into negative-norm states. We

have Eα |φ〉 = 0 for all positive roots α, which means φ + α is not a weight for any

positive root α (it is enough to check the simple roots). Applying the master equation

(3.25), we therefore have ra = 0 for each positive root αa, i.e.:

2αa · φ
(αa)2

= `a − ra !
= `a ≥ 0. (3.29)

This is the condition for φ to be a highest-weight state: 2αa·φ
(αa)2 must be a non-negative

integer for each a. As long as `a are integers, we’ll eventually reach zero by lowering.

Now notice that (3.29) is a linear condition on φ – the sum of two solutions is

also a solution. Since the αa for the simple roots are linearly independent, possible

highest-weight states are in one-to-one correspondence with choices of `a. A basis for

such highest weight vectors is ~µb satisfying

2~αa · ~µb

(αa)2

!
= δab. (3.30)

The ~µb are called fundamental weights, and any highest weight is

~φ =
r∑
b=1

`(φ)b~µb

where `(φ)b are called the Dynkin indices of the representation. (These r integers are

equivalent to the r Casimirs I mentioned in §3.3.)

If we define ΛR ≡ {naαa, na ∈ Z} (where αa are the simple roots) to be the root

lattice (where all the roots live), then the definition (3.30) says that the fundamental

weights form a basis for the dual lattice:

Λ?
R = {mbµ

b,mb ∈ Z} ≡ ΛW
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and this is the weight lattice, the space in which all weight vectors of finite-dimensional

reps live.

Building irreps of su(3). For example, for su(3), our simple roots are α1 =

(1,
√

3)/2, α2 = (1,−
√

3)/2 (which we’ve chosen to be unit vectors). The fundamental

weights µa satisfy µa · αb = δab. A little algebra shows that µ1/2 =
(

1
2
,±
√

3
6

)
.

Let’s build some irreps of su(3), starting with Rφ=µ1 ≡ R(1,0). Recall that this

means 2αa·φ
(αa)2 = `a − 0, where `a is the number of times we can lower with E−αa before

reaching the lowest-weight state. The fact that `2 = 0 means E−α2 |µ1〉 = 0 – the

highest weight state is already a lowest-weight state for su(2)α2 . So the only thing we

can do is lower with α1, producing a state with weight µ1 − α1. What is its `a − ra?

2αa · (µ1 − α1)

(αa)2
= (1, 0)− (2,−1) = (−1, 1).

Before going on, let’s record what happens to `a − ra when we lower with αb; it

means we subtract

Aab ≡
2αa · αb

(αa)2

su(3)
=

(
2 −1

−1 2

)
ba

.

This object on the LHS, in general, is called the Cartan matrix of the Lie group, and

encodes the inner products of the simple roots.
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So we see that the new state E−α1 |µ1〉 is the highest

weight of a doublet of su(2)α2 . To be more explicit:

we know that it has r2 = 0, since there is no state of

weight µ1−α1 +α2 (α2−α1 is not a root); therefore

it has `2−r2 = 1 =⇒ `2 = 1, and it can be lowered

with E−α2 exactly once. (Notice that we also know it

has r1 = 1 (since we got it by lowering the highest-

weight state once) and hence it has `1 − r1 = −1

and hence `1 = 0 – it can’t be lowered with E−α1 .)

So altogether we get three states. We know they

are linearly independent since they have different

weights (which are the eigenvalues of the (hermitian)

Cartan generators). This is the 3, the fundamental

representation of SU(3).

In the diagram at right, I’ve labelled the states in

the weight diagram by their values of `a − ra.

Some properties of the Cartan matrix: It is r × r. Aab is not symmetric in general

because of the normalization by (αa)2 – if there are roots of different lengths, it is not

symmetric. Aab = la−ra is twice the eigenvalue of J3
αa ≡ αa·H

(αa)2 for the SU(2)αa acting on∣∣αb〉. Hence the entries are all integers. Its diagonal entries are all 2 (simple roots have

J3 = 1 because they transform in the adjoint of their own SU(2)). The off-diagonal

entries are 0,−1,−2 or −3, and determine the angles between and relative lengths of

the simple roots. The point is that Aba encodes how does
∣∣αb〉 fit into reps of SU(2)αa .

It is an invertible matrix since the simple roots are linearly independent and there are

r of them.

To see how the 3 of SU(3) decomposes under various SU(2)α subgroups that share a

Cartan generator, we just slice the weight diagram along the corresponding axis α ·H:
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The three slicings correspond respectively to SU(2)12 (with generators λ1,2,3/2, includ-

ing the Cartan generator H1 = λ3/2), SU(2)α1 , SU(2)α2 . You can see that they all give

the same decomposition 3 = 2⊕ 1. As you will see on the homework, not every SU(2)

subgroup of SU(3) gives the same decomposition.

What about Rµ2 ≡ R(0,1)? The same logic again

produces three states, with weights which are mi-

nus the weights of the rep R(1,0). I claim that the

representation whose weights are minus those of R

is R̄, the complex conjugate rep (as you can see in

the bottom figure at right which shows them both

together). R̄ is defined in the same way as for finite

groups, as the rep whose operators are the complex

conjugates. In terms of the Lie algebra, this means

if TA generate R then −T ?A generate R̄. (The ex-

tra minus sign comes from the factor of i we put in

to make the Lie algebra generators hermitian.) The

Cartan generators in the rep R̄ are −H?
i . But Hi

are hermitian, so H? has the same eigenvalues as H,

and those of −H?
i are indeed −µi. In particular, the

highest weight of R̄ is minus the lowest weight of R.

In general for SU(3), then, Rnµ1+mµ2 ≡ R(n,m) = R̄(m,n), and the reps with n = m

are real.

Weyl group. Recall that SU(2) reps are symmetrical under m → −m. This is

true for each SU(2)α associated to each root, with J
(α)
z = α·H

α2 , so that J
(α)
z |µ〉 = α·µ

α2 |µ〉.
The state with eigenvalue −m in the same SU(2)α irrep, then, has weight µ− (`− r)α,

where `− r ≡ 2α·µ
α2 as usual.

A diagram helps. This is a reflection in the plane perpen-

dicular to α. So for any pair µ, α, this Weyl reflection maps

the set of weights to themselves, and preserves the roots. A

composition of reflections in non-parallel planes is a rotation.

This is worth writing bigger: if µ is a weight and α is a root, then

Wα : µ 7→ µ− 2α · µ
α2

α

is also a weight in the same irrep. In this way, just knowing a single weight and the

simple roots we can generate a whole bunch of weights. Notice that Wα(µ) is not

changed by rescaling α → λα for λ ∈ R? (positive or negative, but not zero). This

symmetry of the weight space explains the hexagons and triangles that appear for
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SU(3). In general, when constructing a weight diagram it is a good idea to apply all

Weyl reflections first – it’s much easier than the process where we keep track of the

SU(2)α irreps at each step.

Now let’s be ambitious and try R2µ1 = R(2,0).

2µ1 = (1, 1/
√

3). How did I know that the

same state was obtained by E−α1E−α2E−α1 |2µ1〉 ∝
E−α2E−α1E−α1 |2µ1〉? One way to know is by Weyl

reflection with α3 (which acts by reflection in the

y axis of the weight diagram), since we know that

there is only one state with weight 2µ1−α1. All the

other states have different weights and so are clearly

orthogonal. This gives the 6 = Sym23.

We can also see directly that the states with weight 2µ1 − 2α1 − α2 reached by the

two routes are linearly dependent. Start from |A〉 ≡ E−α1E−α2E−α1 |2µ1〉. E−α1E−α2 =

E−α2E−α1 + [E−α1 , E−α2 ]. The commutator is not zero because α1 + α2 is a root. But

it commutes with E−α1 because 2α1 + α2 is not a root. Therefore

|A〉 = E−α1E−α2E−α1

∣∣2µ1
〉

= |B〉+[E−α1 , E−α2 ]E−α1

∣∣2µ1
〉

= |B〉+E−α1 [E−α1 , E−α2 ]
∣∣2µ1

〉

where |B〉 ≡ E−α2E−α1E−α1 |2µ1〉 is the other state

in question. But we know that E−α2 |2µ1〉 = 0 be-

cause |2µ1〉 is a highest weight state for SU(2)α2 with

weight zero. Therefore

|A〉 = |B〉+ E−α1E−α1E−α2

∣∣2µ1
〉

= 2 |B〉 .

[End of Lecture 17]
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What about Rµ1+µ2 = R(1,1)? Here something

funny happens. Observe that µ1 + µ2 = α1 + α2

is a root vector. This is the adjoint representation,

whose weights are the roots. In this case we know

that the states with zero weight must be two-fold

degenerate, because there are two Cartan genera-

tors, |H1〉 , |H2〉. You can also check explicitly that

E−α1E−α2 |µ1 + µ2〉 and E−α2E−α1 |µ1 + µ2〉 are lin-

early independent.

For the adjoint rep, we know a priori that there

can be no degeneracy at any other weight, because

we proved that there is a unique generator for each

nonzero root.

To see how the adjoint of SU(3) decomposes under various SU(2)α subgroups that

share a Cartan generator, we just slice the weight diagram along the corresponding
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axis α ·H:

(3.31)

So the irreps of SU(3) are labelled by a pair of non-negative integers. A way to

arrange this information is as a Young diagram with at most two rows: for each (1, 0)

we put a column with one box and for each (0, 1) we put a column with two boxes (and

put all the 2-box columns on the left). So for example,

3 = (1, 0) = , 3̄ = (0, 1) = , 6 = (2, 0) = , 6̄ = (0, 2) = , 8 = (1, 1) = , 10 = (3, 0) = , · · ·

I claim that this notation is consistent with the symmetrization properties we as-

cribed to Young diagrams earlier (rows are symmetrized and columns are antisym-

metrized). In particular I claim that R2µ1 = 6 = Sym23. What is the highest weight of

Sym23? The Cartan generators act on the tensor product as Hi ⊗ 1 + 1 ⊗Hi, so their

eigenvalues add. The state |µ1〉⊗ |µ1〉 is symmetric (so it appears in Sym23) and is the

highest weight, with weight 2µ1. This argument works to show that Symn3 = ︸ ︷︷ ︸
n

for any n.

Similarly, I claim that Λ23 = 3̄. (Notice that the dimensions work out.) The state

|µ1〉 ⊗ |µ1〉 ∈ 3 ⊗ 3 is projected out by the antisymmetrization, so the highest weight

is µ1 + (µ1 − α1) where µ1 − α1 is the next-highest-weight. You can check that this is

µ1 − α1 = µ2, so Λ23 = Rµ2 = 3̄.

One piece of advice about the larger irreps of SU(3): if you

apply the Weyl group to the highest weight, you get the

boundary of the weight diagram – all possible highest weights

that would arise from different conventions, and hence also

the lowest weights for each convention. For example, for

R(5,2), this gives the figure at right.
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The full weight diagram can then be filled in by acting with

the lowering operators and stopping when you get to the

boundary determined by the Weyl orbit above. The only

catch is that some of the roots have a multiplicity larger than

one. As you move in from the outer layer, the multiplicity

increases by one with each step; the triangular regions in the

middle all have the same multiplicity.

Here is a weight diagram for R(3,1) which indicates the mul-

tiplicity. I made it just by plotting the Weyl orbits of the

highest weight µ, and of µ−α1, µ− (α1 +α2), µ−2(α1 +α2).

3.5 Cartan-Weyl method, continued: everything from the sim-

ple roots

[Georgi, §8] Suppose someone hands us the simple roots {α} of some Lie algebra. (That

someone will be Dynkin.) There are r of them, and they are linearly independent.

All roots from the simple roots. Any positive root is of the form φk =
∑

α kαα,

kα ≥ 0, and where k ≡
∑

α kα is a measure of how composite the root is. But which

objects of this form are actually roots?

We can answer this by induction on k. For k = 1, any φ1 is just a simple root.

Suppose we know the roots φk for k ≤ κ. Then consider Eα |φκ〉 (or equivalently

[Eα, Eφκ ]); this would give a root φκ+1 = φκ + α. As an element of a rep of SU(2)α,

the state |φκ〉 has 2α·φκ
α2 = `− r (recall that this is twice the J3

α ≡ α·H
α2 eigenvalue of the

state). This would be useless without other information, but we independently know

`, because we know how to make φκ from φk<κ. Therefore we know r. If r > 0, then

acting on it with Eα gives another state in the SU(2)α irrep, and hence φκ + α is also

a root.

For example, consider κ = 1. φ1 = β is a simple root. We know that the state |β〉
has ` = 0 with respect to any SU(2) by definition of simple root: β is not the sum of

any other positive roots. So the state |β〉 has 2α·φ1

α2 = 2α·β
α2 = ` − r = −r. So r = 0 if
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α · β = 0, which means that in this case α+ β is not a root. Otherwise α+ β is a root.

This procedure gets all the roots because any φκ+1 = φκ + α for some simple root

α. If it were not so, E−α |φκ+1〉 = 0 for all α (since otherwise this would produce a

state we could lower by α to get |φκ〉), which means |φκ+1〉 would be a highest-weight

state for every SU(2)α. But that means α·φκ+1

α2 ≤ 0,∀α which means φ2
κ+1 ≤ 0. �

For SU(3), α1,2 = (1,±
√

3)/2, and the Cartan matrix is Aba = 2αa·αb
(αa)2 =

(
2 −1

−1 2

)
ba

.

The −1s on the off-diagonal mean that r = 1 for |α2〉 with respect to SU(2)α1 (or |α1〉
with respect to SU(2)α2), so we conclude that α1 + α2 is a root. (And we proved that

there is one generator for each nonzero root, there is no question of multiplicity for the

adjoint.) So |α1 + α2〉 has ` = 1 for e.g. SU(2)α1 , and `− r = A11 + A12 = 2− 1 = 1.

We conclude it has r = 0, and therefore 2α1 + α2 is not a root. The same happens

for α1 + 2α2. So that’s all the positive roots, as we found earlier starting from the

Gell-Mann matrices.

The whole algebra from the simple roots. Recall that α·µ
α2 +r = j, α·µ

α2 −` = −j,
where j is the spin of the largest rep of SU(2)α that overlaps with |µ〉, and that the

generators of SU(2)α are J3
α = α·H

α2 , J
±
α = E±α/|α|. And in the adjoint rep, each nonzero

weight (i.e. root) labels a unique state |β〉 = |Eβ〉. So if we know r and ` (and hence

r+ ` = 2j) for some such state with respect to SU(2)α, then we know J3
α |β〉 = α·β

α2 |β〉,
which means |β〉 = η

∣∣j, α·β
α2

〉
, where only the relative phase η is not fixed. This means

moreover that we know how E±α act on this state.

This information is enough to construct the whole Lie algebra from just the simple

roots. Once we know all the roots, we know how the Cartan generators act: [Hi, Eα] =

αiEα. The only thing we really don’t know is the normalization in [Eα, Eβ] = Nα,βEα+β.

But this we can fix as follows. Consider SU(3) for example, and consider the state Eα2 .

On the one hand, we have

J+
α1 |Eα2〉 =

Eα1

|α1|
|Eα2〉 = Eα1

∣∣α2
〉

= |[Eα1 , Eα2 ]〉 .

On the other hand, with respect to SU(2)α1 , this state |α2〉 has ` = 0, r = 1, and hence

j = (`+ r)/2 = 1/2,m = (`− r)/2 = −1/2. Therefore

J+
α1 |Eα2〉 = J+

α1

∣∣∣∣12 ,−1

2

〉
=

1√
2

∣∣∣∣12 , 1

2

〉
=

η√
2
|Eα1+α2〉 .

Here η is a phase which is actually arbitrary and can be set to 1. I will keep it around

to show that it doesn’t matter. Therefore

|Eα1+α2〉 =
√

2η |[Eα1 , Eα2 ]〉 or Eα1+α2 =
√

2η[Eα1 , Eα2 ].
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Note that α3 = α1 + α2 is the other positive root of SU(3).

Slicking up this procedure a bit, you can see that it is the same as what we did

to construct the adjoint rep of SU(3) earlier. Starting from a positive root |φk〉 =∣∣∑
b kbα

b
〉

of compositeness k =
∑

b kb, raising with Eαb takes

kb → kb + 1, k → k + 1, `a − ra → `a − ra + Aab .

The vertical axis of that figure is the compositeness, starting from k = 0 for the Cartan

generators (and calling k < 0 for the negative roots).

Once we know how to get all the positive roots as commutators of simple roots, we

can get all of the commutators by the Jacobi identity. For example,

[E−α1 , Eα1+α2 ] =
√

2η[E−α1 , [Eα1 , Eα2 ]]
Jacobi

=
η√
2
Eα2 .

(In doing so, don’t forget that α1 − α2 is not a root, and so [Eα1 , E−α2 ] = 0.) Or

[E−α2 , Eα1+α2 ] =
√

2η[E−α2 , [Eα1 , Eα2 ]]
Jacobi

= − η√
2
Eα1 .

Dynkin diagrams. Since the simple roots and their geometry determine the whole

algebra, it’s useful to have a notation from which it is easy to read off their properties.

A Dynkin diagram associates to each simple root a circle. Then for each pair of

simple roots, we connect them in a way that encodes the angle between them. This

information is also correlated with their relative lengths. Shorter roots are indicated

with darker circles. (It will turn out that only two lengths are possible in a simple

algebra, so there are only filled or empty circles.) So the number of circles is the rank.

The Dynkin diagram encodes all the information about the algebra, in particular the

Cartan matrix. Some examples: SU(2): SU(3): G2:

Example: G2. From the Dynkin diagram, we can read off that the Cartan matrix

for G2 is

(
2 −3

−1 2

)
. Explicit simple roots are

α1 = (0, 1), α2 = (
√

3,−3)/2, (3.32)

which you can check indeed have

2α1 · α2

(α1)2
= −3,

2α1 · α2

(α2)2
= −1, (3.33)

and hence cos θα1α2 = −
√

3
2

and θα1α2 = 150◦.

Let’s build all the roots. (3.33) says that |α2〉 has ` = 0, r = 3 with respect to

α1, (so we can raise |α2〉 at most 3 times with Eα1) while |α1〉 has ` = 0, r = 1 with

110



respect to α2 (so we can raise |α1〉 only once with Eα2). So far φ2 = α1 + α2, φ3 =

2α1 +α2, φ4 = 3α1 +α2 are roots, but α1 + 2α2 and 4α1 +α2 are not. I’ve labelled the

roots by their ‘compositeness’ k =
∑

α kα. These are the only roots at k = 2, 3, 4 since

we’ve ruled out α1 + 2α2, and 2α1 + 2α2 = 2(α1 + α2) is twice a root and hence not a

root35.

Since 4α1+α2 is ruled out, the only possibility for φ5 = 3α1+

2α2. We’d get this from φ4 = 3α1 + α2 by acting with Eα2 .

With respect to SU(2)α2 , |φ4〉 has `−r = 3A12+A22 = −1. It

has ` = 0 since 3α2 is not a root. Therefore it has r = 1 > 0

and we conclude that it can be raised by Eα2 to get a new

root φ5 = 3α1 + 2α2. But because r = 1 (and not larger)

this is the end of the line. More directly we can see that

3α1 + 3α2 or 4α1 + 2α2 would be integer multiples of roots

and therefore not roots. In the diagram at right, I indicate

the simple roots in black, the rest of the positive roots in red,

the negative roots in blue, and the two weights associated

with the two Cartan matrices |H1,2〉 as a dot and a circle

at the origin. The orange arrows indicate the trajectory by

which we constructed all the positive roots. So we see that

G2 is 6 + 6 + 2 = 14 dimensional.

3.6 Classification of simple Lie algebras

[Georgi §20.1, Zee §VI.5] The simple roots of a simple Lie algebra g have the following

(necessary and sufficient) properties:

(A) They are r = rank(g) linearly independent vectors {αi}.

(B) The off-diagonal entries of the Cartan matrix (their matrix of inner products, up

to normalization), can only be certain non-positive integers:
2αi·αj
α2
i
∈ {0,−1,−2,−3}.

(C) They are indecomposable. This is a requirement of simplicity and just means that

the Dynkin diagram is connected.

From here the classification of simple Lie algebras36 is just geometry.

35Alternatively, we can see more directly that 2α1 +2α2 can’t be a root. We would have to get it by

acting with Eα2 on
∣∣φ3 = 2α1 + α2

〉
. With respect to SU(2)α2 this state has `− r = 2A12 +A22 = 0.

But it has ` = 0 since 2α1 is not a root. So it has r = 0, and can’t be raised by Eα2 .
36Note that we don’t have to specify ‘compact’ in this classification. Each of these algebras can be

associated with various groups by allowing the parameters s in eisX to be variously real or imaginary

or complex. When s are real and X = X†, we get compact simple groups.
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Lemma 1: The only possibilities at rank 3 are

Proof: For three linearly independent vectors, αi=1..3, the sum of the angles between

them is less than 2π:
∑

i<j θαiαj < 2π. But here the angles are chosen from θαiαj ∈
{90◦, 120◦, 135◦, 150◦}, and at most one can be 90◦ lest the algebra be decomposable.

The following just barely fail this condition, since the angles add up to exactly

2π, and hence the simple roots would be coplanar and not linearly independent (they

satisfy conditions B and C but not A):

The powerful bit is that we can apply lemma 1 to any subdiagram of 3 connected

nodes – it has to be one of these. We immediately conclude that a diagram with r ≥ 3

cannot have triple lines, and therefore the only diagram with a triple line is G2

Note, by the way, that a subdiagram of the Dynkin diagram determines a subalgebra

of g.

Lemma 2: If the Dynkin diagram contains two nodes connected by a single line,

then the diagram obtained by smooshing together those two nodes into one node is

also allowed.

Proof: Call the roots associated with the two nodes α and β. First of all, α·β/α2 = −1
2
,

and α2 = β2, so α+β has the same length as α and β, (α+β)2 = α2. Lemma 1 implies

that no node connects to both α and β: a node γ connected to α has γ · β = 0, and a

node δ connected to β has δ · α = 0. This means γ · (α+ β) = γ · α, δ · (α+ β) = δ · β,

so replacing the two nodes with the node α+ β produces a diagram that still satisfies

A,B,C. (In fact, it’s the Dynkin diagram for a subalgebra of the original one: recall

that if the angle between α and β is 120◦ then α + β is also a root.)

This implies that no diagram has more than one double-line and no diagram

has a loop . This is because they could be smooshed using Lemma 2 into a

configuration that would contradict Lemma 1.

Lemma 3. If
γ α

β
is allowed then so is γ α+ β (I am not distinguishing

between black and white nodes here, and the stuff to the left of γ is arbitrary.)

Here α · β = 0, (α + β)2 = α2 + β2 = 2α2 and 2α·γ
α2 = 2α·γ

γ2 = 2β·γ
β2 = 2β·γ

γ2 = −1. So
2(α+β)·γ

γ2 = −2, 2(α+β)·γ
(α+β)2 = −1 which says were α + β a simple root, there would be a

double line between α + β and γ.
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From this we conclude that if were OK, then would be. Com-

bining with Lemma 2, we see that only one junction is allowed.

A nice way to restate Lemmas 3 and 1 together (see Zee p. 391 for a different proof)

is that no more than three lines can come out of any node of a Dynkin diagram.

Lemma 4 is where it gets a little ugly. Recall that the Cartan matrix for a

semisimple Lie algebra is invertible, meaning that it has no kernel. A vector annihilated

by K would imply a linear relation between the simple roots. The following monsters

correspond to K matrices with a kernel:

1 2 3 2 1

2

1

1 2 3 4 3 2 1

2

2 4 6 5 4 3 2 1

3

1 2 3 2 1 1 2 3 4 2

The proof is: define the number next to αa in the diagram to be ξa. I claim that∑
a ξaαa = 0, so that the simple roots would not be linearly independent. In each case,

we could see this by showing that 0 = (
∑

a ξaαa)
2. Actually these sets of numbers are

not so mysterious: as you can check, they are solutions to Kabξb = 0 where Kab is the

Cartan matrix associated with the would-be Dynkin diagram. These vectors ξb are like

harmonic functions on the would-be Dynkin diagram. Their existence implies a linear

relation among the roots.

This leaves the following classification of four infinite families (the classical Lie

algebras) and five exceptional Lie algebras37:

An = su(n+ 1)

Bn = so(2n+ 1)

Cn = sp(2n)

Dn = so(2n)

G2

F4

E6

E7

E8

37I got the Tikz for the Dynkin diagrams from here.
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It remains to show that the labelling of the infinite families is consistent with our

previous definitions of these groups. We’ll do that in §3.7.

At low rank there are a few collisions: A1 = B1 = C1 are all just a single node.

B2 = C2 are the same diagram; this is the statement that sp(4) = so(5). D3 = =

A3, that is so(6) = su(4). If we keep removing the middle node we get D2 = A1 × A1,

not a simple algebra. And there is no D1.

A nice way to discover E6,7,8 is described in Zee’s book

(§VI.5). Consider any Dynkin diagram with a single junc-

tion. Call the roots on each branch u1 · · ·un−1, un =

x, v1 · · · vm−1, vm = x,w1 · · ·wp−1, wp = x, where x is the

root associated to the junction. For convenience, normalize

all the roots to unit length. The vectors

u =
n−1∑
k=1

kuk, v =
m−1∑
k=1

kvk, w =

p−1∑
k=1

kwk

(just like in the forbidden diagrams above) satisfy some sim-

ple properties that you can read off the Dynkin diagram:

u1 un−1 x vm−1 v1

wp−1

w1

u · v = 0, v · w = 0, w · u = 0, u2 =
1

2
n(n− 1), v2 =

1

2
m(m− 1), w2 =

1

2
p(p− 1),

x · u = −1

2
(n− 1), x · v = −1

2
(m− 1), x · w = −1

2
(p− 1).

Now demanding that s2 > 0, where s is the projection of x onto the orthogonal com-

plement of the space spanned by u, v, w gives

1 <
1

n
+

1

m
+

1

p
.

At least one of the three integers must be < 3. Besides (n,m, p) = (n, 2, 2) which is

so(2n+ 4) there are only three solutions (3, 3, 2), (3, 4, 2), (3, 5, 2) which are E6,7,8.

Some cultural remarks. Many other mathematical objects are classified by

Dynkin diagrams. A Dynkin diagram (and its corresponding algebra) is called simply

laced if there are no double or triple lines – these are the ADE cases. Discrete sub-

groups of SU(2) (which includes the symmetries of the platonic solids) have an ADE

classification by simply-laced Dynkin diagrams. (A are the cyclic groups, D are the

dihedral groups, and E are the TOI groups – tetrahedral, octahedral and icosahe-

dral. In fact these are all also subgroups of SO(3), and hence rotational symmetries of

three-dimensional objects. The TOI groups are the symmetries of the platonic solids.)
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There is also an ADE classification of singularities of complex 2-manifolds. The last

two classifications are related by the fact that the singularity associated with a given

Dynkin diagram X can be realized as a quotient C2/ΓX , where ΓX is the associated

discrete subgroup of SU(2). (This is a space with holonomy ΓX ⊂ SU(2) and so

preserves some supersymmetry in string compactification.) String theory unifies all

three of the classifications I’ve discussed by the fact that compactification of (type

IIA) string theory on a space with a singularity of type X produces a gauge theory

with gauge group X. (A gauge theory has a vector field for each generator of the Lie

algebra of X.)

The way this gauge theory arises is a beautiful thing: the gauge bosons associated

with the Cartan subalgebra Hi are visible in supergravity, as (zero-energy, Ramond-

Ramond38) states of the superstring. But the gauge bosons associated with the raising

and lowering operators Eα come from D2-branes wrapping shrinking 2-cycles inside the

4-manifold. The fact that these gauge bosons are charged under the Cartan subgroup

comes from the fact that D-branes carry Ramond-Ramond charge. Since the Cartan-

Weyl labelling of the generators of the algebra is arbitrary (we could always pick a

different set of r generators to be the Cartan), this means that strings and D-branes

are somehow fungible. For more on this, take a look at this review.

Another thing with an ADE classification is modular invariant partition functions

of unitary minimal models of 2d conformal field theory. See, e.g. Di Francesco et

al, Conformal Field Theory, aka the big yellow book or this free, briefer, and more

accessible book.

38I mention this name since it will come up again when we talk about spinor representations.
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3.7 The classical groups

3.7.1 An−1 = su(n)

U = eiH is unitary if H = H† and special unitary (detU = 1) if trH = 0, so su(n) =

{hermitian, traceless n× n matrices }. There are n2− 1 of these. You might think we

need to find some analog of the Gell-Mann matrices, but it is actually much better to

directly construct the Cartan-Weyl basis.

For the Cartan subalgebra h, we can just use the n−1 diagonal ones, in some basis:

h = {aihi|
∑
i

ai = 0}.

Here hi is the diagonal matrix with zeros everywhere but a 1 in the ii entry, (hi)jk =

δijδik. Resist the temptation to choose an explicit representation of the n− 1 indepen-

dent ha – this is where all the ugly complications in the discussion in Georgi and Zee

come from.

The raising and lowering operators are also simple: consider the matrix E(ij) which

has a 1 in the ij entry and zeros everywhere else (if you insist: (E(ij))kl = δikδjl). These

are eigenvectors of the Cartan generators:

[a · h,E(ij)] = (ai − aj)E(ij).

a · h is the diagonal matrix with ai in the ii entry. The coefficient of a` in that last

equation is

[h`, E(ij)] = (δ`i − δ`j)E(ij) ≡ (ei − ej)`E(ij)

where ei is the vector with a 1 in the ith entry and zeros everywhere else (if you insist:

(ei)` = δi`). This says that ei − ej ≡ αij is a root for each i 6= j. Notice that these

are n-dimensional vectors, but they all lie in the hyperplane perpendicular to
∑

i ei:∑
i ei · αa = 0. All the complications come from solving this equation to make explicit

(n− 1)-vectors. The weights of the fundamental representation are just ea, a = 1..n.

Choose a convention for positivity where the positive roots are ei−ej, i < j. Notice

that there are n(n−1)
2

positive roots, n(n−1)
2

negative roots, and n−1 Cartan generators,

giving n2− 1 generators altogether – everybody is accounted for. The simple roots are

αa ≡ ea − ea+1, a = 1..n− 1.

The nonzero off-diagonal entries in the Cartan matrix are

2αk · αk+1

α2
k

=
2

2
(ek − ek+1) · (ek+1 − ek+2) = −1.

So we confirm that the Dynkin diagram is
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The drawable examples are39

su(3) : su(4) :

What are the fundamental weights, µb? They satisfy 2αa·µb
(αa)2 = δab. The solution is

strikingly simple: µb =
∑b

a=1 ea.

Where does this come from? First consider µ1 = e1. This is the highest weight of

the fundamental representation. How did I know this? Well, the eigenvectors of the

n×n matrices Hi are just |j〉, with eigenvalues δji = (ej)i. With our convention, |1〉 is

the highest weight state, so the highest weight is e1.

Now consider the Λmn rep. The highest weight state is

(|1〉 ⊗ |2〉 ⊗ |3〉 · · ·)− (|2〉 ⊗ |1〉 ⊗ |3〉 · · ·)± · · · ≡ |123 · · · 〉

where we choose the m highest-weight vectors and antisymmetrize them. This state

has weight
∑m

a=1 e
a = µm, exactly the mth fundamental weight.

Let’s think about the states of this irrep a bit more. Letting

|i1 · · · im〉 = (|i1〉 ⊗ |i2〉 ⊗ · · ·)− (|i2〉 ⊗ |i1〉 ⊗ · · ·)± · · · ,

a general state is |A〉 = Ai1···im |i1 · · · im〉. The components of the wavefunction are an

antisymmetric m-index tensor. This rep has dimension

(
n

m

)
.

As always, the general irrep then has highest weight
∑

k qkµ
k, qk ∈ Z≥0. Now the

wavefunction has qk sets of k indices, antisymmetric within each set, and you can prob-

ably guess that we can represent it with a Young diagram.
The highest weight state occurs when all the indices

associated with the first row are equal to 1 (hence,

symmetric), those in the second row are equal to 2,

and so on. This reproduces the weight
∑

k qkµ
k.

39Note that to draw the root diagram for su(4) I did have to succumb to choosing a basis for

the hyperplane
∑
i e
i = 0 in order to project down the 4-component vectors. A good basis is

( e
1−e2√

2
, e

1+e2−2e3√
6

, e
1+e2+e2−3e4√

12
). Notice that these are the entries of the Cartan generators in Georgi

and Zee.
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The diagram associated with the conjugate representation of

SU(n), R̄λ = Rλ̄, where λ̄ is the Young diagram obtained as

follows. Draw a box of height n and width
∑

k qk and put

the diagram in the upper left corner of the box. Whatever’s

left is the dual diagram (rotated by π). Note that this agrees

with what we found for SU(3). More on Young diagrams and

reps of SU(n) later.

As a simple consequence of the notion of conjugate tableau, we can see that the

highest weight of the n̄ representation is µn−1 =
∑n−1

a=1 ea. This vector has the same

projection onto the plane perpendicular to
∑

a ea as −e1. So the weights of the n are

−ea.

[End of Lecture 18]

3.7.2 so(N) (Bn, Dn)

Recall that the generators of so(N) are the antisymmetric imaginary matrices, of which

N(N − 1)/2 are linearly independent. Unfortunately none of these are diagonal, but

we can choose as Cartan generators the generators of SO(2) rotations in 2d subspaces.

You see that odd and even will be different, since for odd N there will be a 1d subspace

left over.

N = 2n even: So the Cartan generators are

(Hm)jk = −i (δj,2m−1δk,2m − δj,2mδk,2m−1) = σ2 ⊗ projector onto mth 2d subspace .

The eigenvalues of Hm are ±1 and 0, so the weights of the 2n rep are ±ei, i = 1..n.

One way to get the roots, then, is just to take differences of these weights. This gives

{±ei ± ej, i 6= j}

where the ± are uncorrelated. Notice that ±2ei, which would take the weight ei to

the weight −ei, is not a root. This is because the eigenvectors of, say H1, with evals

±1, are (1,±i, 0, 0 · · · )T . But no rotation can take (1,+i, · · · ) to (1,−i, · · · ) (and

preserve everyone else) – this would require the operation diag(1,−1, 1, 1, · · · ) which

has determinant −1.

Notice that, including the n Cartan generators, there are n + 4n(n−1)
2

= n(2n − 1)

states in the adjoint rep, which agrees with dim so(2n).

The positive roots are {ei ± ej, i < j} and the simple roots are ei − ei+1(i =

1..n− 1), en−1 + en. This gives the Dynkin diagram Dn = so(2n)
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The drawable examples are40:

so(4) = su(2)× su(2): so(6):

You can see that so(4) just falls apart into two copies of su(2).

The fundamental weights are

µb =
b∑

a=1

ea, b < n−1, µn−1 =
1

2

(
e1 + e2 + · · ·+ en−1 − en

)
, µn =

1

2

(
e1 + e2 + · · ·+ en−1 + en

)
.

(3.34)

Again the first n − 2 come from Λb2n. The last two are special and produce spinor

representations. The factor of 1
2

means that these reps do not appear in tensor products

of the fundamental.

N = 2n+1 odd: For so(2n+1), we add an extra 1d block, but we don’t add a new

Cartan generator – the Cartan subalgebra is exactly the same as for so(2n). But there

are new roots, which connect the 2d subspaces to the 1d subspace (which has weight

zero for all n of the Cartan generators). Thus the extra roots are ±ei. Altogether, the

nonzero roots are {±ei± ej (i 6= j),±ei}. Including the n Cartan generators, there are

n+4n(n−1)
2

+2n = n(2n+1) states in the adjoint rep, which agrees with dim so(2n+1).

The positive roots are {ei ± ej (i < j), ei} and the simple roots are ei − ei+1 (i =

1..n− 1) and en. This reproduces the Dynkin diagram Bn = so(2n+ 1)

so(5) : so(7) :

The fundamental weights are

µb =
b∑

a=1

ea, b < n, and µn =
1

2

(
e1 + e2 + · · ·+ en−1 + en

)
.

The last one is the highest weight for the spinor representation.

40A mathematica notebook for looking at the 3d root diagrams from different angles is here
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3.7.3 Cn = sp(2n)

The group Sp(2n) is made of 2n × 2n matrices preserving an antisymmetric form

ω : V ⊗ V → C (where V is a 2n-dimensional vector space, the carrier space for

the fundamental rep): M ∈ Sp(2n) if ω(Mv,Mw) = ω(v, w) for all v, w ∈ V . (In

components, ω(v, w) ≡ ωijv
iwj.) What does this mean for the Lie algebra? If M = eiX ,

with X small, the condition is ω(Xv,w) + ω(v,Xw) = 0. Choosing ω = Y ⊗ 1 =(
0 −i1n

i1n 0

)
(where Y = σy; note that a different choice of AS matrix here would not

change the group theory) the condition on X is

Y XTY +X = 0. (3.35)

Demanding a unitary representation, we can take X to be hermitian, and expand it in

Pauli matrices. Noting that Y (σi)
T
Y = −σi, the solution to (3.35) is

X = σi ⊗ Si + 12 ⊗ A (3.36)

where Si are real symmetric and A is imaginary antisymmetric. The dimension of

Sp(n) is therefore 3n(n+1)
2

+ n(n−1)
2

= n(2n+ 1).

A good choice of Cartan subalgebra is just to pick the diagonal ones of (3.36),

namely

Hm = σ3 ⊗ hm =

(
hm 0

0 −hm

)
where hm is defined as above to be the matrix with a 1 in the mm entry and zeros every-

where else. The state |i〉 is an eigenstate of Hm with eigenvalues +δim, i ≤ n,−δim, i >
n. The nonzero weights of the 2n are then ±ei, just like for SO(2n). Does this mean

the roots are the same as those for so(2n)? No: the roots are ±ei± ej, i 6= j as before,

but also ±2ei. The latter appears because now the eigenvectors with eigenvalues ±1

under (for example) H1 are just (100000)T and (000100)T (for n = 3) and they are

related by a Sp(2n) transformation.

So the positive roots are {ei±ej (i < j), 2ei}. Check that we reproduce dim Sp(2n) =

n(2n+ 1) from the n Cartan generators plus these 2(n(n− 1) + n) where the 2 counts

the negative roots. The simple roots are ei− ei+1 (i = 1..n− 1) and 2en. This matches

the Dynkin diagram Cn = sp(2n)

sp(4) = so(5) : sp(6) :
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You can see that the root diagram for sp(4) is just that of so(5) rotated and rescaled.

The normalization of the roots depends on our convention for normalizing the Car-

tan generators, and thus is not a priori meaningful. You can check that all of their

representations are the same.

3.8 Regular subalgebras

While we’re on the subject of Dynkin diagrams: some subalgebras are easy to read off

of the Dynkin diagram – just take any subdiagram. This will produce a subalgebra

which shares Cartan generators and roots. Such a subalgebra is called regular.

An important example in high energy theory is the sequence of regular subalgebras:

⊃ ⊃

E6 ⊃ SO(10) ⊃ SU(5), the last step of which we’ll understand in detail in the next

section.

Not even every regular subalgebra arises this way: for example, G2 has an SU(3)

subalgebra with simple roots α2, 3α1 + α2 (where α1,2 are the simple roots of G2 in

(3.32)), but this is not a associated with a sub-diagram. Another example which does

not arise just by leaving out nodes is G2 ⊂ SU(4). If you just forget about one of the

Cartan generators of SU(4), i.e. project its root diagram onto the subspace spanned

by H1,2 you find exactly the root diagram of G2 (notice 14 = 15 − 1). (See this

mathematica notebook where I discovered this by accident.)

A maximal subalgebra is one with the same rank. Here is a nice trick for reading

off maximal regular subalgebras. Add to the Dynkin diagram an extra node for α0 ≡
the lowest root. Since α0 is not linearly independent of the others, this diagram will

violate condition A. But if we remove any one of the nodes from this extended Dynkin

diagram, we’ll get an allowed Dynkin diagram, for a regular maximal subalgebra of the

original algebra. For example, the lowest root of su(n) (in the notation and convention

for positivity of subsection §3.7) is en − e1. The lowest root of Bn and Dn is −e1 − e2.

The lowest root of Cn is −2e1.

(Interpreted differently, the extended Dynkin diagram is related to an (infinite

dimensional) affine Lie algebra; I learned about this from here but probably there is a

more elementary reference.)

The extended Dynkin diagrams are:
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Ân = ŝu(n− 1)

B̂n = ŝo(2n+ 1)

Ĉn = ŝp(2n)

D̂n = ŝo(2n)

Ĝ2

F̂4

Ê6

Ê7

Ê8

From the extended diagram for so(2n + 1) you can see the obvious fact SO(2n) ⊂
SO(2n+ 1). From the extended diagram for G2 you can see the SU(3) subgroup. And

you can see, for example, that F4 has a B4 subgroup and a A1 × C3 subgroup.
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3.9 Spinor representations

Spinor representations of the algebra so(N) are projective representations of the group

SO(N). They exist because SO(N) is not simply connected; its covering space is a

group with the same algebra called Spin(N). They fit in the exact sequence

1→ Z2 → Spin(N)→ SO(N)→ 1,

as in our discussions of projective reps in (2.7). But no one will be confused about

what you mean if you say ‘spinor reps of SO(N)’.

We could directly construct the spinor representations of so(N) starting with the

highest weights we found in §3.7, but we will do it in another way where we get to use

our knowledge of fermions.

Imagine we have 2n majorana zeromodes41:

{γi, γj} = 2δij, γ†i = γi, i = 1 · · · 2n . (3.37)

These are operators acting on some Hilbert space. Our next job is to identify the

structure of this Hilbert space. The fact that δij appears suggests some connection

with SO(2n).

To make this look more familiar, and define

ca ≡
1

2
(γ2a−1 + iγ2a) , (and therefore) c†a ≡

1

2
(γ2a−1 − iγ2a) a = 1..n.

Then (3.37) implies that these operators satisfy

{ca, c
†
b} = δab, {ca, cb} = 0,

the canonical fermion creation-annihilation algebra, for n fermion modes. In particular

(c†a)
2 = 0 is an implementation of Pauli exclusion.

Now we know what the structure of the Hilbert space is: there is a vacuum, |0〉,
with no fermions: ca |0〉 = 0,∀a. Then we can create a single fermion in mode a by

c†a |0〉. To specify the general state, we must say whether each mode is occupied or

unoccupied.

H = span{|s1 · · · sn〉} (3.38)

where for reasons that will become clear momentarily, I’ve labelled the states by

sa = ±1
2

(+1
2

for unoccupied states, −1
2

for occupied states). c†aca |s1 · · · sn〉 = (1
2
−

sa) |s1 · · · sn〉. So the dimension of H is 2n.

41Incidentally, realizations of this situation (with the label i associated with controllable particles)

is being vigorously sought by many people in connection with quantum computing. Also incidentally,

this is called a Clifford algebra.
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Actually a connection between the Clifford algebra and SO(2n) can be made very

directly as follows. Let

T ij =
1

2
iγiγj. (3.39)

Note that iγiγj = (iγiγj)
† is hermitean. I claim that (just using the Clifford algebra

(3.37)), these operators satisfy the so(2n) Lie algebra, (3.15). You can show this

directly for the T ij.42

But then we see that the Hilbert space (3.38) provides a representation of the

Lie algebra so(2n). (Is it then a representation of SO(2n)? Almost: it’s a spinor

(projective) representation.) Its dimension is 2n.

Actually this rep of so(2n) is reducible. This is because of the operator γ2n+1 ≡
Cγ1 · · · γ2n ≡ γF . γF anticommutes with all of the majoranas: {γF , γi} = 0,∀i. There-

fore it commutes with all the generators i
2
γiγj (it is an intertwiner). Notice that C

can be chosen so that γ2n+1 = γ†2n+1 and γ2
2n+1 = 1 so that (3.37) can be satisfied with

i, j = 1 · · · 2n + 1. Since γ2
F = 1, its two eigenspaces have γF = ±1 – these are are

2n−1-dimensional invariant subspaces which are irreps of so(2n).

We can make contact with the Cartan-Weyl method. A cartan subalgebra is gen-

erated by {Ha ≡ 1
2
iγ2a−1γ2a, a = 1..n}. Note that c†aca = 1

2
(1 + iγ2a−1γ2a) are the

fermion occupation number operators. The eigenvalues of the Ha on the spinor states

are sa = ±1
2
. That is, the weight vectors for the spinor rep are 1

2
(±e1 ± e2 ± · · · ± en).

The parity operator is γF = sign (H1H2 · · ·Hn). Thus, the number of (−1)s in the

weight vector is equal to γF . The highest weight of the irrep with an even number of

minus signs is 1
2

∑n
a=1 e

a, and the highest weight of the irrep with an odd number of

minus signs is 1
2

∑n−1
a=1 e

a− 1
2
en. These are exactly the last two fundamental weights of

SO(2n) that we found in (3.34).

For the raising and lower operators, consider the following operators acting on the

fermion Hilbert space:

Ha =
1

2
iγ2a−1γ2a = c†aca −

1

2
, Eab ≡ c†acb, E ′ab ≡ c†ac

†
b (a 6= b). (3.40)

Eab removes a fermion in mode b and creates one in mode a. For example, E12 takes∣∣−1
2
,+1

2
, · · ·

〉
to
∣∣1

2
,−1

2
, · · ·

〉
, so these two states differ by the root vector e1 − e2. You

42The best way to do this is to consider the object ΓA ≡ 1
2AijT

ij , where Aij = −Aji is an

antisymmetric matrix (hence parametrizes an element of SO(2n)). Then show that

[ΓA,ΓB ] = Γ[A,B].

This shows that the map A → ΓA is a representation of SO(2n). (It also works if there is an odd

number of γs.)
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can check that

[Ha, Ebc] = (δab − δac)Ebc = (eb − ec)aEbc.

This is the Cartan-Weyl form of SU(n) (it says the roots are ea − eb). Note that

(Ebc)
† = Ecb. So this is an SU(n) algebra (if we throw away

∑
aHa – the total particle

number – which commutes with everyone and generates a U(1) subgroup). This is

an su(n) ⊂ so(2n) subalgebra, which will be useful later. It generates the subgroup

which preserves the pairings between the majoranas that we’ve chosen (the “complex

structure”). That is, it preserves the particle number
∑

a c
†
aca.

How do the spinor reps decompose under SO(2n) ⊃ SU(n)? The state |0〉 with no

particles has H̃a ≡ Ha − 1
2

eigenvalue 0 and is annihilated by the Eab – it is a singlet

under this SU(n). The states with one particle form an n dimensional irrep, Aac
†
a |0〉;

The states with two particles form an n dimensional irrep, Aabc
†
ac
†
b |0〉, Aab = −Aba;

the states with k particles form the rep Λkn, Aa1a2···akc
†
a1
c†a2
· · · c†ak |0〉. The states with

an even (odd) number of particles make up the positive (negative) chirality spinor rep

of so(2n). For example, for n = 5, we’ve just shown that

16+ = 1⊕ 10⊕ 5̄, 16− = 5⊕ 1̄0⊕ 1.

This is worth a table:

# of particles state irrep of SU(n=5)

0 |0〉 1

1 Aac
†
a |0〉 n = 5

2 Aabc
†
ac
†
b |0〉 n(n− 1)/2 = 10

3 Aabcc
†
ac
†
bc
†
c |0〉 = Ãdecdce |1〉 n̄(n̄− 1)/2 = 1̄0

4 Aece |1〉 n̄ = 5̄

5 |1〉 1

It’s worth saying a little more about what happens as we add more particles, for

example, in the case of n = 5. Let’s introduce the ‘plenum’ (opposite of vacuum) state

which is totally full of particles: |1〉 ≡ c†1c
†
2c
†
3c
†
4c
†
5 |0〉 = 1

n!
εa1···anc

†
a1
· · · c†an |0〉. Then we

can write the 1̄0 states as

Aabcc
†
ac
†
bc
†
c |0〉 = εabcdeÃdec

†
ac
†
bc
†
c |0〉 = Ãdecdce |1〉 .

(Maybe there should be some multiplicative factors.)

Now back to the rest of the raising and lowering operators in (3.40). E ′ab creates

fermions in modes a and b (if none are there already). This is like a Cooper-pair

operator in a superconductor, which breaks particle number symmetry. For example,

125



E ′12 takes
∣∣−1

2
,−1

2
, · · ·

〉
to
∣∣1

2
, 1

2
, · · ·

〉
, so these two states differ by the root vector e1+e2.

You can check that

[Ha, E
′
bc] = (δab + δac)Ebc = (eb + ec)aEbc.

That is, these operators are associated with the rest of the so(2n) roots ea + eb, a 6=
b. Note that Ebc = −Ecb but (E ′bc)

† = cccb is associated with the root −eb − ec.

So altogether we have the n cartan generators, the n(n − 1) Eabs and the n(n − 1)

E ′ab, (E
′
ab)
†s, which gives n(2n− 1) generators altogether – we didn’t miss anyone.

To get SO(2n + 1), just let γ2n+1 ≡ Cγ1 · · · γ2n = γF , with C chosen as above so

that γ2n+1 = γ†2n+1 and γ2
2n+1 = 1. Then (3.37) is satisfied with i, j = 1 · · · 2n+ 1. The

generators (3.39) (with i, j now running up to 2n + 1) then satisfy the so(2n + 1) Lie

algebra, and the same Hilbert space we’ve been talking about all along also gives a

representation of (the double-cover of) SO(2n+ 1). This is an irrep of so(2n+ 1). This

is consistent with the fact that we found a single fundamental weight of so(2n+1) with

factors of 1
2
.

Matrix representation. Regard the 2n dimensional Hilbert space

H = span{|s1 · · · sn〉 = |s1〉 ⊗ |s2〉 · · · ⊗ |sn〉} = ⊗na=1Ha

where Ha is a single qubit. On this space, we have a set of Pauli matrices for each ‘site’

a = 1..n, ~σa |s1 · · · sn〉 =
∑

s′a
(~σ)sas′a |s1 · · · s′a · · · sn〉. That is, ~σa = 1 ⊗ · · ·~σ · · · ⊗ 1,

where the ~σ is in the ath entry. In this representation, the Cartan generators are just

Ha = 1
2
Za. Note that these satisfy H2

a = 1/4; since the Cartan generators could be

anyone, this means that all the generators in this rep satisfy (Tij)
2 = 1/4.

Our next goal is to write all of the SO(2n + 1) generators (and hence the SO(2n)

subgroup) as matrices on this collection of n qubits. Consider the raising operators

Ea ≡ T2a−1,2n+1 − iT2a,2n+1 = i
1

2
(γ2a−1 − iγ2a) γF = ic†aγF .

Essentially Ea ∼ c†a, up to a sign. These satisfy {Ea, Eb} = 0 (just like {c†a, c
†
b} = 0.

On the basis states |s1 · · · sn〉, Ea acts like σ+
a . BUT the modes associated with

different sites do not commute, rather they anticommute {Ea, Eb} = 0. The trick to

finding a matrix representation is to attach a string of Zs:

E1 = σ+
1 (3.41)

E2 = Z1σ
+
2 (3.42)

E3 = Z1Z2σ
+
3 (3.43)

... Ea = Z1Z2 · · ·Za−1σ
+
a , a = 1..n (3.44)
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(In many-body physics this is called a Jordan-Wigner transformation, which in general

relates a spin system to a fermionic system.) The hermitian generators are

T2a−1,2n+1 =
1

2
Z1 · · ·Za−1Xa, T2a,2n+1 =

1

2
Z1 · · ·Za−1Ya.

The general element of SO(2n+ 1) is then

Tij = −i[Ti,2n+1, Tj,2n+1], i 6= j 6= 2n+ 1. (3.45)

Here is an interesting question that we can now answer: For which groups SO(N) is

the spinor representation real? Recall that a unitary rep R is not complex if ∃S ∈ R⊗2

such that TA = −ST ?AS−1 = −ST TAS−1. I claim that the relevant S for the 2n-

dimensional spinor rep of SO(2n+ 1) is

S = S−1 =
n∏

a odd

Ya

n∏
b even

Xb,

that is, this satisfies

Ta,2n+1 = −ST ?a,2n+1S
−1, a = 1..n

and hence by (3.45) the same for the rest of the generators of SO(2n+ 1).

Recall that when such an S exists, when S is symmetric R is real (that is, there is

a basis where the representation matrices are real), and when S is antisymmetric, R is

pseudoreal.
n S symmetry of S

1 Y1 AS

2 Y1X2 AS

3 Y1X2Y3 S

4 Y1X2Y3X4 S

This pattern repeats mod 4. This gives the following for the spinor reps R of SO(N),

N odd:
n mod 4 2n+ 1 mod 8 G sym of S R is

4 1 SO(8k + 1) S real

1 3 SO(8k + 3) AS pseudoreal

2 5 SO(8k + 5) AS pseudoreal

3 7 SO(8k + 7) S real

Now what about SO(2n), where the 2n = 2n−1
+ ⊕2n−1

− is reducible into eigenspaces

of γF ? A real rep of SO(2n+ 1) will be complex as a rep of SO(2n) if the intertwiner S

fails to commute with γF . In terms of the matrix representation, γF acts as Γ =
∏

a Za.

SΓS−1 = Y1X2Y3X4 · · ·︸ ︷︷ ︸
n of these

Z1Z2Z3Z4 · · ·︸ ︷︷ ︸
n of these

Y1X2Y3X4 · · ·︸ ︷︷ ︸
n of these

= (−1)nΓ.
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Here we used the fact that each X or Y anticommutes with Z: XZ = −ZX, Y Z =

−ZY , so we pick up n signs in moving them through Γ. Therefore, when n is odd,

complex conjugation maps the odd chirality rep to the even chirality rep – each of them

is complex.

G n mod 4 2n mod 8 2n+ 1 mod 8 S R is

SO(8k + 1) 4 1 is Sym real

SO(8k + 2) 1 2 takes R to R̄ complex

SO(8k + 3) 1 3 is AS pseudoreal

SO(8k + 4) 2 4 is AS pseudoreal

SO(8k + 5) 2 5 is AS pseudoreal

SO(8k + 6) 3 6 takes R to R̄ complex

SO(8k + 7) 3 7 is Sym real

SO(8k) 4 8 is Sym real

In the table I’ve set 8k +m = 2n or 2n+ 1 (for m even and odd respectively).

The pattern repeats mod 8. This strange mod 8 behavior is called Bott periodicity.

A similar analysis applies to spinor reps of the Lorentz group in various dimensions.

[End of Lecture 19]
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4 Brief encounters

4.1 Tensor methods by diagrams

[Zee §V.2, Georgi 1st ed §X, Cvitanovic]

4.1.1 Diagrammatic methods, and SO(n) for non-integer n

[Much of the following discussion comes from this beautiful paper.] Consider, for

amusement and edification, the following ... abstract situation (the actual word for it

is category). You will see that it has strong parallels with the representation theory

of a group. The objects (which are like the irreps) are collections of some number of

points arranged in a row, so

[0] = ∅, [1] = •, [2] = • •, · · · .

The morphisms – maps between the objects – (which are like invariant symbols) are

string diagrams. So for example, an example of a morphism from [2] to [2] looks like:

. is a morphism from [3] to [5]. (So we regard time as proceeding

vertically.) Only the connectivity will matter: = . Moreover,

we’re not going to care about whether the strands go over or under each other (that’s

another kettle of worms, relevant to the study of anyons). We can make a vector space

out of these little monsters, so we allow linear combinations, like

1

2
+

1

2
−

(I could put the diagrams inside kets, but I will not. Pretend I did if you prefer.) So

for example, the space of morphisms from [2]→ [2] is a 3d vector space.

Moreover, there is a product on this vector space (so it is an algebra, called the

Brauer algebra) which is just composition – we stack the diagrams on top of each other

and get a new one:
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The product has an identity operation, which is the string with parallel strands,

Any morphism [0]→ [0] is just a number.

One more rule: if we make a closed loop when stacking, we replace it by the number

n:

Tensor products. We can take tensor products of the objects: [k]⊗ [`] ≡ [k + `]

The analog of the trivial rep, which has 1 ⊗ a = a for all a is [0]. We can also take

tensor product of the morphisms – just put the diagrams next to each other.

Diagrammatic notation for O(n). Recall that O(n) is the maximal group pre-

serving the invariant symbol (or tensor) δIJ : Rn × Rn → R. Draw this symbol as

. Here we’ve regarded it as an invariant symbol on n⊗ n, a singlet in two copies

of the defining, vector representation. It is an invariant symbol because of this special

property of O(n); in particular the n is a real representation n ' n̄. We can use the

same object as an invariant symbol in some other ways: It’s also the identity operator

on the the n

δJI : Rn → Rn

δIJ : R→ Rn × Rn

It satisfies some identities:

δIJ = δJI

δIJδ
JI = δII = n = n

So maybe you believe me that the diagrammatic notation has something to say

about reps of O(n). There are three important questions I haven’t answered yet:

how do we take direct sums? What’s an irrep? And what is the dimension of a
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representation in this language? Recall that a unitary representation, such as n⊗k, can

be completely decomposed as

R = ⊕irreps,a (a⊕ a⊕ · · ·) = ⊕irreps,aVa ⊗ a

some number of copies of each irrep. Moreover, this decomposition means that the

identity on R has a decomposition

1R =
∑
a,ia

Pa,ia , Pa,iaPb,jb = δabδijPa,ia

where ia = 1 · · · dimVa. So the decomposition into irreps is accomplished by this

resolution of the identity by (as many as possible) orthogonal projectors.

Let’s look at the vector space of morphisms from [2]→ [2]. As we saw above, there

are three linearly-independent diagrams:

T1 ≡ , T2 ≡ , T3 ≡ .

It is a fun exercise to check that

P1 = T3/n, P2 =
1

2
(T1 + T2)− T3/n, P3 =

1

2
(T1 − T2)

are orthogonal projectors PiPj = δijPj. And since there are three of them this is a

maximal set. This should look familiar: we saw above that n⊗2 = 1 ⊕ Sym2
tracelessn ⊕

Λ2n.

What about the dimensions of the irreps? Once we have the projectors, it’s easy:

dimRa = trPa. For a morphism f : [k]→ [k], the trace is defined as

trf ≡

So

dimR1 = trP1 = = 1,

dimR2 = trP2 = =
n(n+ 1)

2
− 1,

dimR3 = trP3 = =
1

2
n(n− 1)/2,
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just as we found before.

The identity operator id[k] for any k has a unique such decomposition (up to re-

labellings, just like irreps). (This is a theorem of our colleague Wenzl in the math

department.)

Notice that these statements are true even if n is not an integer! The representation

theory of O(n) makes perfect sense for any real number n. There are a few funny things

as we vary n. One is that sometimes we’ll find that the dimension is zero. You can

see this in the formulae above for trP3 = n(n− 1)/2 (which vanishes for n = 0, 1) and

trP2 = (n + 2)(n − 1)/2 (which vanishes for n = 1,−2). This is not a problem, it

just means that there is no such representation (there’s no AS tensor with zero or one

index, and there’s no traceless symmetric tensor with one index).

Here’s a motivation for caring about n ∈ R \ Z. Consider the O(n) model of a

magnet with n components. It has many microscopic realizations; importantly, the

microscopic details don’t matter for the universal physics. One way to construct its

partition function is to integrate over n-component unit vectors si(x) at each point in

a spatial lattice:

Z =
∏
x

∫
dsixe

−β
∑
〈x,y〉 ~sx·~sy '

∏
x

∫
dsix

∏
〈xy〉

(
1 + κsixs

i
y

)
. (4.1)

Here 〈x, y〉 denotes a pair of neighboring points. It is O(n) invariant (six 7→ Ri
js
j
x) since

the indices are contracted with δij.

In the second step I appealed to universality to rearrange things in a convenient

way, so that we can now do the integrals over the spins in (4.1)43:

Z =
∑

collections of closed loops, C

n# of components of C κ̃total length of C (4.2)

(where κ̃ ∝ κ). If we did the same manipulation for a correlation function, we would

43I used the following integration table for the integral over s on the unit sphere∫
ds1 = 1,

∫
dssi = 0,

∫
ds(si)2 =

1

4π

∫ π

0

cos2 θ sin θ =
1

6π
.
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find, e.g.

〈sx1sx2sx3sx4〉 =
∑

collections of loops, Cx

n# of components of Cκtotal length of C

where now the loops Cx,i must end at the points xa (and the indices must match up).

Here’s one reason this rewriting (which is called a loop model) is useful: in the

representation (4.2), there is no need for n to be an integer. It’s just a coupling

constant. For example, when we set n→ 0, we disallow all loops – this produces a sum

over self-avoiding random walks.

So it is interesting to ask about what is the symmetry of such a model with n /∈ Z+.

And actually, for most purposes of doing physics, we don’t really care about the group

itself, we care about its representation theory. For example, in field theory (such as the

field theory description valid near the critical points of (4.1)), the fields transform in

irreps (which generalize to ‘objects’), and their correlation functions are linear combi-

nations of invariant symbols of those irreps (which generalize to ‘morphisms’). So for

example, the four-point function above is

〈sx1sx2sx3sx4〉 = c1(x1 · · ·x4) + c2(x1 · · ·x4) + c3(x1 · · ·x4)

where the coefficients ci are ordinary functions. So we can regard it as a morphism

from [4]→ [0]. To get a number out, we can contract with a morphism from [0]→ [4],

so for example

〈sx1sx2sx3sx4〉 ◦ = (n2c1 + nc2 + nc3) · (empty diagram).

What about n < 0? Here comes a real shocker: the things we

find in this way for representations O(n) with n < 0 repro-

duce exactly the structure of Sp(|2n|)! The idea is that taking

n ↔ −n interchanges symmetrization and antisymmetriza-

tion (consider for example the formulae for dim Λ2n = n(n−1)
2

and dim Sym2n = n(n+1)
2

). Recall that the adjoint of O(n) is

Λ2n, while the adjoint of Sp(|2n|) is the symmetric combina-

tion.

4.1.2 The epsilon tensor

Let’s think about the case of SO(3) for a moment – ordinary vectors in 3-space. Denote

a vector ~a, with components ai by . So the inner product ~a ·~b = aibi = aibjδ
ij
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is . In the special case of SO(3) (not O(3)), there is another invariant tensor,

namely the Levi-Civita symbol. The cross product (~a×~b)i = εijkajbk is . That

the epsilon tensor is antisymmetric can be written like . Notice that

this notation makes it manifest that (~a×~b) · ~c = is cyclically symmetric.

Once we have these ingredients we can combine them in more complicated ways.

For example, One way to know the

first step must be true is that there are only so many indices, and the external indices

on the left must be chosen from the same subset of two as those on the right. Alter-

natively, it is because there are no other invariant tensors. The second step follows by

antisymmetry of epsilon. By computing one component we get a = −1. This is the

identity εijmεklm = δikδjl − δilδjk.

Other identities that look complicated in components follow easily:

= 3− 32 = −6.

= (1− 3) = −2

An interesting one is:

This follows since the indices on the left must be a permutation of those on the right,

and the result is determined just by the sign of the permutation. To determine the

coefficient, take the trace of the BHS

134



to find A = −1. In terms of we’ve shown that

.

Here is a useful perspective on the epsilon tensor in SO(3): recall that it is the

matrix elements of the generators of the fundamental representation of SO(3) (up to a

factor). So we can regard two of the lines coming out of it as indices in the fundamental,

and the third line as labelling which generator it is. It is an invariant tensor connecting

two copies of the fundamental with the adjoint. In this special case all three of these

representations are the same, but we’ll see next that the same idea applies in other

cases where they are not.

4.1.3 Diagrams for SU(n)

These methods are very flexible. In fact, the lines can represent states in any repre-

sentation of any group. Tensors that connect the lines are invariant tensors.

[A nice reference is this one by Stefan Keppeler] For example, the same methods

work for SU(n) just by making the strings oriented, to distinguish between the n and

the n̄ – that is, just draw arrows on the lines. A vector v in the n is vj = and a

vector u in the n̄ is uk = . Here I distinguish between upper and lower indices

for the first time. The arrows point away from the upper indices. The inner product

(the singlet in n⊗ n̄) is u · v = ukv
k = ukδ

k
j v

j = . The invariant tensor we used

here is δjk = .

Another representation of the same group can be distinguished by a different kind

or color of line. For example, we can denote a state in the adjoint representation with

a wiggly line: This is a real representation so there is no arrow.

Another invariant tensor that we can’t escape is the generators of the representation:

(
TA
)j
k

=

The fact that the generators of SU(n) are traceless is this picture:

trTA =
(
TA
)j
j

= . (4.3)
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The commutator is

[TA, TB]jk = ifABC
(
TC
)j
k

= = .

This produces a new invariant tensor in the adj⊗3, which is completely antisym-

metric, the tensor of structure constants, also known (up to a factor) as the generators

of the adjoint rep.

The normalization of the generators is

trTATB =
(
TA
)j
k

(
TB
)k
j

= . (4.4)

Contracting both sides of (4.5) with TC and taking trace, we have

. (4.5)

How could we have discovered TA?
It’s a theorem that for every rep V , the adjoint appears in the

decomposition of V ⊗V̄ . into irreps. In fact this statement can be

understood diagramatically quite easily: it’s just the statement

that the generators of the Lie algebra (TA)ba in any rep V comprise

an invariant tensor. Here a is a V index, b is a V̄ index, and A

labels the generator, i.e. A is an adj index. So this tensor can be

read as a map from V ⊗ V̄ → adj.

Decompose n ⊗ n̄ into irreps by decomposing 1n⊗n̄ =
∑

a Pa into orthogonal pro-

jectors. Here’s one44: P1 = c)(. It’s hermitian and satisfies P 2
1 = c2)()(= nc2P1 from

which we infer c = 1/n. Cvitanovic thinks of the equation )()(= n)( as an eigenvalue

equation for the operator )(; one of the eigenspaces of an invariant tensor such as )(

on V ⊗ V̄ must be the adjoint rep.

In the case of SU(n) in fact the rest of the representation is the image of Padj =

c . This satisfies

P 2
adj = c2 = cTRPadj

44Note that time is going to the left here.
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from which we infer c = 1/TR. In components, this is the awful equation (Padj)
j`
km =(

TA
)j
k

(
TA
)`
m
/TR. These two projectors are orthogonal P1Padj = 0, as a consequence

of (4.3).

What are the dimensions of the associated representations? dimR1 = trP1 = 1.

dimRadj = trPadj = = n2 − 1.

So we learn that .

In practice, this identity is most useful in the form

. (4.6)

For example, suppose we want to know c2( ), the second Casimir for the fundamental

representation. This is(
TATA

)j
`

=
(
TA
)j
k

(
TA
)k
`

Schur
= c2( )δj` = .

It’s a little harder to compute c2(adj)

= c2(adj)

(to get rid of the internal gluon lines, first use (4.5) and then use (4.6), then use (4.4))

but the answer is c2(adj) = 2TRn.

For SU(n) (as opposed to U(n)), there is another invariant tensor, namely a vertex

with n lines coming out (and its conjugate which has n lines going in) associated with

the εi1···in symbol.

Now I have to make a confession. These diagrams we’ve been drawing look a lot

like Feynman diagrams for a gauge theory. The straight lines for the fundamental

or antifundamental look like charged fermion lines (like electrons or quarks) and the

wiggly lines for the adjoint look like gauge boson lines (like photons or gluons). This not

an accident. In perturbative quantum field theory (QFT), we associate an amplitude

(the probability amplitude for the process of which the diagram is a cartoon) to such

diagrams. The values of the diagrams we’ve been drawing give the color factors in QCD
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Feynman diagrams (if you set n = 3). The rest of the amplitude in the actual QCD

Feynman diagram comes from spacetime stuff. Actually, it is an interesting question

to ask to what extent the rest of the stuff in a Feynman diagram in a relativistic QFT

can also be regarded as a birdtrack diagram for the Poincaré group. (!)

A comment about invariant tensors. An invariant tensor d (with say 3 indices

for definiteness) satisfies dabcvawbxc = dabcv′aw
′
bx
′
c where v′a = Ua′

a va′ etc is how v trans-

forms under G. The infinitesimal version of this, with U = eiθATA (in whatever rep v

is in, and similarly for w and x), says that

where as above the wiggly lines are insertions of the generators (again, in whatever

rep the legs are in). You can check that TAij (the generators in any rep) comprise an

invariant tensor by this definition45:

is just the Lie algebra itself. The condition that the structure constants fABC are an

invariant tensor

is the Jacobi identity. For more on this see the book by Cvitanovic. He takes this

point of view quite far. For example, demanding that the only ‘primitive’ invariant

tensors are δji and dijk a 3-index antisymmetric tensor (primitive means that making

new tensors by products of these (like dijkd
jk` = cδ`i ) must be proportional to these

again) he derives the representations of G2. A good brief account is his strangely-titled

summary Tracks, Lie’s and Exceptional Magic where he derives the dimensions of reps

of E6 from the assumption of a 3-index symmetric tensor.

4.1.4 Identical particles and Young diagrams for SU(n)

Wave functions of identical particles provide a deep connection between the irreps of

the (finite) symmetric group Sn and certain Lie groups. The idea is simple. Suppose

we have a particle in the fundamental representation of SU(n), |ψ〉 ∈ span{|i〉 , i =

1..n} ≡ ,

|ψ〉 7→ D(g) |ψ〉 .
45About the signs: the minus in front of the second term is because the generator of R̄ is −(TAR )?.

The minus in front of he last term is because the generator of the adjoint is (TAadj)BC = −ifABC .
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Forget about the position degree of freedom, which plays no role here. Now suppose

we have instead k such particles. If the particles are distinguishable, the state of the

system forms a tensor product representation of SU(n)

⊗k 3 |ψ1〉 ⊗ · · · ⊗ |ψk〉 7→ D(g) |ψ1〉 ⊗ · · · ⊗D(g) |ψk〉 ≡ D(k)(g) |ψ1〉 ⊗ · · · ⊗ |ψk〉 .

The very existence of indistinguishable particles tells us two things: this representation

is reducible, and the symmetrized or antisymmetrized states live in invariant subspaces.

Notice that this tensor product space ⊗k also carries a representation of Sk, by

R(π) |ψ1〉 ⊗ · · · ⊗ |ψk〉 = |ψπ1〉 ⊗ · · · ⊗ |ψπk〉 .

Furthermore, [R(π), D(k)(g)] = 0 for all g, π. So Schur’s lemma says R(π) is a constant

on irreps of G and D(k)(g) is a constant on irreps of Sk. This means that irreps of Sk in
⊗k are compatible with irreps of SU(n). This gives a correspondence, then, between

Young diagrams and irreps of SU(N).

The simplest example is the product of two qubits (spin-half particles) 2⊗2 = 1⊕3.

P (V2 ⊗ V2) = V1, P (V2 ⊗ V2) = V3.

Only tableaux with n or fewer vertical boxes can appear as representations of SU(n).

What is the dimension of the representation of SU(n) labelled by a given Young

diagram? It is not the same as the dimension of the corresponding representation of

Sk! Rather it is the number of ways of placing numbers from the set {1 · · ·n} in the

diagram, while preserving the order in rows, and strict order in columns. For example,

for SU(3),
3 2
1

, 3 3
1

, 3 2
2

, 3 3
2

, 3 1
1

, 3 1
2

, 2 2
1

, 2 1
1

shows that is the 8 of SU(3).

More generally, the formula for the dimension of Rλ as a rep of SU(n) is given by

the factors over hooks rule: dim(Rλ) = fλ
hλ

. The denominator is the product of the

hooks, which determines the dimension of the corresponding rep of Sk (where k is the

number of boxes) – recall that in terms of hλ, this is dimRSk
λ = k!

hλ
. The numerator is

obtained by placing an n in the top right box, and placing a number one larger in each

box moving right, and one smaller in each box moving down; For example, for SU(2):
2 3 4
1 2

; for SU(3): 3 4 5
2 3

. Then fλ is the product of these numbers. The examples

give dimensions 2 and 15, respectively, for the associated representation. Notice that

you automatically get zero if you try to stack more than n boxes. (A proof of this

statement can be found in §6.2 of Fulton and Harris.)

Multiplying irreps. The secret to using Young diagrams to decompose tensor

product representations is the following: Put the bigger diagram on the left. Now stick
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the boxes of the right one onto the left one in every way that does not explicitly violate

the symmetry of the original diagram46.

If you get a stack of n boxes in a column, you can erase them (since that’s a

singlet). If you get a stack of more than n boxes in a column, that’s nothing, it doesn’t

contribute. Always check that the dimensions add up. For example, in SU(3),

︸︷︷︸
10

⊗ ︸︷︷︸
1

= ︸︷︷︸
10

, ︸︷︷︸
8

⊗ ︸︷︷︸
3̄

= ︸︷︷︸
15

⊕ ︸︷︷︸
3̄

⊕ ︸︷︷︸
6

︸︷︷︸
8

⊗ ︸︷︷︸
8

= ︸︷︷︸
27

⊕ ︸︷︷︸
8

⊕ ︸︷︷︸
8

⊕ ︸︷︷︸
10

⊕ ︸︷︷︸
1

⊕ ︸︷︷︸
10

Now you can check my claim about the dimension formula by comparing ⊗ =

⊕ – for general n, the LHS has dimension n(n−1)
2

+ n. The RHS has dimension

dimR + n(n−1)(n−2)
6

which gives dimR = n(n−1)(n+1)
3

. This agrees with f =

n(n+ 1)(n− 1) and h = 3.

Young projectors with birdtracks and Schur-Weyl duality. Birdtracks can

represent either representation theory of a Lie group or the symmetric group. Using this

fact, we can make explicit representations of the Young projectors (which accomplish

the antisymmetrization along columns and symmetrization along rows of a given Young

diagram) using birdtracks.

By the above remark, note that birdtracks provide a notation for the group algebra

of the permutation groups: For example (12) in S3 is (with time going to the left)

, and (123) is . We can compose permutations by stacking the

birdtracks (now I am composing them from right to left instead of vertically to keep

46Georgi gives a method to implement this constraint without overcounting: when multiplying

tableaux A and B, put 1s in the top row of B, 2s in the second row of B and so on. When you attach

the boxes of B to A, do it row by row, top row first. Then only keep diagrams where: reading from

right to left and top to bottom, the number of 1s is greater than or equal to the number of 2s, which

are in turn greater than or equal to the number of 3s, and so on. But this rule actually fails to exclude

some things. For example (the numbers below the diagrams are for SU(3), for example):

︸︷︷︸
3̄

⊗ ︸︷︷︸
6

?
= ︸︷︷︸

=15

⊕ ︸︷︷︸
=3

⊕ ︸︷︷︸
=6̄

.

(The correct answer is ︸︷︷︸
3̄

⊗ ︸︷︷︸
6

= ︸︷︷︸
=15

⊕ ︸︷︷︸
=3

.) As you can see by adding up the dimensions, the

last term should be absent; this is because the two boxes we’re adding are symmetrized, and therefore

cannot be stacked on top of each other. But using Georgi’s rule it seems to me they would both have

1s in them and would be allowed. Perhaps I’ve misunderstood his rule.
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you on your toes):

(12)(123) = = (13).

And this is a notation for the group algebra because we can consider formal combina-

tions of the diagrams with arbitrary coefficients, as we’ve been doing. An important

set of operators in this algebra are the symmetric and antisymmetric projectors:

.

As you can check, they are projectors: (and similarly for the AS one).

Concatenating two of these, we get zero if two or more legs overlap: .

Recall from §2.6 that Young diagrams with k boxes (i.e. partitions of k, which I’ll

denote λ ` k) are in one-to-one correspondence with irreps of Sk. And recall that the

Young tableaux (obtained by filling in the diagrams with numbers 1 · · · k, increasing to

the right and downward) provide a basis for the associated irrep. Now we can associate

to each Young tableau47 λ̂ an operator Yλ̂ in the group algebra of Sk where k is the

number of boxes:

Yλ̂ ≡
1

hλ
sλ̂aλ̂ (4.7)

where sλ̂ is the row symmetrizer, aλ̂ is the column antisymmetrizer, and the denomina-

tor is the product of hooks of the diagram λ. For example, Y is just the symmetric

projector on 3 lines, and Y is just the antisymmetric projector on 3 lines. For these

I didn’t have to specify the numbers in the boxes because there was only one way to

do it – these are associated with the one-dimensional irreps of S3. A more nontrivial

example is the diagram which labels the 2 of S3, so there are two tableaux, and so

two projectors:

.

47I put a hat to distinguish the tableau from the diagram – removing the hat forgets the numbers

in the boxes.
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Either of them projects onto a copy of the rep of SU(n). Note that if we switched

the order of a and s in (4.7) it would just mix up which tableau maps to which copy.

So I claim that the operator defined this way is a projector Yλ̂ : n⊗k → n⊗k into

the associated irrep of SU(n). For different Young diagrams, λ 6= µ the projectors are

orthogonal Yλ̂Yµ̂ = 0 (for any choice of tableaux). (Within the subspace associated

with a given Young diagram, the projectors associated with different tableaux are not

necessarily orthogonal.) And I claim that if you compute the dimension of the image

trYλ̂, you’ll get the factors-over-hooks rule. For example,

=
1

2
(n2 + n) =

n(n+ 1)

2
X.

Similarly, trY = n(n−1)
2

.

=
2

3

(
ntrY + 1 · trY

)
=
n(n2 − 1)

3
X.

For the case of n = 3, this is the 8-dimensional adjoint rep.

For any n, we get a copy of the adjoint of SU(n) as the image of Y ˆ , for any choice

of tableau with this shape. You can check that the trace of this operator is indeed

n2 − 1:

=
2(n− 1)

n

1

2
[ntran−1+tran−1]

where ak ≡ a (k boxes) is the totally antisymmetric projector on k lines. From here

we can use trnak =

(
n

k

)
, which is derived on the homework.

There are dimRSk
λ different tableaux for the given diagram λ. Specifying the tableau

λ̂ says which of the copies of the irrep of SU(n) associated to the diagram λ we pick

out. This shows that as a representation of SU(n)× Sk,

n⊗k =
⊕
λ`k

R
SU(n)
λ ⊗RSk

λ (4.8)
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(where λ ` k means λ is a tableau with k boxes (i.e. it specifies a partition of k) and

in particular taking dimensions of both sides,

nk =
∑
λ`k

dimR
SU(n)
λ dimRSk

λ .

These statements are associated with the names Schur and Weyl, and the beau-

tiful equation (4.8) is called Schur-Weyl duality. I recently encountered some of its

applications in quantum information theory, here and here.

4.2 Group integration and characters

Earlier I said that all the statements we proved by averaging over a finite group would

also be true for compact groups, by replacing 1
|G|
∑

g∈G ... with
∫
G
dg in the proofs.

Let’s think about SO(3) and SU(2) for example. The character of some element g

in the spin-j representation is χj(g) = trVjD(g). Now recall that conjugation changes

the axis but not the angle of a rotation. Since the character is a class function, we can

just evaluate on the Cartan subgroup where D(ψ) = eiψJz . We get

χj(ψ) =

j∑
m=−j

〈j,m| eiψJz |j,m〉 =

j∑
m=−j

eiψm.

We can do some manipulations to write this compactly as

χj(ψ) =
sin
(
j + 1

2

)
ψ

sin ψ
2

but actually the first expression is more useful. The fact that the coefficient of each

term is 1 expresses the fact that there is no nontrivial multiplicity. Checks: χj(1) =

2j + 1 = dimVj, χ0(ψ) = 1. These formulae work just as well for j ∈ Z/2.

The utility of characters rests on their orthogonality with respect to the inner

product:

〈χ1, χ2〉 ≡
1

|G|
∑
g

χ̄1(g)χ2(g) 
∫
G

dµ(g)χ̄1(g)χ2(g).

The crucial step in the proofs (that any rep was unitary and of the grand orthog-

onality theorem) is that ΛX ≡
∫
dµ(g)D†(g)XD(g) (for any matrix X of the right

shape) is an intertwiner: D†(h)ΛXD(h) = ΛX :

D†(h)

(∫
dµ(g)D†(g)XD(g)

)
D(h) =

∫
dµ(g)D†(gh)XD(gh) =

∫
dµ(kh−1)D†(k)XD(k)

!
= ΛX .
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This will be true if dµ(kh−1) = dµ(k) for all h ∈ G. The idea is that the measure

must be independent of where we are in the group. The measure with this property

dµ(g) = dµ(g′) is called the Haar measure, or group-invariant measure.

Some examples: for SO(2) = U(1), the Haar measure is just dµ(eiθ) = dθ. It is

invariant under θ → θ+δθ, and the group is compact because θ ∈ [0, 2π). For SO(1, 1),

the Lorentz group in 1 + 1 dimensions, the measure is dη, where η is the rapidity, the

boost parameter, and this is noncompact since η ∈ R.

What about SU(2) and SO(3)? Recall that the SU(2) group manifold is the 3-sphere:

U = w1 + i~x · ~σ ∈ SU(2) iff 1 = w2 + ~x2. In terms of the axis-angle parameterization,

U = ei~ψ·~σ
2 = cos ψ

2
+iψ̂·σ sin ψ

2
(with ~ψ ≡ ψψ̂), so we can identify w = cos ψ

2
, ~x = sin ψ

2
ψ̂.

The group-invariant measure is just the round measure on the 3-sphere48. Therefore

the measure is sin2 ψ
2
dψ sin θdθdϕ, where θ, ϕ are polar coordinates for ψ̂. A class

function is independent of θ and ϕ, so we can forget that part.

Now about the range of ψ. Notice that as ψ ∈ [0, 2π), w =

cosψ/2 takes its full range from 1 to −1, and we cover the whole

3-sphere. This is the SU(2) manifold. The element U(~ψ) of SU(2)

maps the same element of SO(3) as −U(ψ, ψ̂) = U(ψ + 2π, ψ̂).

(Recall that if X = ~x · ~σ, then U †XU = ~x′ · σ is a rotation:

x′i = Rj
ixj has the same length x2 = X2 – but it’s a rotation by

angle ψ, not ψ/2.) Therefore, the points ψ = 0 and ψ = 2π are

identified in SO(3), and we need only integrate ψ ∈ [0, π) to cover

the SO(3) group manifold. (Note that ψ = π is not a boundary

in SO(3); rather, the range ψ ∈ [0, π) is a fundamental domain

for the action of the Z : U → −U by which we must quotient to

get SO(3).)

You can check that in SO(3),

〈χj|χj′〉 =

∫
dµ(g)χ̄j(g)χj′(g) (4.9)

= c

∫ π

0

dψ sin2 ψ/2
sin(j + 1

2
)ψ

sin ψ
2

sin(j′ + 1
2
)ψ

sin ψ
2

(4.10)

= c

∫ π

0

dψ sin(j +
1

2
) sin(j′ +

1

2
) = c

π

2
δjj′ (4.11)

so we should choose the constant normalizing the measure as c = 2
π
. For SU(2) we

would integrate
∫ 2π

0
dψ and hence the constant would differ by a factor of two.

48Notice that the group manifold SU(2) has two SU(2) symmetries, namely h→ gLhg
−1
R , left-action

and right action. These combine to form SU(2)L × SU(2)R = SO(4), the symmetry of the 3-sphere,

under which (w, ~x) is in the fundamental 4 = (2L,2R) representation.
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As usual, characters represent the representation ring. For example, the fact that

Rj ⊗ 2 = Rj− 1
2
⊕Rj+ 1

2
(for j > 0) can be seen from the fact that

χj(ψ)χ 1
2
(ψ) =

j∑
m=−j

eiψm
(
e−iψ/2 + e+iψ/2

)
=

j+ 1
2∑

m=−j− 1
2

eiψm+

j− 1
2∑

m=−j+ 1
2

eiψm = χj− 1
2
(ψ)+χj+ 1

2
(ψ).

More generally, the SU(2) fusion rules are

χj1χj2 =

j1+j2∑
j3=−|j1−j2|

χj3 (4.12)

with every multiplicity equal to one.

The SU(2) characters are sometimes called Chebyshev functions (polynomials in

z ≡ cos θ ≡ cos ψ
2
):

Us−1(z = cos θ) =
sin sθ

sin θ
,

with s = 2j+1. This means that the Chebshev functions satisfy the SU(2) fusion rules

(4.12). They have lots of nice properties and are very useful for numerical interpolation

and spectral methods of solving differential equations, see e.g. Boyd, Chebyshev and

Fourier Spectral Methods, or Trefethen, Spectral Methods in Matlab.

One of the results that follows from compactness is the Great Orthogonality The-

orem. In the context of Lie groups, this is called the Peter-Weyl theorem:∫
dµ(g)

(
Da
ij(g)

)?
Db
lm(g) =

1

da
δabδilδjm.

The proof is the same as in the finite case, with the replacement of sums by integrals.

For example, it implies that the Chebyshev polynomials are orthogonal with respect

to the integration measure given above for SU(2). More generally it implies that the

characters of irreps form an orthonormal basis for class functions on the group manifold.

Given an explicit representation of a Lie group, it is quite simple to compute the

character. The crucial fact49 is that any element of G can be conjugated to an element

h = eiθaHa of the Cartan subgroup T = U(1)r. So the characters are really just functions

of r angles.

One reason to care about the characters of irreps of Lie groups is that they answer

(or at least record the answer to) the annoying question about the multiplicities of

49This is Theorem 26.16 of Fulton-Harris. Unfortunately their proof sketch is rather geometric and

appeals to a fixed-point theorem. Try to come up with a more elementary argument.
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various weights. Let za = eiθa , a = 1..rank(G) parametrize the Cartan torus. Then

since the weights are eigenvectors of the Cartan generators:

χR(z) = trRe
iθ·H =

∑
µ

nR(µ)eiθ·µ.

So we can extract the multiplicity nR(µ) e.g. by an integral over T .

For the case of SU(n) it is convenient to parametrize the Cartan torus in terms of n

za satisfying
∏n

a=1 za = 1. Just looking at the weights ea of the fundamental of SU(n),

its character is

χ (z) =
∑
a

za. (4.13)

Similarly, since the weights of the completely antisymmetric k-index rep are ea1 +ea2 +

· · ·+ eak , a1 < a2 < · · · < ak, its character is

χ (z) =
∑

a1<a2<···<ak

za1za2 · · · zak . (4.14)

For the special case of k = n− 1 (the n̄ rep), we can use
∏

a za = 1 to rewrite this as

χn̄(z) =
∑

a z
−1
a in agreement with the fact that its weights are −ea. More generally

χλ(z) = Sλ(z) is a Schur polynomial. These are symmetric polynomials, symmetrized

or antisymmetrized according to the Young diagram, of which (4.13) and (4.14) are

special cases50. Those with at most n boxes provide a basis for the space of symmetric

functions on n variables. (See Fulton and Harris, §6.1 and §A.1.)

There are many beautiful formulae for the characters of irreps of compact Lie

groups. For example, for any Lie group, the Weyl character formula says that character

for the representation Rλ with the highest weight µ is

χRµ(z) =
Aµ+ρ(z)

∆(z)
with

Aµ(z) ≡
∑
W∈W

(−1)W eiθ·W (µ),

50

χλ(z) = Sλ(z1 · · · zn) ≡
det
ij
zλi+n−ij

det
ij
zn−ij

where λ = λiei is the highest weight of the representation. Recall from §3.7.1 that the shape of the

Young diagram is related to the highest-weight vector by

λ = e1(q1 + q2 · · · qn−1) + e2(q2 + · · · qn−1) + · · ·+ qn−1en−1 + 0en,

where qk is defined in the figure at the end of that section. Taking limza→1 χλ(z) = dimR
SU(n)
λ , this

formula reproduces the factors-over-hooks rule.
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∆(z) ≡ Aρ(z) =
∏
α∈R+

(
eiα·θ/2 − e−iα·θ/2) (4.15)

with R+ the set of positive roots, and ρ ≡ 1
2

∑
α∈R+

α. Here W is the Weyl group,

(−1)W means the sign of the determinant of W . For example for SU(n), ∆(z) =∏
i<j (zi − zj) is the vandermonde determinant or descriminant (use the relation

∏
a za =

1 repeatedly). For SU(n), the Weyl group is just Sn. See Fulton and Harris for much

more.

The Weyl integration formula relates group integrals of class functions to integrals

over the Cartan torus T :∫
G

dµ(g)F (g) =
1

|W|

∫
T

dµ(z)∆(z)∆(z)F (z) (4.16)

with ∆ as in (4.15). For the case of SU(2), |∆|2 = sin2 ψ
2
, and this is our previous

formula. Combined with the Weyl character formula (4.16) says that the inner product

between characters of SU(n) is

〈χR1 , χR2〉 =

∫
G

dµ(g)χ̄R1(g)χR2(g) =

∫
T

dµ(z)Aλ1+ρ(z)Aλ2+ρ(z)s.

4.3 Unification

4.3.1 Isospin and flavor SU(3)

[Georgi §5, 11, Zee §V.1, V.3]

The purpose of this brief subsection is twofold. One goal is to explain an important

use of Lie groups in particle physics, where SU(2) and also SU(3) are realized as ap-

proximate symmetries of the strong interactions. The second goal is to gently introduce

the some ideas about symmetries in quantum field theory. I emphasize that this is an

almost-criminally brief account of a huge subject.

Isospin. The fractional mass difference between the proton and the neutron is

tiny:
Mn −Mp

Mp

=
939.6− 938.6

938.6

GeV

GeV
= 0.0014.

If we ignore the fact that one is electrically charged and the other is not, which the

strong interactions do ignore, there is an approximate symmetry that rotates them into

each other. The nucleon N =

(
p

n

)
is a doublet, 2 of some global SU(2) symmetry

called isospin.
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A bit of technology which is useful much more generally: Let’s write neutron and

proton states as

|p, α〉 = a†1
2
,α
|0〉 , |n, α〉 = a†− 1

2
,α
|0〉

where α is any other quantum numbers of the particle, such as its momentum. |0〉 is a

vacuum state, annihilated by all the annihilation ops a |0〉 = 0. mI = ±1
2

are eigenval-

ues of the isospin generator J3. Nucleons are fermions, so the creation operators satisfy

{amα, a
†
m′α′} = δmm′δαβ, {amα, am′α′} = 0. The point of the creation and annihilation

operators as usual is that now we can think about states with many nucleons:

|n nucleons, m1α1,m2α2 · · ·mnα2〉 = a†m1α1
a†m2α2

· · · a†mnαn |0〉 .

On one-particle states, the isospin generators act as T̂ a |mα〉 = |m′α〉
(

1
2
σa
)
m′m

and

on the vacuum they act as T̂ a |0〉 = 0. To match these, they must act on the creation

operators as

[T̂ a, a†mα] = a†m′α

(
1

2
σa
)
m′m

which is solved by

T̂ a = a†m′α

(
σa

2

)
m′m

amα + · · ·

where the · · · is terms that commute with a, a†. So now we know how multiparticle

states transform. You can check that these operators T̂ a satisfy the SU(2) Lie al-

gebra, [T̂ a, T̂ b] = iεabcT̂ c. (And if we replaced σa

2
by matrices comprising a unitary

representation of some other Lie algebra, you can guess what would happen.)

There are other particles other carry isospin. In some description, pions (pseu-

doscalar spin-0 bosons) mediate the force between nucleons, a short-ranged strong

attraction which holds together nuclei. Allowed (isospin-symmetric) processes include

p→ n+π+, n→ p+π−. The pions must therefore transform under isospin. Comparing

the isospin of the BHS of these reactions we have

I =
1

2
3 1

2
⊗ Iπ = (

1

2
+ Iπ)⊕ |1

2
− Iπ|

This essentially requires that π± have Iπ = 1 and therefore also have a neutral partner

π0. The pions π±, π0 transform as a triplet 3 of SU(2)isospin. (The electric charge is

Q = I3 + 1
2
Y where Y = 1 for nucleons and Y = 0 for pions; Y is a new quantum

number called hypercharge.)

We can follow the same logic as above and write∣∣1 π of isospin J3 = m ∈ {−1, 0, 1}
〉

= b†mα |0〉 .
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Pions are bosons, so [bmα, b
†
m′α′ ] = δαα′δmm′ , [b, b] = 0, and the vacuum is the same

vacuum as above, also annihilated by b |0〉 = 0. The isospin generators are then

T̂ a = T̂ anucleons + b†m′α (Ja1 )m′m bmα + · · · =
∑

particle types, x

a†xmα
(
Jajx
)
axm′α

where jx is the spin of particle type x and the statistics of ax are chosen appropriately.

These guys still satisfy the Lie algebra, [T̂ a, T̂ b] = iεabcT̂ c.

The fact that isospin is an approximate symmetry means that the hamiltonian is

H = H0 + ∆H, [H0, T
a] = 0.

The terms in H0 include QCD interactions, and kinetic terms with equal quark masses.

∆H, which does not commute with T a, contains quark mass differences and electro-

magnetic interactions.

Isospin can be used to make strong predictions for ratios of observables without

any knowledge of the complicated underlying strong dynamics. As one example of

very many, it predicts that (the deuteron d is a boundstate of p and n with isospin

zero (and spin 1))

σ(p+ p→ d+ π+)

σ(p+ n→ d+ π0)
' | 〈1, 1|1, 1〉 |2

| 〈1, 0| (|1, 0〉 − |0, 0〉) /
√

2|2
= 2.

This follows from the fact that the isospin state of two protons is |p, p〉 =
∣∣1

2
, 1

2

〉
⊗∣∣1

2
, 1

2

〉
= |1, 1〉, while that of proton plus neutron is |p, n〉 =

∣∣1
2
, 1

2

〉
⊗
∣∣1

2
,−1

2

〉
= |1,0〉−|0,0〉√

2
.

Another example is

σ(π+ + p→ ∆++ → π+ + p)

σ(π− + p→ ∆0 → π− + p)
' 3. (4.17)

In the numerator is the cross-section to create a particular resonance at E ∼ 1.232 GeV,

which (since π+ + p is the isospin state |1, 1〉 ⊗
∣∣1

2
, 1

2

〉
=
∣∣3

2
, 3

2

〉
) must have I3 = 3/2

and therefore isospin 3/2 and therefore 3 other partners (of which ∆0 is one). You can

figure out using SU(2) Clebsch-Gordon coefficients what is the isospin state of π− + p,

and thereby find (4.17).

Isospin constrains the couplings between pions and nucleons. Writing the pion fields

as a matrix

π ≡ ~π · ~σ =

(
π0

√
2π+

√
2π− −π0

)
they transform under isospin as π → UπU †. This means that the combination

gN̄πN = gN̄iπ
i
jN

j = g
(
p̄π0p− n̄π0n+

√
2
(
p̄π+n+ n̄π−p

))
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is an isospin-invariant allowed interaction – several couplings are determined in terms

of the coupling g.

Eight-fold way. In 1950 another nucleon-like-particle (≡ baryon) was discovered,

with MΛ ∼ 1.115 GeV. You might have thought that we should try to put this in

an SU(3) triplet with (n, p,Λ), but no. Instead, a whole bunch of other baryons was

found with similar (a bit larger) masses, all spin-half fermions. The new ones fit into

an isospin triplet (Σ±,0) and an isospin doublet (Ξ±), while the Λ is an isospin singlet.

Moreover, a bunch new pion-like particles (≡ mesons) were found, with a bit larger

masses. These were two isospin doublets K+, K0 and K−, K̄0 and an isospin singlet η.

Now, from having done homework 9, you know that each of these things fit into a

copy of the 8 of SU(3) (recall the figures (3.31)), one for baryons and one for mesons:

The new quantum number in these weight diagrams is proportional to the hypercharge

I8 =
√

3
2
Y . (Sometimes people also speak of strangeness, which is hypercharge plus

baryon number (baryons carry baryon number 1).) It is also conserved by the strong

interactions. The particles that carry nonzero values of the new quantum number are

heavier because the whole SU(3) is not as good an approximation as SU(2). (We’ll

see that this is because the strange quark is quite a bit heaver than the up and down

quarks, ms −md � mu −md.)
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A bunch of other baryons (with spin 3/2) had also been found

as short-lived resonances (such as the ∆s I mentioned at

(4.17)). At one point there were nine of them, and Gell-

Mann and Neeman predicted that there would be a tenth

(the Ω−) to fill out this weight diagram for the 10 = R(3,0)

of SU(3), where it was duly found.

There was a time when other SU(3)f multiplets could equally

well have accommodated the existing baryons. At right is the

R(2,2) = 27 = representation, for example. But people

(Gerson Goldhaber) had looked for the state associated with

the red circle, which would have been produced in scattering

of K+ off a neutron, and it was absent.

Gell-Mann Okubo mass formulae. [Zee §V.4, Georgi §11] An important aspect

of their prediction is that they had a good estimate for what the mass should be, as

well as all the quantum numbers. This arises by considering the possible mass terms

that we can write for the baryon fields

B ≡ λABA/
√

2 =

Σ0/
√

2 + Λ0/
√

6 Σ+ p

Σ− −Σ0/
√

2 + Λ0/
√

6 n

Ξ− Ξ0 −2Λ0/
√

6

 .

First we ask which terms trB†B are consistent with SU(3)f , and then we ask about the

leading terms that break SU(3)f → SU(2)isospin, and do perturbation theory in these

terms. The idea is there are two symmetry-breaking terms (trB†I8B and trB†BI8)51

with unknown coefficients, but there are four unknown masses of isospin multiplets. A

similar analysis can be made of the meson masses and of the couplings between mesons

and nucleons.

To estimate the splittings in the 10, note that the matrix element of the perturbing

hamiltonian is of the form 〈10| I8 |10〉. But in 8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 there is

a unique 10, and therefore there’s only one mass term with these quantum numbers,

51Here I am cheating a little bit, and using some non-group-theory information to say that the

SU(3)f breaking interaction transforms like the 8. In principle there could also have been an interaction

transforming like the 27. But with hindsight, the breaking is caused by the mass term of the strange

quark, which transforms as 3⊗ 3̄ = 1⊕ 8.
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and we expect that mass splitting in the decuplet is proportional to the hypercharge:

MΣ −M∆ = MΞ −MΣ = MΩ −MΞ. The known masses were: M∆ ' 1230,MΣ '
1385,MΞ ' 1530 in MeV, so the prediction was MΩ ' 1680 MeV. The answer is 1672!

4.3.2 Quarks and color

[Georgi, §11.4, 16]

Quarks. The lovely weight diagrams are an improvement

but it’s still a bit of a mess. Actually the weight diagram at

right explains the whole thing:

The idea is to introduce new particles – quarks – in the 3 of Gell-Mann’s SU(3)f ,

which is now called flavor SU(3). The baryons are made out of three quarks, Babc =

qaqbqc (with a, b, c ∈ u, d, s labelling the flavor). Since

⊗ ⊗ = ( ⊕ )⊗ = ⊕ ⊕ ⊕ , (4.18)

that is, 3⊗3⊗3 = 1⊕8⊕8⊕10, this produces both baryon multiplets we showed. And

the mesons are made from a quark and an antiquark mb
a = qaq̄

b. Since 3⊗ 3̄ = 1⊕ 8,

this contains the octet of the pions and kaons (and also multiplets of spin-1 mesons).

There are two problems, which solve each other: in order for the baryons to be

fermions, the quarks must be fermions. But then only the antisymmetric combinations

would survive, unless they had some other quantum numbers in which to antisym-

metrize. The second problem is: why don’t we see quarks, which (as you can see from

Q = I3 + Y/2) would have to carry fractional electric charge.

Color. The solution is that there are a lot more quarks: in addition to being

a triplet of Gell-Mann’s SU(3)f ⊃ SU(2)isospin, the quarks also comprise a triplet of

another, totally distinct SU(3)c, called color SU(3), so the quarks carry two labels

qai, a = 1..3 = u, d, s labels the flavor and i = 1..3 = r, g, b labels the color (actually,

they have spin-half so there is a third spin label). This quantum number is called

color and it behaves in a strange way: finite-energy excitations are colorless. This

demand that finite-energy excitations are color-neutral explains why the particles we

see are made of three quarks or quark-antiquark. Regarding the decomposition (4.18)

as multiplication in SU(3)c now, we see that the product of three fundamentals contains
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a color singlet – this is the baryon εijkq
iqjqk. And of course there is a color singlet in

3⊗ 3̄ – this is the meson qiq̄jδ
j
i .

In the previous equations I’ve suppressed the other quantum numbers of the quark

fields, and only shown their color indices. If you put them back you can see that

this also explains why we don’t see the other parts of (4.18) which have the wrong

properties under exchange of quarks.

Why should physical states be singlets of color? Here is an extremely heuristic

explanation. Recall that in E&M, the force between two charges is proportional to

q1q2. E&M is a gauge theory with gauge group U(1), which means that charge is a

number. In more general gauge theories with gauge group G, the analog of ‘charge’ is

a representation label. For two particles, each in a rep Ra=1,2 of SU(3)c

T̂A |i〉1 = |j〉1
(
TR1
A

)i
j
, T̂A |x〉2 = |y〉2

(
TR2
A

)x
y
.

On a two-particle state vix |i〉1 ⊗ |x〉2, the form of the interactions is

∝
∑
A

T̂R1
A ⊗ T̂

R2
A ≡ H.

(You can regard the diagram as a birdtrack diagram if you wish. Or, for the field

theorists: you can regard the diagram as a Feynman diagram, and we are not thinking

about the spatial dependence of the gluon propagator.) This hamiltonian has a sym-

metry: T̂A ≡ T̂R1
A + T̂R2

A has [T̂A, H] = 0. In fact, we can write H completely in terms

of the quadratic Casimirs, C2 = T̂AT̂A ≡ T 2:

H =
1

2

(
T 2 − T 2

1 − T 2
2

)
.

The second and third terms are fixed by the properties of the constituent particles,

but the T 2 depends on how they combine. It is minimized by small representations,

and in particular the singlet. This is a generalization (and an extreme version of) the

statement that opposite charges attract. So for example, qq̄ can form a singlet, and

this minimizes their interaction energy. And in a set of three quarks, the pairwise

interactions are minimized when the three form the totally antisymmetric state (in

which each pair forms a 3̄ ∈ 3⊗ 3 which has T 2 = 4/3, while the 6 has T 2 = 10/3).

This crude explanation is a sort of cartoon of the phenomenon of color confinement

in quantum chromodynamics (QCD), the gauge theory of G = SU(3)color. A gauge

theory with gauge group G is a quantum field theory with a vector field AAµ for each

generator TA of the lie algebra of G, and various matter fields which transform in

representations of G. The Lie algebra data completely determines the most important
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interactions. Different gauge theories have different vacuum behavior – electromag-

netism has almost-free charges interacting with a propagating massless photon, but

QCD confines its charges into color singlets.

4.3.3 Grand Unification

[Zee §IX.2, IX.3, Georgi §18]

The Standard Model. The Standard Model of particle physics is a gauge theory

with gauge group52 GSM = SU(3)× SU(2)× U(1). We can label the representations of

the fermion fields by (D, d)R1 where D is a rep of SU(3), d is a rep of SU(2) and R1 is

the charge under the U(1). This means

[T̂A, a
†
x,i] = a†y,i

(
TDA
)
yx
, [R̂A, a

†
x,i] = a†x,j

(
Rd
A

)
yx
, [S, a†xi] = sa†xi.

So TA, RA, S are the generators of SU(3), SU(2) and U(1) respectively. The SU(3) is

color as above. The SU(2) × U(1) is the electroweak theory, which is a unification

of electromagnetism and the weak interactions which I don’t have time to explain.

S = Y/2 is proportional to the hypercharge, and the electric charge is Q = R3 + S.

In this notation, a generation of the standard model is

Rgen = (3,1)2/3 ⊕ (3,1)−1/3 ⊕ (1,1)−1 ⊕ (3̄,2)−1/6 ⊕ (1,2)1/2 (4.19)

corresponding, respectively, to (uR, dR, eR, q
c
L, (e

c
L, ν

c
L) ≡ ecL). These are all right-

handed Weyl fermions (the c turns a left-handed field into a right-handed one). Notice

that this is a complex representation – if you computed its Frobenius-Schur indicator

you would get zero. This one line is a summary of 30 years worth of work. (For slightly

more information see Zee §IX.1.)

There is also a scalar field transforming as a doublet of SU(2), the Higgs field.

There could be a (heavy) right-handed neutrino, which would be in the rep (1,1)0,

a singlet under everything.

Grand unification. Question: does there exist a compact Lie group G ⊃ GSM

such that the representations (4.19) unify, perhaps into a single irrep?

The group would have to have rank ≥ 4, since we already have rank (GSM) = 4,

with Cartan generators {T3, T8, R3, S}.

A hint that this might be the case is that trRgenS = 2
3
·3− 1

3
·3−1− 1

6
·6 + 1

2
·2 = 0,

the U(1) generator is traceless, as it must be if it is a subgroup of a compact group.

52or perhaps a quotient of this by Z6
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Here’s the simplest possible guess with rank 4: SU(5) ⊃ SU(3)×SU(2)×U(1). The

idea is that the generators would fit together as
TA

0 0

0 0

 ,


0 0 0

0 0 0

0 0 0

RA

 ,


−1/3

−1/3

−1/3

1/2

1/2

 . (4.20)

The 5 is easy to decompose:

5 = (3,1)−1/3 ⊕ (1,2)1/2

which is exactly dR ⊕ ecL. What’s left is 10 dimensional. We know two 10-dimensional

reps of SU(5), namely R = Λ25 ≡ 10 and R = Λ35 = Λ25̄ ≡ 10. Let’s decompose

the first one under SU(5) ⊃ GSM and see what we get:

Λ25 =
(
(3,1)−1/3 ⊕ (1,2)1/2

)
⊗AS

(
(3,1)−1/3 ⊕ (1,2)1/2

)
(4.21)

((3⊗ 3)AS, 1)−2/3 ⊕ (1, (2⊗ 2)AS)1 ⊕ (3,2)− 1
3

+ 1
2

= 1
6

(4.22)

= (3̄, 1)−2/3 ⊕ (1,1)1 ⊕ (3,2)1/6 (4.23)

=
(
(3, 1)2/3 ⊕ (1,1)−1 ⊕ (3̄,2)−1/6

)?
. (4.24)

We conclude that a single generation of the standard model is

Rgen = 10⊕ 5

of SU(5)! This is a huge compression of information.

This has some shocking implications. In particular, the fact that quarks and leptons

(like the electron) live in the same irrep of SU(5) means that the SU(5) interactions

can violate baryon number. There will be processes like qqq → ` by which the proton

can decay into leptons. The fact that all the stuff is made of lots of protons and is still

around is therefore a strong constraint on grand unification. The energy scale above

which SU(5) is restored must be quite large, almost at the Planck energy.

The same Higgs mechanism by which SU(2) × U(1) of the SM is broken down to

U(1)EM can break SU(5) down to GSM. The constraint I just mentioned is a constraint

on the energy scale where this happens. I will not explain this right now.

Instead, let’s be even more ambitious. Recall the SU(5) ⊂ SO(10) that we found in

our discussion of spinor representations. And recall that the 16+ spinor decomposed

under this subgroup into

16− = ⊕ ⊕ = 5⊕ 10⊕ 1.
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This single irrep is exactly Rgen, a generation of the standard model, plus a singlet:

the right-handed neutrino.

A few more things, which it would be criminal not to mention:

• Something special about these particular representations of GSM, SU(5), SO(10)

(and the 27 of E6, too) is the cancellation of anomalies. An important special case

of this has to do with the vanishing of birdtrack diagrams of the following form:

where the loop includes a sum over all the representations

of charged fields. You can see that this is a symmetric tensor dABC(R) with 3

adjoint indices; its vanishing is a consistency condition of the gauge theory. If you

compute it for Rgen of GSM you’ll get zero. In fact if we replace the external lines

with currents for global symmetries, we again get an interesting set of invariants;

their vanishing is no longer a consistency condition, but for the SM they also

vanish. See e.g. here or here for the significance of this.

• Baryon number is violated by SU(5) interactions, but U(1)B−L, the transformation

under which baryons and leptons have opposite charge, actually becomes part of

SO(10). If we include the right-handed neutrino, you can check that it is traceless.

• Grand unification of the gauge groups also implies a unification of their coupling

constants. The couplings of the three factors in GSM are very different (hence the

names Weak and Strong Interactions), but the running of the couplings under

the renormalization group points to such a unification at some very high energy.

(It works even better if there is some supersymmetry.)

• What breaks SU(5) down to GSM? This can be accomplished by a Higgs field

Φ24 in the adjoint of SU(5) which takes a vacuum expectation value proportional

to the generator of S in (4.20), 〈Φ24〉 ∝
(

213 0

0 −312

)
. It is possible to find a

SU(5)-invariant potential for such a field such that configurations of this form are

the minima.

• When Φ24 condenses, its kinetic terms give a mass to the gauge bosons of SU(5)

not in GSM. Since the adjoint decomposes as

24 = (8,1)⊕ (1,3)⊕ (1,1)⊕ (3,2)⊕ (3̄,2)

there are 12 of these, which mediate exotic processes like proton decay.

SO(10) contains 1+n(n−1) = 21 = 45−24 additional gauge bosons. Besides from

subtraction, you can see this from the decomposition of the generators of SO(2n)
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in §3.9 into {Ha, Eab, E
†
ab, E

′
ab, (E

′
ab)
† ,
∑

aHa}, of which the first n − 1 + n2 − n
generate SU(n).

• Mass terms in the SU(5) GUT are of the form

(10 · 10 · 5ϕ) = ψµνψρλϕσεµνρλσ
ϕλ=δλ4

→ ucu

(5̄ · 10 · 5̄ϕ) = ψµψ
µνϕ?ν

ϕλ=δλ4

→ dcd+ ece.

These interactions conserve U(1)B−L.

• Mass terms in the SO(10) GUT require a Higgs field in the 10, which decomposes

into 5⊕ 5̄ of SU(5). Then we can add a term of the form (16+ ·16+ ·10ϕ) which

contains an SO(10) singlet, since

16+ ⊗ 16+ = 10⊕ Λ310⊕
(
Λ510

)
+

= 10⊕ 120⊕ 126

(where (Λ510)+ means the self-dual 5-form – it’s an eigenstate of εi1···i10), as you

may have shown on the homework. Notice that the 5-index antisymmetric rep

contains a singlet of SU(5) which can give a mass to the right-handed neutrino

once SO(10) is broken to SU(5).

• Here is a puzzle for you: a nonzero expectation value of what field (analogous to

Φ24 which breaks SU(5) to GSM) breaks SO(10) to precisely SU(5)?

An adjoint higgs field with a vacuum expectation value proportional to
∑

aHa,

the total particle number in the fermion description of the spinor reps, will almost

do it. In the notation of §3.9, this commutes with all the SU(5) generators Ha, Eab
and fails to commute with the E ′ab and (E ′ab)

†, and hence gives a mass to the

associated gauge bosons. But it also leaves
∑

aHa – it breaks SO(10) to U(5),

not SU(5).

One answer is a 5-index antisymmetric tensor. If its (imaginary) self-dual part

(the 126+) gets an expectation value, this breaks SO(10) to SU(5), since the

5-index AS tensor is invariant under SU(5).

Another, perhaps simpler, answer is just a Higgs in the 16− = 10 ⊕ 5 ⊕ 1 (the

16+ would work just as well). You can see that the the subgroup of SO(2n) which

preserves a single component of the spinor is exactly SU(n) from our description

of the spinor rep: the singlet is the state with no particles, |0〉 =
∣∣1

2
· · · 1

2

〉
. The

generators E ′ab ∝ c†ac
†
a take this state to a state with two particles, and so are

broken. The U(1) ⊂ U(n) elements generated by
∑

aHa act by a nontrivial phase;

in contrast, the generators of the Cartan of SU(n) act trivially: eiθaHa
∣∣1

2
· · · 1

2

〉
=

ei
∑
aHa/2

∣∣1
2
· · · 1

2

〉
=
∣∣1

2
· · · 1

2

〉
since they are by definition orthogonal to

∑
aHa.
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These facts are important in string compactification: Calabi-Yau manifolds have

holonomy SU(n). They have a non-vanishing holomorphic n-form (this is the

singlet in the (Λn2n)+) and they preserve a single spinor component, which

means that compactification on such a manifold preserves some supersymmetry.

See e.g. volume 2 of the book by Green, Schwarz and Witten.

[End of Lecture 20]
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