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A very brief review is given on what it means for a series to be asymptotic followed by a basic
example in non-relativistic quantum mechanics. Finally, Freeman J. Dyson’s mostly qualitative
argument for why QED should be expected to be divergent in general, is given. In such a case, the
theory is either incomplete or new mathematical methods are needed to deal with these divergent
expansions to give a more complete understanding of what the theory is saying. The Borel transform
is discussed as an effort to define a sum for such a factorially divergent series.

INTRODUCTION

Under the current paradigm of quantum field theory,
we often have to do without exact solutions for measur-
able quantities. The effective theories that describe inter-
actions must contain nonlinear terms in the Lagrangian
in order to couple different Fourier modes and different
fields[1] (i.e. to get interesting stuff to happen). These
terms that make interesting things happen, also make it
difficult to solve for measurable quantities. We’re often
forced to expand an expression for these quantities into
a power-series. The problem is, however, that the series
is often asymptotic and thus diverges. Given a partic-
ular asymptotic expansion in QFT, the precision of the
predicted value of that observable is therefore limited,
in principle, as opposed to a practical limitation on com-
puting the infinite order term. For practical purposes, we
can ignore this divergence because the answer is right, up
to some decimal and by the natural ordering of terms in
a power-series, we’re never at odds with in which order
the terms should be added in the expansion.

To emphasize, there is no issue with QFT’s practical
predictive power, but nonetheless F. J. Dyson reasonably
took issue with the in-principle-problem of a divergent
series describing physical phenomena. It is not a math-
ematically well defined theory. In an interview[2], F. J.
Dyson discusses his “ambition of making quantum elec-
trodynamics into a completely solvable theory...in which
all the renormalizations would be done...and everything
could be done, in principle, as accurately as you want.”
He later realized that these divergences in QED were
likely fundamental to the theory of perturbative QED
itself. Ultimately, he came to the conclusion that either
different mathematical methods were needed or a new
physical theory is needed (which may also include the
need for new math).

In this paper, we discuss the former scenario. In partic-
ular, we discuss the Borel summation which is a summa-

[6] It should be noted, however, that there exist quantum field the-
ories that are exactly solvable, but from my understanding, they
are usually relegated to lower dimensions. You can see section
22.2 of Peskin & Schroeder for more information.

tion method used for divergent series. But first, we talk
about some of the basics about asymptotic expansions
and how they arise in non-relativistic quantum mechan-
ics.

ASYMPTOTIC EXPANSIONS: A VERY BRIEF
REMINDER

If one cannot determine an integral in some analytic
form, another way to tackle the integral is to expand
it somehow. A common technique is to expand the inte-
grand in some power-series for some small parameter and
compute the integral term by term in the expansion[3].
Sometimes the expansion of the integrand works in a par-
ticular domain but the integral itself may be over a re-
gion in which the domain is not valid. Often this will
generate an asymptotic expansion. One example for an
asymptotic expansion is the following

I(x) = 4x3ex
4

∫ ∞
x

e−t
4

dt (1)

for x→∞. One can expand this to yield

I(x) = 4x3ex
4

∫ ∞
x

e−t
4

dt = 1− 3

4x4
+

3 · 7
(4x4)2

+ . . . (2)

This is a power series in the parameter λ = 1
4x4 . Because

there is a factorial coefficient for each term in the expan-
sion, there will be some x-dependent order after which,
each successive term of the series will increase and even-
tually diverge. For the above expansion, that order is
roughly nc ≈ x4. Thus, as the expansion parameter λ
goes to zero, or as x→∞, one can take more and more
terms in the expansion as a good approximation to the
actual function I(x).

AN EXAMPLE FROM NON-RELATIVISTIC
QUANTUM MECHANICS

Asymptotic integrals do not just show up in high en-
ergy QFT, but also ordinary quantum mechanics. Per-
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FIG. 1: A plot of the potential V (x) = x2 and V ′(x) =
x2 − x4. Because V ′(x = ±∞) = −∞ the states for the
perturbed Hamiltonian are mostly unbound states with the
possibility of only quasi-bound states.

turbation theory in quantum mechanics is used to deter-
mine how the eigenfunctions change as a result of some
perturbation of the Hamiltonian. In non-degenerate per-
turbation theory, one can follow the states as the pertur-
bation of the form λH1 is switched on. The assumption
of perturbation theory is that the actual states that are
being expanded are analytic functions of the parameter
λ in a circle of finite radius about λ = 0 in the com-
plex plane. So there is a requirement that it should be
possible to analytically continue to states of differing λ.

Let us now look at a quick example regarding the per-
turbation to the SHO hamiltonian. Under the perturba-
tion, the full hamiltonian will be of the form,

H = H0 + λH1 =
p2

2m
+

1

2
kx2 +

1

4
λx4 (3)

for positive k.
The form of the unperturbed and perturbed potential

is shown in Fig. 1. For λ > 0, both H and H0 tend
to ∞ as q → ∞ and so the states are always bound
states with a discrete spectrum in both cases. For λ < 0,
H0 has only bound states, and H has no true bound
states, except for a set of quasi-bound states that are
ultimately delocalized. No matter how small |λ| gets,

the 1
4λx

4 term will always overpower 1
2kx

2 for |x| >
√

2k
|λ|

and all the states will have a finite probability of escaping
the potential due to the tunneling process.

Perturbation theory in quantum mechanics expands
the new states in terms of the old ones. How can we get
spatially extended states from a set of states spatially
localized about an origin? We can’t! For the harmonic
oscillator, all the states need to go to 0 at x =∞, there-
fore all states constructed from these states must have
this property as well. So the boundary condition won’t
let you. The analyticity requirement is not met, and
therefore the expansion is not entirely valid. Ultimately,
the expansion is asymptotic, but lends itself as a good
approximation up to some order of the expansion for the

quasi-bound states well below the potential maximum.
Also, the energies of the perturbed states will take the
form of Ea(λ) = Aa(λ) + Sa(λ) where Aa(λ) is a part
that is analytic in λ and Sa(λ) is a nonperturbative part
that is exponentially small as λ→ 0.

FREEMAN J. DYSON’S ARGUMENT OF
DIVERGENCE IN QED

Dyson gives a simple physical argument that indicates
the power series expansions in QED will be divergent
even after renormalization. Also, the divergence is non-
trivial, as opposed to the trivial divergences that occur
for the scattering amplitude of a free particle where the
particle has a possibility of being captured into a perma-
nently bound state.

Suppose we have the form of a physical quantity given
as a power series in the charge coupling in QED. The
power series is obtained by integrating the equations of
motion of the theory. If the expansion is such that,

F (e2) = a0 + a2e
2 + a4e

4 + ... <∞ (4)

for some nonzero value of e2, then F (e2) is analytic at
e = 0, this must mean that the physical quantity is an
analytic function of e for e = 0. Therefore, if it is an
analytic function, we can allow e2 to extend in the com-
plex plane and it must have a finite radius of convergence
about e2 = 0; so e2 → −e2 or F (e2) → F (−e2) should
also be convergent for sufficiently small values of e2.

We can interpret the physical quantity F (−e2) as aris-
ing in a world where like charges attract each other. In
the classical limit of large particle number and large dis-
tances, the potential between charges is just the clas-
sical Coulomb potential with a sign reversal. One can
imagine a “pathological” state with a large number of
electron-positron pairs with the electrons separated from
the positrons in different regions of space such that the
negative Coulomb potential is larger than the rest energy
and kinetic energy of the particles themselves.

The point is that for any physical state of the system,
there is a large potential barrier separating that physical
state with these “pathological” states, in some sense sim-
ilar to the quartic potential perturbation of the harmonic
oscillator where the quasi-bound states have a finite over-
lap with states that can escape to regions of arbitrarily
large negative potential. In that case, any quasi-bound
state is unstable against the spontaneous tunneling be-
yond the potential maxima. In the case of the alter-
nate QED where e2 has gone to −e2, any physical state
is unstable against the spontaneous generation of many
particles. Once in such a pathological state, the system
will generate even more particles and the vacuum will
“disintegrate” by this spontaneous polarization. Such a
theory will not have equations of motions that can be put
into an analytic form and thus, the expansion of physical
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quantities will not be analytic for F (−e2) for arbitrary
values of e2. The expansion, therefore has a 0 radius of
convergence so we should exepect an asymptotic series
for F (e2) that will not be convergent.

There are two conclusions one could draw from the
fact that the series is divergent. In the case that F (e2)
really is well defined, we will likely need new mathemat-
ical methods to determine a better means of figuring out
what it is besides standard perturbation theory. If the
coefficients of the expansion contain all the information
QED has to offer, then we will likely need both different
mathematics and different physical theories to describe
such phenomena and QED would not be a closed theory.

BOREL SUMMATION

Even if we are given a divergent series, there are ways
in which we can assign a value to its sum by defining the
Borel transform. In particular, if the series is factorially
divergent, we can define the Borel transform as

F (λ) =
∞∑
n=0

anλ
n+1 ⇒ B {F} (t) =

∞∑
n=0

an
tn

n!
(5)

where F (λ) is some initial expansion in powers of λ of a
physical quantity in QED or QCD.

Then, the Borel integral can be defined as

F =

∫ ∞
0

dte
−t
λ B {F} (t). (6)

If the Borel integral exists, it gives the defined sum for
the originally divergent series.

All that is left to show is that the Borel sum equals
the original function F (λ) non-perturbatively.By the
Watson-Nevanlinnna-Sokal theorem, equality is guaran-
teed in the case that F satisfies certain analyticiy require-
ments. For renormalizable theories, it turns out that
these conditions are too strong.

If we assume a particular form for the an such that

an = KcnΓ(n+ 1 + b) (7)

then except when b is a negative integer, the Borel trans-
formation is

B {F} (t) =
KΓ(1 + b)

(1− at)1+n
(8)

for b = −m wherem is a positive integer, the transform
is given as

B {F} (t) =
(−1)m

Γ(m)
(1−ct)m−1ln(1−ct)+polynomial in t.

(9)

So when c is positive, the series does not alternate in
sign and from (8) we see that that yields singularities
for positive t in the Borel plane. So therefore, the Borel
integral does not exist as defined, and we cannot define a
sum for these divergent series. Such non-sign-alternating
series are expected in QED and QCD.

The Borel transform is still useful as a generating func-
tion for the series coefficients an. The behavior of the
divergence in the original series expansion is encoded in
these singularities. Singularities closer to the origin at
t = 0 of the Borel plane, correspond to faster divergences,
as that corresponds to higher values of c. There various
sources of these type of singularities. For example, if a se-
ries expansion, in a renormalizable theory, contains Nth
order contributions that are proprtional to N !, they are
called renormalons.

We can also define the integral by taking the limit as
the singularities are above or blow the positive t axis. In
this case, the sum has an imaginary part given by

ImF (λ) = ±πK
c
e−

1
cλ (cλ)−b (10)

and the ambiguity of the sum is defined as the difference
in the two values obtained by having a singularity slightly
above or below the t-axis.

These ambiguities are exponentially small in the ex-
pansion parameter, and in this sense they are non-
perturbative. One can then add terms with the form
of these ambiguities to the original series expansion. The
ambiguities in the defining sum cancel leading to an im-
proved approximation of the function F (λ).
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