University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 239/139 Spring 2018
Assignment 1

Due 12:30pm Monday, April 9, 2018

1. Too many numbers.

Find the number of qbits the dimension of whose Hilbert space is the number of atoms in the Earth. (It's not very many.) Now imagining diagonalizing a Hamiltonian acting on this space.

2. Warmup for the next problem.

Parametrize the general pure state of a qbit in terms of two real angles. A good way to do this is to find the eigenstates of

$$
\boldsymbol{\sigma}^{n} \equiv \check{n} \cdot \overrightarrow{\boldsymbol{\sigma}} \equiv n_{x} \mathbf{X}+n_{y} \mathbf{Y}+n_{z} \mathbf{Z}
$$

where \check{n} is a unit vector.
Compute the expectation values of \mathbf{X} and \mathbf{Z} in this state, as a function of the angles θ, φ.
3. Mean field theory is product states.

Consider a spin system on a lattice. More specifically, consider the transverse field Ising model:

$$
\mathbf{H}=-J\left(\sum_{\langle x, y\rangle} Z_{x} Z_{y}+g \sum_{x} X_{x}\right) .
$$

Consider the mean field state:

$$
\begin{equation*}
\left|\psi_{\mathrm{MF}}\right\rangle=\otimes_{x}\left(\sum_{s_{x} \pm} \psi_{s_{x}}\left|s_{x}\right\rangle\right) . \tag{1}
\end{equation*}
$$

Restrict to the case where the state of each spin is the same.
Write the variational energy for the mean field state, i.e. compute the expectation value of \mathbf{H} in the state $\left|\psi_{\mathrm{MF}}\right\rangle, E(\theta, \varphi) \equiv\left\langle\psi_{\mathrm{MF}}\right| \mathbf{H}\left|\psi_{\mathrm{MF}}\right\rangle$.
Assuming s_{x} is independent of x, minimize $E(\theta, \varphi)$ for each value of the dimensionless parameter g. Find the groundstate magnetization $\langle\psi| Z_{x}|\psi\rangle$ in this approximation, as a function of g.

