University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 239/139 Spring 2018 Assignment 5

Due 12:30pm Monday, May 7, 2018

1. Chain rule for mutual information. [optional]

Show from the definitions that the mutual information satisfies the following chain rule:

$$
I(X: Y Z)=I(X: Y)+I(X: Z \mid Y)=I(X: Z)+I(X: Y \mid Z)
$$

More generally,

$$
\begin{equation*}
I\left(X_{1} \cdots X_{n}: Y\right)=\sum_{i=1}^{n} I\left(X_{i} Y \mid X_{i-1} \cdots X_{i}\right) \tag{1}
\end{equation*}
$$

2. Control-X brainwarmer.

Show that the operator control-X can be written variously as

$$
C X_{B A}=|0\rangle\left\langle\left. 0\right|_{B} \otimes \mathbb{1}_{A}+\mid 1\right\rangle\left\langle\left. 1\right|_{B} \otimes \mathbf{X}_{A}=\mathbf{X}_{A}^{\frac{1}{2}\left(1-\mathbf{Z}_{B}\right)}=e^{\frac{\mathrm{i} \pi}{4}\left(1-\mathbf{Z}_{B}\right)\left(1+\mathbf{X}_{A}\right)} .\right.
$$

3. Density matrix exercises.

(a) Show that the most general density matrix for a single qbit lies in the Bloch ball, i.e. is of the form

$$
\boldsymbol{\rho}_{v}=\frac{1}{2}(\mathbb{1}+\vec{v} \cdot \overrightarrow{\boldsymbol{\sigma}}), \quad \sum_{i} v_{i}^{2} \leq 1 .
$$

Find the determinant, trace, and von Neumann entropy of $\boldsymbol{\rho}_{v}$.
(b) [from Barnett] A single qbit state has $\langle\mathbf{X}\rangle=s$. Find the most general forms for the corresponding density operator with the minimum and maximum von Neumann entropy. (Hint: the Bloch ball is your friend.)
(c) Show that the purity of a density matrix $\pi[\boldsymbol{\rho}] \equiv \operatorname{tr} \boldsymbol{\rho}^{2}$ satisfies $\pi[\boldsymbol{\rho}] \leq 1$ with saturation only if $\boldsymbol{\rho}$ is pure.
(d) [from Barnett] Show that the quantum relative entropy satisfies the following

$$
\begin{gather*}
D\left(\boldsymbol{\rho}_{A} \otimes \boldsymbol{\rho}_{B} \| \boldsymbol{\sigma}_{A} \otimes \boldsymbol{\sigma}_{B}\right)=D\left(\boldsymbol{\rho}_{A} \| \boldsymbol{\sigma}_{A}\right)+D\left(\boldsymbol{\rho}_{B} \| \boldsymbol{\sigma}_{B}\right) . \tag{2}\\
\sum_{i} p_{i} D\left(\boldsymbol{\sigma}_{i} \| \boldsymbol{\rho}\right)=\sum_{i} p_{i} D\left(\boldsymbol{\sigma}_{i} \| \boldsymbol{\sigma}_{\mathrm{av}}\right)+D\left(\boldsymbol{\sigma}_{\mathrm{av}} \| \boldsymbol{\rho}\right) \tag{3}\\
D\left(\boldsymbol{\sigma}_{\mathrm{av}} \| \boldsymbol{\rho}\right) \leq \sum_{i} p_{i} D\left(\boldsymbol{\sigma}_{i} \| \boldsymbol{\rho}\right) \tag{4}
\end{gather*}
$$

for any probability distribution $\left\{p_{i}\right\}$ and density matrices $\boldsymbol{\rho}, \boldsymbol{\sigma}_{i}$, and where $\boldsymbol{\sigma}_{\mathrm{av}} \equiv \sum_{i} p_{i} \boldsymbol{\sigma}_{i}$.
4. Teleportation for qdits. [optional, from Christiandl]

Show that it is possible to teleport a state $|\xi\rangle_{A} \in \mathcal{H}_{A},|A| \equiv d$ from A to B using the maximally-entangled state

$$
|\Phi\rangle_{A B} \equiv \frac{1}{\sqrt{d}} \sum_{n=1}^{d}|n n\rangle_{A B}
$$

Hint: Consider the clock and shift operators

$$
\mathbf{Z} \equiv \sum_{n=1}^{d}|n\rangle\langle n| \omega^{n}, \omega \equiv e^{\frac{2 \pi \mathrm{i}}{d}}, \quad \mathbf{X} \equiv \sum_{n=1}^{d}|n+1\rangle\langle n|
$$

where the argument of the ket is to be understood mod d. Show that these generalize some of the properties of the Pauli \mathbf{X} and \mathbf{Z} in that they are unitary and that they satisfy the (discrete) Heisenberg algebra

$$
\mathbf{X Z}=a \mathbf{Z X}
$$

for some c-number a which you should determine.
5. Thermal density matrix. Suppose given a Hamiltonian H. In lecture we showed that the thermal density matrix $\boldsymbol{\rho}_{T} \equiv \frac{e^{-\frac{H}{\varepsilon_{B} T}}}{Z}$ has the maximum von Neumann entropy for any state with the same expected energy. Show that if instead we are given a fixed temperature T, the thermal density matrix s minimizes the free energy functional

$$
F_{T}[\boldsymbol{\rho}] \equiv \operatorname{tr} \boldsymbol{\rho} H-T S_{v N}[\boldsymbol{\rho}] .
$$

6. Amplitude-damping channel. [from Preskill 3.4.3, Le Bellac §15.2.4]

This is a very simple model for a two-level atom, coupled to an environment in the form of a (crude rendering of a) radiation field.

The atom has a groundstate $|0\rangle_{A}$; if it starts in this state, it stays in this state, and the radiation field stays in its groundstate $|0\rangle_{E}$ (zero photons). If the atom starts in the excited state $|1\rangle_{A}$, it has some probability p per time $d t$ to return to the groundstate and emit a photon, exciting the environment into the state $|1\rangle_{E}$ (one photon). This is described by the time evolution

$$
\begin{gathered}
\mathbf{U}_{A E}|0\rangle_{A} \otimes|0\rangle_{E}=|0\rangle_{A} \otimes|0\rangle_{E} \\
\mathbf{U}_{A E}|1\rangle_{A} \otimes|0\rangle_{E}=\sqrt{1-p}|1\rangle_{A} \otimes|0\rangle_{E}+\sqrt{p}|0\rangle_{A} \otimes|1\rangle_{E}
\end{gathered}
$$

(a) Show that the evolution of the atom's density matrix can be written in terms of two Kraus operators \mathcal{K}_{i}, find those operators and show that they satisfy $\sum_{i} \mathcal{K}_{i}^{\dagger} \mathcal{K}_{i}=\mathbb{1}_{\text {atom }}$.
(b) Assuming that the environment is forgetful and resets to $|0\rangle_{E}$ after each time step $d t$, find the fate of the density matrix after time $t=n d t$ for late times $n \gg 1$, i.e. upon repeated application of the channel.
(c) Evaluate the purity $\operatorname{tr} \boldsymbol{\rho}_{n}^{2}$ of the nth iterate. (Recall that the purity is 1 IFF the state is pure.)
7. Phase-flipping decoherence channel. [from Schumacher]

Consider the following model of decoherence on an N-state Hilbert space, with basis $\{|k\rangle, k=1 . . N\}$.

Define the unitary operator

$$
\mathbf{U}_{\alpha} \equiv \sum_{k} \alpha_{k}|k\rangle\langle k|
$$

where α_{k} is an N-component vector of signs, ± 1 - it flips the signs of some of the basis states. There are 2^{N} distinct such operators.

Imagine that interactions with the environment act on any state of the system with the operator \mathbf{U}_{α}, for some α, chosen randomly (with uniform probability from the 2^{N} choices).
[Hint: If you wish, set $N=2$.]
(a) Warmup question: If the initial state is $|\psi\rangle$, what is the probability that the resulting output state is $\mathbf{U}_{\alpha}|\psi\rangle$?
(b) Write an expression for the resulting density matrix, $\mathcal{D}(\boldsymbol{\rho})$, in terms of $\boldsymbol{\rho}$.
(c) Think of \mathcal{D} as a superoperator, an operator on density matrices. How does \mathcal{D} act on a density matrix which is diagonal in the given basis,

$$
\boldsymbol{\rho}_{\text {diagonal }}=\sum_{k} p_{k}|k\rangle\langle k| ?
$$

(d) The most general initial density matrix is not diagonal in the k-basis:

$$
\boldsymbol{\rho}_{\text {general }}=\sum_{k l} \rho_{k l}|k\rangle\langle l| .
$$

what does \mathcal{D} do to the off-diagonal elements of the density matrix?

