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1. Brainwarmers on Kraus operators.

(a) Check that the Kraus operators

Ki = 〈i|U |0〉

(where U is a unitary on A ⊗ Ā, {|i〉} is an ON basis of Ā, and |0〉 is a

reference state in Ā) satisfy the condition∑
i

K†
iKi = 1A (1)

(b) Check that the condition (1) implies that the Kraus evolution ρ→
∑

iKiρK
†
i

preserves the trace.

(c) Find a set of Kraus operators for the erasure (or reset) channel that takes

ρ 7→ |0〉〈0| for every ρ. Check that they satisfy (1).

2. Stationary states of unital channels.

Check that the unital condition
∑

iK
†
iKi = 1 implies that the uniform density

matrix u ≡ 1 1
|H| is a fixed point of the associated quantum channel, E : H → H,

E(u) = u.

3. Shannon entropy is concave.

Consider a collection of probability distributions πα on a random variable X, so∑
x π

α
x = 1, παx ≥ 0,∀x. Then a convex combination of these πav ≡

∑
α pαπ

α

is also a probability distribution on X. Show that the entropy of the average

distribution is larger than the average of the entropies:

H(πav) ≥
∑
α

pαH(πα).

My earlier claim that the upper bound is always saturated classically is not true.

Thanks to Ahmed Akhtar for pointing this out.
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4. Random quantum expanders. [optional. somewhat open-ended and numeri-

cal]

Consider the family of quantum channels of the form

ρ 7→ Eχ(ρ) =

χ∑
i=1

piUiρU
†
i

with {Ui} a collection of unitaries. Such a channel is called a quantum expander.

Show that such a channel is unital.

Sample χ random unitaries from the Haar measure on U(d) e.g. in Mathematica1.

(You can take pi = 1/χ for definiteness if you wish.)

Sample a random initial density matrix2.

Consider the rate at which repeated action of the channel Eχ, ρn = En(ρ) mixes

the initial state ρ as a function of χ (and d). We can use the von Neumann

entropy as a measure of this mixing. Make some plots and some estimates.

If n is very large, how many terms do I actually need to include in the sum in

En(ρ) =
∑
i1..in

pin · · · pi1Ui1 · · ·UinρU
†
in
· · ·U†

i1
?

Consider the eigenstates (eigenoperators) of the (super)operator Eχ. Can you

show that any state orthogonal (in the Hilbert-Schmidt norm) to 1 has a an

eigenvalue less than 1?

5. Scramble.

For this problem HA has dimension d.

(a) Warmup. The set of linear operators End(HA) is itself a Hilbert space

with the Hilbert-Schmidt inner product 〈A,B〉 = trA†B. Find an orthogo-

nal basis {Ua} for this space (over C) whose elements are themselves unitary

operators, trU†
aUb = dδab.

[Hint: consider the algebra generated by the unitaries X,Z on the qdit

teleportation problem on the previous problem set.]

1 Haar measure means the measure which is invariant under the group action. I did this by choosing

a d×d complex matrix X with entries chosen from the gaussian distribution (which is indeed invariant

under U(d)) and then taking Y = X +X† to make it hermitian, and then using the matrix U which

diagonalizes Y .
2 I did this by choosing a complex matrix X with entries chosen from the gaussian distribution,

and then taking Y = X +X† to make it hermitian and then taking Z = Y 2 to make it positive and

then taking ρ = Z/trZ to make it a density matrix. What distribution did I use?
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Bonus: For the case of |A| = 2k find such a basis whose elements square to

one.

(b) Consider a maximally entangled state |Φ〉 ≡ 1√
d

∑
i |ii〉 ∈ HA ⊗ HA. Show

that the d2 maximally entangled states

|Φa〉 ≡ Ua ⊗ 1 |Φ〉

form an orthonormal basis of HA ⊗HA.

(c) Check your answers to the previous two parts for the case of qbits d =

2. Make a basis of product states from linear combinations of maximally

entangled states.

(d) For an arbitrary operator A ∈ End(A), find {pa,Ua} with pa probabilities

and Ua unitary such that the associated channel scrambles A in the sense

that ∑
a

paUaAU†
a =

trA

d
1.

(e) Use the previous result and the concavity of the entropy to show that the

uniform state u = 1/d has the maximum von Neumann entropy on A.

(f) Bonus problem: for the case where A is Hermitian, find a set of only d

unitaries which scramble A.

The following is a collection of a few more examples of quantum channels, wherein

it is fun and profitable to determine the long-term behavior on repeated action of the

channel. Do as many of them as you find instructive.

6. Decoherence by phase damping with non-orthogonal states [from Preskill]

Suppose that a heavy particle A begins its life in outer space in a superposition

of two positions

|ψ0〉A = a |x0〉+ b |x1〉 .

These positions are not too far apart. The particle interacts with the electro-

magnetic field, and in time dt, the whole system evolves according to

UAE |x0〉A ⊗ |0〉E =
√

1− p |x0〉A ⊗ |0〉E +
√
p |x0〉A ⊗ |γ0〉E

UAE |x1〉A ⊗ |0〉E =
√

1− p |x1〉A ⊗ |0〉E +
√
p |x1〉A ⊗ |γ1〉E

But because x0 and x1 are close, the (normalized) photon states |γ0〉 , |γ1〉 have

a large overlap:

〈γ0|γ1〉E = 1− ε, with 0 < ε� 1.
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(a) Find the Kraus operators describing the time evolution of the reduced den-

sity matrix ρA.

(b) How long does it take the superposition to decohere? More precisely, at

what time t is (ρA)01 (t) = 1
e

(ρA)01 (t = 0)?

7. Decoherence on the Bloch sphere [from Preskill]

Parametrize the density matrix of a single qubit as

ρA =
1

2

(
1 + ~P · ~σ

)
.

(a) Polarization-damping channel.

Consider the (unitary) evolution of a qbit A coupled to a 4-state environment

via

UAE |φ〉A ⊗ |0〉E =
√

1− p |φ〉A ⊗ |0〉E +
√
p/3

3∑
i=1

σi
A ⊗ 1E |φ〉A ⊗ |i〉E

Show that this evolution can be accomplished with the Kraus operators

M0 =
√

1− p1, Mi =
√
p/3σi,

and show that they obey the completeness relation requred by unitarity of

UAE.

Show that the polarization Pi of the qbit evolves according to

~P →
(

1− 4p

3

)
~P .

Describe this evolution in terms of what happens to the Bloch ball.

What happens if p > 3/4?

(b) Two-Pauli channel.

Consider the (unitary) evolution of a qbit A coupled to a three-state envi-

ronment via

UAE |φ〉A ⊗ |0〉E =
√

1− p |φ〉A ⊗ |0〉E +
√
p/2

2∑
i=1

σi
A ⊗ 1E |φ〉A ⊗ |i〉E

Show that this evolution can be accomplished with the Kraus operators

M0 =
√

1− p1, Mi =
√
p/2σi, i = 1, 2

and show that they obey the completeness relation requred by unitarity of

UAE.

Describe this evolution in terms of what happens on the Bloch ball, and

evaluate the purity.
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(c) Phase-damping channel.

For the evolution of problem 6,

UAE |0〉A ⊗ |0〉E =
√

1− p |0〉A ⊗ |0〉E +
√
p |0〉A ⊗ |γ0〉E

UAE |1〉A ⊗ |0〉E =
√

1− p |1〉A ⊗ |0〉E +
√
p |1〉A ⊗ |γ1〉E

now thinking of A as a qbit, describe the evolution of its polarization vector

on the Bloch ball.

8. Turtles all the way down. [optional, open-ended]

A question you may have about our discussion of polarization-damping as a model

of decoherence is: why does the environment reset to the reference state |0〉E?

We can postpone the question a bit by coupling the environment to its own envi-

ronment, according to an amplitude damping channel. On the previous problem

set, you saw that the result of the repeated action of such a channel can set

ρE = |0〉 〈0|. This statement in turn assumes a forgetful meta-environment. A

thermodynamic limit is required to postpone the question indefinitely. Construct

such a thermodynamic limit.
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