University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 239/139 Spring 2018
Assignment 8

Due 12:30pm Wednesday, May 30, 2018

## 1. Brainwarmers.

(a) Is it true that $0 \leq S(A \mid C)+S(B \mid C)$ ? Prove or give a counterexample.
(b) Show that the von Neumann entropy is the special case ${ }^{1} S(\boldsymbol{\rho})=\lim _{\alpha \rightarrow 1} S_{\alpha}(\boldsymbol{\rho})$ of the Renyi entropies:

$$
S_{\alpha}(\boldsymbol{\rho}) \equiv \frac{\operatorname{sgn}(\alpha)}{1-\alpha} \log \operatorname{tr} \boldsymbol{\rho}^{\alpha}=\frac{\operatorname{sgn}(\alpha)}{1-\alpha} \log \sum_{a} p_{a}^{\alpha}
$$

## 2. Direct application of Lieb's theorem.

We only used a very special case of Lieb's theorem to prove monotonicity of the relative entropy. Surely there is more to learn from it.

Consider an ensemble of states $\boldsymbol{\rho}=\sum_{i} p_{i} \boldsymbol{\rho}_{i}$, and a unitary operator $\mathbf{U}$ (for example, it may be closed-system time evolution).
Show that the relative entropy between $\boldsymbol{\rho}(t) \equiv \mathbf{U} \boldsymbol{\rho} \mathbf{U}^{\dagger}$ and $\boldsymbol{\rho}$ is convex in $\boldsymbol{\rho}$ :

$$
D(\boldsymbol{\rho}(t) \| \boldsymbol{\rho}) \leq \sum_{i} p_{i} D\left(\boldsymbol{\rho}_{i}(t) \| \boldsymbol{\rho}_{i}\right) .
$$

Open ended bonus problem: see if you can find a better result by directly applying Lieb's joint concavity theorem to a problem in many body physics.

## 3. Majorization questions.

(a) Show that if a doubly stochastic map is reversible (invertible and the inverse is also doubly stochastic) then it is a permutation.
(b) Show that the set of doubly stochastic maps is convex (that is: a convex combination $\sum_{a} p_{a} D_{a}$ of doubly stochastic maps is doubly stochastic). What are the extreme points of this set? (This is the easier direction of the Birkhoff theorem.)

[^0](c) Show that a pure state and uniform state satisfy $(1,0,0 \cdots) \succ p \succ(1 / L, 1 / L \cdots)$ for any $p$ on an $L$-item space.
(d) A useful visualization of majorization relations is called the 'Lorenz curve': this is just a plot of the cumulative probability $P_{p}(K)=\sum_{k=1}^{K} p_{k}$ as a function of $K$. What does $p \succ q$ mean for the Lorenz curves of $p$ and $q$ ? Draw the Lorenz curves for the uniform distribution and for a pure state.
(e) Show that the set of probability vectors majorized by a fixed vector $x$ is convex. That is: if $x \succ y$ and $x \succ z$ then $x \succ t y+(1-t) z, t \in[0,1]$. Hints: (1) the analogous relation is true if we replace $x, y, z$ with real numbers and $\succ$ with $\geq$. (2) Show that $P_{p \downarrow}(K) \geq P_{\pi p \downarrow}(K)$ (where $\pi p^{\downarrow}$ indicates any other ordering of the distribution).
(f) For the case of a 3-item sample space we can draw some useful pictures of the whole space of distributions. The space of probability distributions on three elements is the triangle $x_{1}+x_{2}+x_{3}=1, x_{i} \geq 0$, which can be drawn in the plane. We can simplify the picture further by ordering the elements $x_{1} \geq x_{2} \geq x_{3}$, since majorization does not care about the order. Pick some distribution $x$ with $x_{1} \neq x_{2} \neq x_{3}$ and draw the set of distributions which $x$ majorizes, the set of distributions majorized by $x$, and the set of distributions with which $x$ does not participate in a majorization relation ('not comparable to $x$ ').


[^0]:    ${ }^{1}$ Thanks to Kelson Kaj for pointing out the error in the previous version.

