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1. Emergence of the Dirac equation. Consider a chain of free fermions with

H = −t
∑
n

c†ncn+1 + h.c.

(a) Show that the low-energy excitations at a generic value of the filling are

described the the massless Dirac lagrangian in 1+1 dimensions. Find an

explicit choice of 1+1-d gamma matrices which matches the answer from the

lattice model. Show that the right-movers are right-handed γ5 ≡ γ0γ1 = 1

and the left-movers are left-handed.

This system has a conserved charge N ≡
∑

n c
†
ncn counting the number of

fermions, which we get to pick. The easiest way to do this is to add a

chemical potential H → H −µN and choose µ to get the desired number of

particles on average. (This is the same as fixing the number of particles in

the thermodynamic limit.) In that case we have

H = −t
∑
n

c†ncn+1 + h.c.− µ
∑
n

c†ncn =

∮
BZ

d̄kc†kckεk

with εk = −2t cos ka− µ, and the integral is over the Brillouin zone. a = 1

is the lattice spacing. By ‘generic filling’ I mean choose the number of

particles per site to be between 0 and 1. The former and latter correspond

to choosing µ = ±2t at the bottom or top of the band, where the dispersion

is quadratic, rather than linear.

We can focus on the physics at the two Fermi points k = ±kF (where kF
solves εkF = 0) by plugging in

ψ(x) '
∫
R

d̄ke(kF +k)xψR +

∫
R

d̄ke(−kF +k)xψL

where R is a small-enough region in momentum space that the two domains

don’t overlap. This gives

H =

∫
R

d̄k
(
vFkψ

†
RψR − vFkψ

†
LψL

)
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where vF ≡ ∂kεk|k=kF . Translating into an action, setting vF = 1, and

pretending R goes on forever (this is how we can fool ourselves that the

chiral current is conserved), this is

S =

∫
dxdt

(
ψ†R (∂t − ∂x)ψR + ψ†L (∂t + ∂x)ψL

)
=

∫
d2x

(
Ψ̄γµ∂µΨ

)
with

Ψ =

(
ψL
ψR

)
and

γ0 = σ1, γ1 = iσ2, γ5 ≡ γ0γ1 = −σ3.

This gives

γ5Ψ = −σ3

(
ψL
ψR

)
=

(
−ψL
ψR

)
so indeed the left-moving particle has left-handed chirality.

[I am adding the rest of this problem on Friday April 12, so it is all bonus material.

It will carry over to HW3.]

On the previous problem set problem 4, you may have wondered what is the con-

nection between the field theory we were studying (a scalar coupled to fermions

in D = 2) and polyacetylene. I’d like to explain that connection a bit.

Consider an extension of the model above to include also phonon modes, i.e. de-

grees of freedom encoding the positions of the ions in the solid. (Again we ignore

the spins of the electrons for simplicity.)

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.+
∑
n

K(un − un+1)2 ≡ HF +HE.

Here un is the deviation of the nth ion from its equilibrium position (in the +x

direction), so the second term represents an elastic energy.

(b) Consider a configuration

un = φ(−1)n (1)

where the ions move closer in pairs. Compute the electronic spectrum.

(Hint: this enlarges the unit cell. Define c2n ≡ an, c2n+1 ≡ bn, and solve in

Fourier space, an ≡
∮

d̄ke2iknak etc.) You should find that when φ 6= 0 there

is a gap in the electron spectrum (unlike φ = 0). Expand the spectrum near

the minimum gap and include the effects of the field φ in the continuum

theory.
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(c) Peierls’ instability. Compute the groundstate energy of the electrons HF

in the configuration (1), at half-filling (i.e. the number of electrons is half

the number of available states). Check that you recover the previous answer

when φ = 0. Interpret the answer when φ = 1.

Compute HE in this configuration, and minimize the sum of the two as a

function of φ.

(d) You should find that the energy is independent of the sign of φ. This means

that there are two groundstates. We can consider a domain wall between a

region of + and a region of −. Show that this domain wall carries a fermion

mode whose energy lies in the bandgap and which carries fermion number
1
2
.

(e) Verify the result of the previous part by diagonalizing the relevant tight-

binding matrix.

(f) Time-reversal played an important role here. If we allow complex hopping

amplitudes, we can make a domain wall without midgap modes. Explain

this from field theory. Bonus: explain this from the lattice hamiltonian.

2. An application of effective field theory in quantum mechanics.

[I learned this example from Z. Komargodski.]

Consider a model of two canonical quantum variables ([x,px] = i = [y,py], 0 =

[x,py] = [x,y], etc) with Hamiltonian

H = p2
x + p2

y + λx2y2.

(This is similar to the degenerate limit of the model studied in lecture with two

QM variables where both natural frequencies are taken to zero.)

(a) Based on a semiclassical analysis, would you think that the spectrum is

discrete?

The potential has flat directions along the coordinate axes, {x = 0} ∪ {y =

0}. This means there are unbounded classical orbits, which suggests that

the spectrum should be continuous. This conclusion is in fact wrong. (An

excuse for discounting it is that the set of initial conditions which follow

unbounded orbits have measure zero.)

(b) Study large, fixed x near y = 0. We will treat x as the slow (= low-energy)

variable, while y gets a large restoring force from the background x value.

Solve the y dynamics, and find the groundstate energy as a function of x:

Veff(x) = Eg.s. of y (x).
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If we treat x as a constant, the hamiltonian for y is a harmonic oscillator

problem. The groundstate energy is

Veff(x) = Eg.s. of y (x) =
√
λ|x|

(c) The result is not analytic in x at x = 0. Why?

At x = 0, y becomes massless (i.e. it is a spring whose natural frequency

goes to zero there). Integrating out massless degrees of freedom produces

singularities in the effective action.

(d) Is the spectrum of the resulting 1d model with

Heff = p2
x + Veff(x)

discrete? Is this description valid in the regime which matters for the semi-

classical analysis?

[Bonus: determine the spectrum of Heff.]

The potential V ∼ |x| bounds the trajectories and has a discrete spectrum.

Integrating out y is a better approximation at larger |x|, which is where the

dangerous flat directions occur. That is: this approximation is valid outside

of a compact region of field space near x = y = 0 in which the potential is

bounded below. Such a region cannot produce a continuum in the spectrum.

The actual spectrum of the absolute value potential is fun. The solutions

of the Schrödinger problem (we can rescale x to get rid of the constant

prefactor in the potential) ψ(x) = ψ>(x)θ(x) + ψ<(x)θ(−x) satisfy{
(−∂2

x + (x− E))ψ> = 0, x > 0

(−∂2
x + (−x− E))ψ< = 0, x > 0

.

The solutions for x > 0 are the two Airy functions

ψ>(x) = a>Ai(x− E) + b>Bi(x− E)

of which the second blows up at large argument and hence cannot be nor-

malized so we must set b> = 0. Similarly, for x < 0, we have

ψ<(x) = a<Ai(−x− E) + b<Bi(−x− E)

and again we must set b< = 0. Since the potential has finite measure near

x = 0 (i.e. no delta function) the wavefunction and its first derivative must

be continuous at x = 0 and we have
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ψ>(0) = ψ<(0) =⇒ a>Ai(−E) = a<Ai(−E)

ψ′>(0) = ψ′<(0) =⇒ a>Ai′(−E) = −a<Ai′(−E) (2)

which means either a> = a< = 0 OR Ai(−E) = 0 OR Ai′(−E) = 0.

This means that the boundstates occur at zeros of the airy function or its

derivative:

{boundstate energies } ∝ {E|Ai(−E) = 0 or Ai′(−E) = 0}.

3. Matching with massive electrons. [I got this problem from Iain Stewart.]

Consider QED in the regime where the photon momenta qµ are much smaller

than the electron mass me. In this regime, we can integrate out the electron and

write an effective field theory involving only the photon.

(a) Calculate the QED one-loop vacuum polarization diagram using dimensional

regularization, in the MS scheme. (You’ve done this before. Here’s the new

ingredient:) Expand Π(q2) through first order in q2

m2
e
.

We did this calculation in lecture and found

δΠµν
2 (q) =

(
q2gµν − qµqµ

)
δΠ2(q2)

with

δΠ2(q2)MS =
2α

π

∫ 1

0

dx x(1− x) log

(
m2 − x(1− x)q2

µ2

)
.

To facilitate the expansion in q2, write

log
m2 − x(1− x)q2

µ2
= log

m2

µ2
+ log

(
1− x(1− x)

q2

µ2

)
.

Taylor expanding the log log(1− u) = −
∑∞

n=1
un

n
gives

δΠ2(q2)MS =
α

3π
log

m2

µ2
− α

15π

q2

m2
+O

(
q4

m4

)
since ∫ 1

0

dx x(1− x) =
1

6
,

∫ 1

0

dx x2(1− x)2 =
1

30
.
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(b) Write down a Lagrangian involving only the photon field operator that re-

produces the first two terms in the expansion. (Hint: it should be gauge

invariant and Lorentz invariant. There is essentially (up to integration by

parts) only one addition to the Maxwell term). Use the calculation above

to match between the photon-only EFT and QED at µ = me, at this order

in the fine structure constant α.

The leading term is the correction to the Maxwell term. The order-q2 bit

is produced by an operator involving two gauge fields and two extra deriva-

tives.

δL = c1
1

4
FµνF

µν +
c2

m2

1

4
Fµν∂ρ∂

ρF µν + ...

Other gauge-invariant dimension six operators made of two As either are re-

lated by integration by parts ( ∂ρFµν∂
ρF µν) or break parity ( (?F )µν ∂ρ∂

ρF µν)

and are therefore not produced by QED, which is parity invariant. Matching

to our expression above gives:

c1 = δΠ2(0), c2 = m2∂q2δΠ2(0).

(c) What symmetry of QED forbids dimension-6 operators involving three field

strengths?

Charge conjugation invariance acts by Fµν → −Fµν , and jµ → −jµ, where

j is the charge current. In the absence of any external charges, it acts like

(−1)n where n is the number of external photons in the amplitude. This is

called ‘Furry’s theorem’.

(d) At dimension 8, there are operators in the photons-only EFT which describe

light-by-light scattering. Write them down (there are two). Draw the QED

Feynman diagram which matches to these terms, and determine the number

of factors of α in their coefficients. (Don’t do the integrals unless you find

it enjoyable.)

They are going to involve four F s and therefore go like 1/m4. A single

loop of an electron with four photon lines coming off (a box diagram) has

four vertices, which therefore goes like e4 ∼ α2. We must decide what

to do with the indices on the F s. Parity demands that an even number

of the F s must be ?F s (can be zero). This leaves two terms, which are

(Fµν (?F )µν)
2 ∼

(
~E · ~B

)2

and (FµνF
µν)2 ∼ (E2 −B2)

2
. For the actual

matching coefficients, see Itzykson-Zuber. (What about FµνF
νρFρσF

σµ?)

(e) [bonus] Use dimensional analysis in the low-energy EFT to estimate the size

of the γγ → γγ cross section.
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The amplitude goes like

A ∼ α2 p
4

m4

with one factor of p from each F in the interaction. So the cross section is

σ(p) ∼ 1

p2
|A|2 ∼ α4p6

m8
.

It’s pretty small.
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