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1. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are

marginal. Keeping only these interactions, show that cactus diagrams (like

this: ) dominate.

(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue

that this correction to the propagator is innocuous and can be ignored.

(c) Armed with these results, compute diagrammatically the Cooper-channel

susceptibility (two-particle Green’s function),

χ(ω0) ≡
〈
T ψ†~k,ω3,↓

ψ†
−~k,ω4,↑

ψ~p,ω1,↓ψ−~p,ω2,↑

〉
as a function of ω0 ≡ ω1 + ω2, the frequencies of the incoming particles.

Think of χ as a two point function of the Cooper pair field Φ = εαβψ
†
αψα at

zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.

(d) Do the integrals. In the loops, restrict the range of energies to |ω| < ED
(or |ε(k)| < ED), the Debye energy, since it is electrons with these energies

which experience attractive interactions.

Consider for simplicity a round Fermi surface. For doing integrals of func-

tions singular near a round Fermi surface, make the approximation ε(k) '
vF (|k| − kF ), so that ddk ' kd−1

F
dξ
vF
dΩd−1.

(e) Show that when V < 0 is attractive, χ(ω0) has a pole. Does it represent

a bound-state? Interpret this pole in the two-particle Green’s function as

indicating an instability of the Fermi liquid to superconductivity. Com-

pare the location of the pole to the energy EBCS where the Cooper-channel

interaction becomes strong.

(f) Cooper problem. [optional] We can compare this result to Cooper’s in-

fluential analysis of the problem of two electrons interacting with each other
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in the presence of an inert Fermi sea. Consider a state with two electrons

with antipodal momenta and opposite spin

|ψ〉 =
∑
k

akψ
†
k,↑ψ

†
−k,↓ |F 〉

where |F 〉 =
∏

k<kF
ψ†k,↑ψ

†
k,↓ |0〉 is a filled Fermi sea. Consider the Hamilto-

nian

H =
∑
k

εkψ
†
k,σψk,σ +

∑
k,k′

Vk,k′ψ
†
k,σψk,σψ

†
k′,σ′ψk′,σ′ .

Write the Schrödinger equation as

(ω − 2εk)ak =
∑
k′

Vk,k′ak′ .

Now assume (following Cooper) that the potential has the following form:

Vk,k′ = V w?k′wk, wk =

{
1, 0 < εk < ED

0, else
.

Defining C ≡
∑

k ω
?
kak, show that the Schrödinger equation requires

1 = V
∑
k

|wk|2

ω − 2εk
. (1)

Assuming V is attractive, find a bound state. Compare (14) to the condition

for a pole found from the bubble chains above.

2. Topological terms in QM.

The purpose of this problem is to demonstrate that total derivative terms in the

action (like the θ term in QCD) do affect the physics.

The euclidean path integral for a particle on a ring with magnetic flux θ =
∫
~B ·d~a

through the ring is given by

Z =

∫
[Dφ]e−

∫ β
0 dτ(m2 φ̇2−i

θ
2π
φ̇) .

Here

φ ≡ φ+ 2π (2)

is a coordinate on the ring. Because of the identification (15), φ need not be a

single-valued function of τ – it can wind around the ring. On the other hand, φ̇

is single-valued and periodic and hence has an ordinary Fourier decomposition.

This means that we can expand the field as

φ(τ) =
2π

β
Qτ +

∑
`∈Z\0

φ`e
i 2π
β
`τ . (3)
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(a) Show that the φ̇ term in the action does not affect the classical equations of

motion. In this sense, it is a topological term.

(b) Using the decomposition (16), write the partition function as a sum over

topological sectors labelled by the winding number Q ∈ Z and calculate it

explicitly.

[Hint: use the Poisson resummation formula

∑
n∈Z

e−
1
2
tn2+izn =

√
2π

t

∑
`∈Z

e−
1
2t

(z−2π`)2 . ]

(c) Use the result from the previous part to determine the energy spectrum as

a function of θ.

(d) Derive the canonical momentum and Hamiltonian from the action above

and verify the spectrum.

(e) Consider what happens in the limit m → 0, θ → π with X ≡ θ−π
m
∼ β−1

fixed. Interpret the result as the partition function for a spin 1/2 particle.

What is the meaning of the ratio X in this interpretation?

3. Grassmann brain-warmers.

(a) A useful device is the integral representation of the grassmann delta function.

Show that

−
∫
dψ̄1e

−ψ̄1(ψ1−ψ2) = δ(ψ1 − ψ2)

in the sense that
∫
dψ1δ(ψ1−ψ2)f(ψ1) = f(ψ2) for any grassmann function

f . (Notice that since the grassmann delta function is not even, it matters on

which side of the δ we put the function:
∫
dψ1f(ψ1)δ(ψ1 − ψ2) = f(−ψ2) 6=

f(ψ2).)

(b) Recall the resolution of the identity on a single qbit in terms of fermion

coherent states

1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉

〈
ψ̄
∣∣ . (4)

Show that 12 = 1. (The previous part may be useful.)

(c) In lecture I claimed that a representation of the trace of a bosonic operator

was

trA =

∫
dψ̄dψ e−ψ̄ψ

〈
−ψ̄
∣∣A |ψ〉 ,

and the minus sign in the bra had important consequences.

(Here
〈
−ψ̄
∣∣ c† =

〈
−ψ̄
∣∣ (−ψ̄) ).
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Check that using this expression you get the correct answer for

tr(a+ bc†c)

where a, b are ordinary numbers.

(d) Prove the identity (20) by expanding the coherent states in the number

basis.

4. Fermionic coherent state exercise.

Consider a collection of fermionic modes ci with quadratic hamiltonian H =∑
ij hijc

†
icj, with h = h†.

(a) Compute tre−βH by changing basis to the eigenstates of hij (the single-

particle hamiltonian) and performing the trace in that basis: tr... =
∏

ε

∑
nε=c

†
εcε=0,1 ....

(b) Compute tre−βH by coherent state path integral. Compare!

(c) [super bonus problem] Consider the case where hij is a random matrix.

What can you say about the thermodynamics?
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