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1. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a)

Recall that only the four-fermion interactions with special kinematics are
marginal. Keeping only these interactions, show that cactus diagrams (like

this: % ) dominate.

To sum the cacti, we can make bubbles with a corrected propagator. Argue
that this correction to the propagator is innocuous and can be ignored.

Armed with these results, compute diagrammatically the Cooper-channel
susceptibility (two-particle Green’s function),
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as a function of wy = wy + wo, the frequencies of the incoming particles.
Think of y as a two point function of the Cooper pair field ® = e,51! 1, at
Zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.

Do the integrals. In the loops, restrict the range of energies to |w| < Ep
(or |e(k)| < Ep), the Debye energy, since it is electrons with these energies
which experience attractive interactions.

Consider for simplicity a round Fermi surface. For doing integrals of func-
tions singular near a round Fermi surface, make the approximation €(k) ~
vp(|k| — kr), so that d%k ~ kjl;l%de,l.

Show that when V' < 0 is attractive, y(wo) has a pole. Does it represent
a bound-state? Interpret this pole in the two-particle Green’s function as
indicating an instability of the Fermi liquid to superconductivity. Com-
pare the location of the pole to the energy Egcg where the Cooper-channel
interaction becomes strong.

Cooper problem. [optional] We can compare this result to Cooper’s in-
fluential analysis of the problem of two electrons interacting with each other



in the presence of an inert Fermi sea. Consider a state with two electrons
with antipodal momenta and opposite spin

V)= a0t |F)
k

where |F)) = [T x, %tﬂ% 110 is a filled Fermi sea. Consider the Hamilto-
nian
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Write the Schrodlnger equation as

(w - 2€k ap — Z Vk k! Qs .

Now assume (following Cooper) that the potential has the following form:

1, 0<e, < Ep

V;v,k/ = sz,wk, Wi =
0, else

Defining C' = ), wiay, show that the Schrodinger equation requires

=V T ol (1)
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Assuming V' is attractive, find a bound state. Compare (14) to the condition
for a pole found from the bubble chains above.

2. Topological terms in QM.

The purpose of this problem is to demonstrate that total derivative terms in the
action (like the 6 term in QCD) do affect the physics.

The euclidean path integral for a particle on a ring with magnetic flux § = [ B-da
through the ring is given by
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Here

O=o¢+2m (2)
is a coordinate on the ring. Because of the identification (15), ¢ need not be a
single-valued function of 7 — it can wind around the ring. On the other hand, gb
is single-valued and periodic and hence has an ordinary Fourier decomposition.
This means that we can expand the field as

o(r) = %@H S e (3)
€€Z\0



(a) Show that the ¢ term in the action does not affect the classical equations of
motion. In this sense, it is a topological term.

(b) Using the decomposition (16), write the partition function as a sum over
topological sectors labelled by the winding number ) € Z and calculate it
explicitly.

[Hint: use the Poisson resummation formula
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(c) Use the result from the previous part to determine the energy spectrum as
a function of 6.

(d) Derive the canonical momentum and Hamiltonian from the action above
and verify the spectrum.

(e) Consider what happens in the limit m — 0,6 — 7 with X = &% ~ !
fixed. Interpret the result as the partition function for a spin 1/ 2 particle.
What is the meaning of the ratio X in this interpretation?

3. Grassmann brain-warmers.

(a) A useful device is the integral representation of the grassmann delta function.
Show that

_/dzzled_ll(ﬁblih) = 0(ap1 — 1b2)

in the sense that [ di10(¢1 —9) f(11) = f(¢2) for any grassmann function
f. (Notice that since the grassmann delta function is not even, it matters on
which side of the § we put the function: [ diy f(1)8(1 — 1h2) = f(—1b2) #

f(2).)

(b) Recall the resolution of the identity on a single gbit in terms of fermion
coherent states

— [ abav 10 (9], (W
Show that 12 = 1. (The previous part may be useful.)

(c) In lecture I claimed that a representation of the trace of a bosonic operator
was

trA = /cwdw eV (—| A o)
and the minus sign in the bra had important consequences.

(Here (9| cf = (=¢| (-



Check that using this expression you get the correct answer for
tr(a + be'e)

where a, b are ordinary numbers.

(d) Prove the identity (20) by expanding the coherent states in the number
basis.

4. Fermionic coherent state exercise.

Consider a collection of fermionic modes ¢; with quadratic hamiltonian H =
Zij hijC;-er, with h = hT

(a) Compute tre "% by changing basis to the eigenstates of h;; (the single-

particle hamiltonian) and performing the trace in that basis: tr... = [ >0 . o, -

(b) Compute tre ?# by coherent state path integral. Compare!

(c) [super bonus problem] Consider the case where h;; is a random matrix.
What can you say about the thermodynamics?



