University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215C QFT Spring 2019 Assignment 5

Due 12:30pm Monday, May 6, 2019

1. Brain-warmers on spin coherent states.

(a) Show that

$$\vec{n} = z^{\dagger} \vec{\sigma} z$$

where $\vec{n} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ is a unit vector, and z_{α} are the components of the (normalized) spin coherent state $|\vec{n}\rangle$ ($\boldsymbol{\sigma} \cdot \vec{n} |\vec{n}\rangle = |\vec{n}\rangle$) in the Z-eigenbasis.

(b) In the same notation, check that

$$\langle \vec{n}_1 | \vec{n}_2 \rangle = z_1^{\dagger} z_2.$$

(c) Check that

$$\mathbb{1}_{2\times 2} = \int \frac{d^2n}{2\pi} |\vec{n}\rangle\langle \vec{n}|.$$

(d) Check that

$$\int dt \mathbf{i} z^{\dagger} \dot{z} = \int dt \mathbf{i} \frac{1}{2} \left(\cos \theta \dot{\phi} + \dot{\psi} \right) = 2\pi W_0[\hat{n}].$$

(e) Show that

$$\langle \check{n} | \vec{h} \cdot \vec{\mathbf{S}} | \check{n} \rangle = s\vec{h} \cdot \check{n}$$

where $|\check{n}\rangle = \mathcal{R}|s,s\rangle$ is a coherent state of spin s (where $|s,s\rangle$ is the eigenvector of \mathbf{S}^z with maximal eigenvalue, and \mathcal{R} is the rotation operator which takes \check{z} to \check{n}).

(f) Show that for several spins and $i \neq j$

$$\langle \check{\mathbf{n}} | \vec{\mathbf{S}}_i \cdot \vec{\mathbf{S}}_j | \check{\mathbf{n}} \rangle = s^2 \check{\mathbf{n}}_i \cdot \check{\mathbf{n}}_j,$$

where now $|\check{n}\rangle \equiv \otimes_j (\mathcal{R}_i |s_i\rangle)$ is a product of coherent states of each of the spins individually.

2. Brain-warmer on Schwinger bosons.

Recall the Schwinger-boson representation of the SU(2) algebra:

$$S^{+} = a^{\dagger}b, \ S^{-} = b^{\dagger}a, \ S^{z} = a^{\dagger}a - b^{\dagger}b,$$

where the modes a, b satisfy $[a, a^{\dagger}] = 1 = [b, b^{\dagger}], [a, b] = [a, b^{\dagger}] = 0$. This is the algebra of a simple harmonic oscillator in two dimensions,

$$H = \frac{1}{2} (p_x^2 + p_y^2 + x^2 + y^2).$$

Is the SU(2) a symmetry of this Hamiltonian? How does it act on the oscillator coordinates? Check that the oscillator algebra does indeed imply that \vec{S} defined this way satisfy the SU(2) algebra.

3. Geometric Quantization of the 2-torus.

Redo the analysis that we did in lecture for the two-sphere for the case of the two-torus, $S^1 \times S^1$. The coordinates on the torus are $(x,y) \simeq (x+2\pi,y+2\pi)$; use $\frac{N}{2\pi} \mathrm{d}x \wedge \mathrm{d}y$ as the symplectic form. Show that the resulting Hilbert space represents the Heisenberg algebra

$$e^{\mathbf{i}\mathbf{x}}e^{\mathbf{i}\mathbf{y}} = e^{\mathbf{i}\mathbf{y}}e^{\mathbf{i}\mathbf{x}}e^{\frac{2\pi\mathbf{i}}{N}}.$$

(I am using boldface letters for operators.) The irreducible representation of this algebra is the same Hilbert space as a particle on a periodic one-dimensional lattice with N sites.

4. Particle on a sphere with a monopole inside.

Consider a particle of mass m and electric charge e with action

$$S[\vec{x}] = \int dt \left(\frac{1}{2} m \dot{\vec{x}}^2 + e \dot{\vec{x}} \cdot \vec{A}(\vec{x}) \right)$$

constrained to move on a two sphere of radius r in three-space, $\vec{x}^2 = r^2$. Suppose further that there is a magnetic monopole inside this sphere: this means that $4\pi g = \int_{S^2} \vec{B} \cdot d\vec{a} = \int_{S^2} F$, where F = dA. (Since the particle lives only at $\vec{x}^2 = r^2$, the form of the field in the core of the monopole is not relevant here.)

- (a) Find an expression for $A = A_i dx^i = A_\theta d\theta + A_\varphi d\varphi$ such that F = dA has flux $4\pi g$ through the sphere.
- (b) Show that the Witten argument gives the Dirac quantization condition $2eg \in \mathbb{Z}$.
- (c) Take the limit $m \to \infty$. Count the states in the lowest Landau level. Compare with the calculation in lecture for coherent state quantization of a spin-s.