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1. Brain-warmer on counting states.

Consider the gauge theory description of the transverse field Ising model with

N = 3 sites.

With open boundary conditions, find an explicit expression for the gauge trans-

formation {sj̄} which eliminates the original Xj variables (sets them to 1).

Since Xj̄ → sj̄− 1
2
Xj̄sj̄+ 1

2
, we require

1 = s 1
2
X1s 3

2
, 1 = s 3

2
X2s 5

2
, 1 = s 5

2
X3

– there is no site to the right of X3. So set s5/2 = X3, s3/2 = X2X3, s 1
2

= X1X2X3

and we’re done.

With closed boundary conditions, show that you cannot eliminate
∏

j Xj. Find

an expression for the gauge choice which eliminates all but one of the spins.

Nothing we do with our silly ss can eliminate
∏

j Xj because it is gauge invariant.

2. Non-linear sigma models on more general spaces. [Some knowledge of

differential geometry is helpful here.]

In lecture we considered the 2d non-linear sigma model whose target space was

a round 2-sphere, motivated by the low-energy physics of antiferromagnets. At

weak coupling (large radius of sphere, which means large spin), we saw that the

sphere wants to shrink in the IR.

Consider now a 2d non-linear sigma model (NLSM) whose target space is a more

general manifold X with Riemannian metric ds2 = L2gij(x)dxidxj. Assume that
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the space is big, in the sense that we will treat the parameter L−1 as a small

parameter, and smooth in the sense that we can Taylor expand around any point.

The NLSM is a field theory whose fields xi(σ) are maps from spacetime (here 2d

flat space) to the target space X. The simplest action is

S[x(σ)] =

∫
d2σL2gij(x)∂σµx

i∂σνx
jηµν

where ηµν is the flat metric on the 2d spacetime ‘worldsheet’.

D = 2 is special because the free scalar field x(σ) is dimensionless. As long as

gij is nonsingular, in the limit L→∞, the local coordinate field becomes free.

Regard gij(x) as a coupling function. What is the leading beta function (actually

beta functional) for this set of couplings?

Hint: use the fact that the answer must be covariant under changes of coordinates

on X plus dimensional analysis.

The beta function vanishes when the target-space metric is flat, since the theory

is free. We can organize the perturbation expansion as an expansion in powers of

the curvature. It must be a two-index symmetric tensor. Therefore the leading

term is:

βµν = ∂tgµν ∝ Rµν +O
(
R2
)

where Rµν is the Ricci curvature of the target space. To match the coefficient,

compare to the case where the target space is S2, which we did in lecture. For

an S2 of radius R, Rij = 1
R2 gij. We found

L(b) =
1

2

(
g2 +

g4

2π
log b+ · · ·

)−1

∂µn̂
a∂µn̂.

Identifying

gij(b)∂X
i∂Xj = g2(b)∂µn̂

a∂µn̂

and g = 1
R

, we have

βgij = ∂log bgij(b) =
1

2πR2
gij =

1

2π
Rij.

To give a hint toward a harder-working answer, expand the metric about a point

in field space using Riemann normal coordinates, so that the action looks like

L = (∂x)2 +Rijklx
ixj∂αx

k∂αxl + ....

This is a quartic interaction in which we may do perturbation theory.
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A comment on dimensional analysis: in a non-linear sigma model, there are

actually two independent sets of engineering dimensions, one set for the base

space (σ, ∂σ...) – this is ordinary dim’l analysis for a QFT in D = 1 + 1 – and

another set for the target space (X,Rij...). By writing the action

S =

∫
d2σ∂X i∂Xjgij

I am treating the target space coordinates as dimensionless. Alternatively, we

could introduce a quantity with units of target-space-length−2 in front of the

action (called 1
4πα′ ) and write

S =
1

4πα′

∫
d2σ∂X i∂Xjgij.

The previous action works in target-space units where 1
4πα′ = 1. This quantity is

a string tension.

3. Haldane phase from the path integral.

Consider the D = 1 + 1 nonlinear sigma model with target space S2 at θ = 2π.

Recall that this describes a spin-one antiferromagnetic chain. The θ term is a

total derivative in the action, so it can manifest itself when we study the path

integral on a spacetime with boundary.

(a) Put this field theory on the half-line x > 0. Suppose that the boundary

conditions respect the SO(3) symmetry, so that the boundary values ~n(τ, x =

0) are free to fluctuate. By remembering that the θ-term is a total derivative,

and considering the strong-coupling (IR) limit, g → ∞, show that there is

a spin-1
2

at the boundary. (Hint: Recall the coherent state path integral for

a spin-1
2
.)

See after my answer to the next part.

(b) Now cut the path integral open at some fixed euclidean time τ = 0. (Con-

sider periodic boundary conditions in space.) Such a path integral computes

the groundstate wavefunction, as a function of the boundary values of the

fields, ~S(x, τ = 0). Find the groundstate wavefunctional is Ψ[~n(x, τ = 0)]

in the strong coupling limit g →∞ (where the gap is big).

TakeD = 1+1, G = SO(3), and let’s study a field variable which is a 3-component

unit vector n̂ ∈ S2. The fact that π2(S2) = Z will play an important role. Think

of this ~n as arising from coherent-state quantization of a spin chain. So take the

(imaginary-time) action to be

S =

∫
dτdx

(
1

g2
∂µn̂ · ∂µn̂+ i

θ

4π
εabcn

a∂τn
b∂xn

c

)
.
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We will focus on θ ∈ 2πZ. Recall that in this case the model has a gap. We

would like to understand what is different between θ = 0 and θ = 2π.

Recall the role of the θ term: on a closed spacetime manifold MD

Zθ(MD) ≡
∫

[Dn]e−S =
∑

n∈π2(S2)

eiθnZn

and Zθ(MD) = Zθ+2π(MD). In particular, we can take MD = S1 × ND−1 to

compute the partition function on any spatial manifold ND−1. This means the

bulk spectrum is periodic in θ with period 2π.

In contrast to the case of a closed manifold, if we compute the path integral on

an (infinite) cylinder (i.e. with two boundaries, at τ = ±∞),∫
n̂(x, τ =∞) = n̂(x)

n̂(x, τ = −∞) = n̂′(x)

[Dn̂(x, τ)]e−S[n(x,τ)] = 〈n̂(x)|0〉 〈0|n̂′(x)〉 (1)

then θ does matter, not just mod 2π. Notice that in expressions for functionals

like S[n(x, τ)] I am writing the arguments of the function n to emphasize whether

it is a function at fixed euclidean time or not. The fact that the theta term is a

total derivative iθH = iθ
∫
∂MD

w means that the euclidean action here is

S[n(x, τ)] =

∫
MD

dτdx
1

g2
∂µn̂ · ∂µn̂+ iθ

∫
dx (w(n(x))− w(n′(x))) .

The θ term only depends on the boundary values, and comes out of the integral

in (1).

If we also take g → ∞ there is nothing left in the integral and we can factorize

the expression (1) to determine:

|0〉θ=0 ∝
∫

[Dn̂(x)] |n̂(x)〉 =
∏
x

|` = 0〉x

is a product state; on the far RHS here we have a product of local singlets:∫
dn̂ |n̂〉 = |` = 0〉 at each site. Here we used 〈n̂(x)|n̂′(x)〉 = δ[n− n′].

|0〉θ=2π ∝
∫

[Dn̂(x)]ei
θ
2π

∫
dxw(n̂(x)) |n̂(x)〉 =

∫
[D~n(x)]eiW[~n] |~n(x)〉

Here
∫

dxw(n̂(x)) =W0[n̂] is the D = 0 + 1 WZW term; the role of the usually-

fictitious extra dimension in writing this WZW term is now being played by the

real euclidean time (and the role of time is played by space).
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So what we found was that the groundstate wavefunctional is Ψ[n] ∝ eiθQ[n] where

Q[n] =
1

4π

∫
bulk

n ∧ dn ∧ dn

as a functional of the boundary configuration n(x). But this Q is exactly the

WZW term W0[n] for the boundary configuration n(x) just regard the euclidean

time direction as the fictitious extra dimension, and the bulk field as the arbitrary

extension of the boundary field.

By the usual Witten argument, the coefficient of this term must be quantized as

long as the SU(2) symmetry is preserved, so a phase with a different coefficient

of the WZW term must be separated by a phase transition.

And indeed when s = 1, so that θ = 2πs = 2π, we get the minimal nonzero

coefficient. (If we plug in s = 1/2 we get a fractional coefficient, but this is OK

because in that case the bulk is gapless.)

Here is a paper where this same strategy is applied to bosonic SPTs in 2 and 3

dimensions.

For a more concrete statement, consider breaking the SU(2) symmetry down to

an easy-plane U(1) symmetry, meaning we add ∆H =
∑

x Jn
2
z which pins the

field to the equator. In that case, the WZW term reduces to

θ

∫
dx

1

2
(1− cos θ)∂xϕ =

1

2
2πs

∫
dx∂xϕ

which measures the winding of the ϕ variable around the boundary. When s ∈ Z,

the wavefunction is

Ψ[n] = eiπs∆ϕ = (−1)winding of ϕ : S1 → S1

.

(Again, for s a half-integer, the bulk is gapped, so we don’t care what happens.)

As long as we preserve time-reversal symmetry (so the wavefunction is real),

we cannot continuously interpolate between this wavefunction and the trivial

paramagnet with Ψ[n] = 1.

In the other part of the problem, the boundary is in space. With free (SO(3)-

symmetric) boundary conditions on the field at the boundary, the boundary

action is exactly the WZW term, which says that there is an edge spin of spin 1
2
,

despite the fact that the degrees of freedom only transform under SO(3).

Here is a pictorial understanding of these spin-1
2

edge states. We can make a spin-

1 by tensoring together two spin-1
2
s, and projecting onto the triplet; represent this

by the following picture: . Consider a chain of spin-1s and make singlets
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between the right spin-1
2

in each site with the left spin-1
2

of the neighboring site,

like this:

This is called the AKLT state, and it’s in the same phase as the groundstate of

the spin-1 Heisenberg chain. You can see with your eyes the dangling spin-1
2
s.
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