
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 212C QM Spring 2020
Assignment 1

Due 12:30pm Monday, April 6, 2020

• Homework will be handed in electronically. Please do not hand in photographs of

hand-written work. The preferred option is to typeset your homework. It is easy

to do and you need to do it anyway as a practicing scientist. A LaTeX template

file with some relevant examples is provided here. If you need help getting set

up or have any other questions please email me.

• To hand in your homework, please submit a pdf file through the course’s canvas

website, under the assignment labelled hw01. Please put the filename in the

format:

212C-hw01-YourLastName-YourFirstName.pdf

Thanks in advance for following these guidelines. Please ask me if you have any

trouble.

1. Brain-warmer: oscillation of excited oscillator states.

Consider a 1d harmonic oscillator of frequency ω. Consider the initial state

|ψn,s(0)〉 ≡ T(s) |n〉

where |n〉 ≡ 1√
n!

(
a†
)n |0〉 is the nth excited state and T(s) ≡ e−iPs is the dis-

placement operator.

Describe (plot it as a function of q for some n, t, s > 0) the time evolution of the

probability distribution: ρ(q, t) = |ψn,s(q, t)|2 where ψn,s(q, t) ≡
〈
q|e−iHt|ψn,s(0)

〉
.

Does it keep its shape like it does for n = 0?

2. Coherent states.

Consider a quantum harmonic oscillator with frequency ω. The creation and

annihilation operators a† and a satisfy the algebra

[a, a†] = 1

and the vacuum state |0〉 satisfies a |0〉 = 0. Coherent states are eigenstates of

the annihilation operator:

a |α〉 = α |α〉 .
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(a) Show that

|α〉 = e−|α|
2/2eαa

† |0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉

is an eigenstate of a with eigenvalue α. (a is not hermitian, so its eigenvalues

need not be real.)

(b) Coherent states with different α are not orthogonal. (a is not hermitian, so

its eigenstates need not be orthogonal.) Show that | 〈α1|α2〉 |2 = e−|α1−α2|2 .

(c) Compute the expectation value of the number operator n = a†a in the

coherent state |α〉.

(d) Time evolution acts nicely on coherent states. The hamiltonian is H =

~ω
(
a†a + 1

2

)
. Show that a coherent state evolves into a coherent state with

an eigenvalue α(t):

e−iHt |α〉 = e−iωt/2 |α(t)〉

where α(t) = e−iωtα.

(e) Show that the coherent states can be used to resolve the identity in the form

1 =

∫
d2α

π
|α〉 〈α|

where d2α ≡ dα1dα2 in terms of the real and imaginary parts of α = α1+iα2.

One way to do this is to relate this expression to 1 =
∑∞

n=0 |n〉 〈n|.

The following three problems form a triptych, on the subject of resolving the various

infinities involved in the quantum mechanics of a particle on the real line. There are

two such infinities: one is the fact that the real line goes on forever; this is resolved in

problem 3. The other is the fact that in between any two points there are infinitely

many points; this is resolved in problem 4. In problem 5 we resolve both to get a

finite-dimensional Hilbert space.

3. Particle on a circle.

Consider a particle which lives on a circle:
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That is, its coordinate x takes values in [0, 2πR] and we identify x ' x+ 2πR.

(a) Let’s assume that the wavefunction of the particle is periodic in x:

ψ(x+ 2πR) = ψ(x) .

What set of values can its momentum (that is, eigenvalues of the operator

p = −i~∂x) take?

(b) Recall that the overall phase of the state vector is not physical data. This

suggests the possibility that the wavefunction might not be periodic, but

instead might acquire a phase when we go around the circle:

ψ(x+ 2πR) = eiϕψ(x)

for some fixed ϕ. In this case what values does the momentum take?

4. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the

discrete values x = na, n ∈ Z where a is some unit of length and n is an integer.

We’ll call the corresponding position eigenstates |n〉. The Hilbert space is still

infinite-dimensional, but at least we have in our hands a countably infinite basis.

In this problem we will determine: what is the spectrum of the momentum

operator p in this system?

(a) Consider the state

|θ〉 =
1√
N

∑
n∈Z

einθ |n〉 .

Show that |θ〉 is an eigenstate of the translation operator T̂ , defined by

T̂ =
∑
n∈Z

|n+ 1〉 〈n| .

Why do I want to call θ momentum?

(b) What range of values of θ give different states |θ〉? [Recall that n is an

integer.]

5. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice

around a circle, in the following sense. Its position can take only the discrete

values x = a, 2a, 3a, ..., Na (where, again, a is some unit of length and again we’ll

call the corresponding position eigenstates |n〉). Suppose further that the particle

lives on a circle, so that the site labelled x = (N + 1)a is the same as the site

labelled x = a. We can visualize this as in the figure:
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In this case, the Hilbert space has finite dimension N .

Consider the following N × N matrix representation of a Hamiltonian operator

(a is a constant):

H =
1

a2



2 −1 0 0 0 · · · 0 −1

−1 2 −1 0 0 · · · 0 0

0 −1 2 −1 0 · · · 0 0

0 0 −1 2 −1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 2 −1

−1 0 0 0 0 · · · −1 2︸ ︷︷ ︸
N



N



(a) Convince yourself that this is equivalent to the following: Acting on an N -

dimensional Hilbert space with orthonormal basis {|n〉 , n = 1, . . . , N}, Ĥ
acts by

a2Ĥ |n〉 = 2 |n〉 − |n+ 1〉 − |n− 1〉 , with |N + 1〉 ' |1〉

that is, we consider the arguments of the ket to be integers modulo N .

(b) Show that Ĥ and T̂ (where T̂ is the ‘shift operator’ defined by T̂ : |n〉 7→
|n+ 1〉) can be simultaneously diagonalized.
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Consider again the state

|θ〉 =
1√
N

N∑
n=1

einθ |n〉 .

(c) Show that |θ〉 is an eigenstate of T̂ , for values of θ that are consistent with

the periodicity n ' n+N .

(d) What values of θ give different states |θ〉? [Recall that n is an integer.]

(e) Find the matrix elements of the unitary operator U which relates position

eigenstates |n〉 to momentum eigenstates |θ〉: Uθn ≡ 〈n|θ〉.

(f) Find the spectrum of Ĥ.

Draw a picture of ε(θ): plot the energy eigenvalues versus the ‘momentum’

θ.

(g) Show that the matrix above is an approximation to (minus) the 1-dimensional

Laplacian −∂2x. That is, show (using Taylor’s theorem) that

a2∂2xf(x) = −2f(x) + (f(x+ a) + f(x− a)) +O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

(h) In the expression for the Hamiltonian, to restore units, I should have written:

Ĥ |n〉 =
~2

2m

1

a2
(2 |n〉 − |n+ 1〉 − |n− 1〉) , with |N + 1〉 ' |1〉

where a is the distance between the sites, and m is the mass. Consider

the limit where a → 0, N → ∞ and look at the lowest-energy states (near

p = 0); show that we get the spectrum of a free particle on the line, ε = p2

2m
.
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