University of California at San Diego — Department of Physics — Prof. John McGreevy

Physics 212C QM Spring 2020
Assignment 1

Due 12:30pm Monday, April 6, 2020

e Homework will be handed in electronically. Please do not hand in photographs of
hand-written work. The preferred option is to typeset your homework. It is easy
to do and you need to do it anyway as a practicing scientist. A LaTeX template
file with some relevant examples is provided here. If you need help getting set
up or have any other questions please email me.

e To hand in your homework, please submit a pdf file through the course’s canvas
website, under the assignment labelled hwO1. Please put the filename in the
format:

212C-hwO1-YourLastName-YourFirstName.pdf

Thanks in advance for following these guidelines. Please ask me if you have any
trouble.

1. Brain-warmer: oscillation of excited oscillator states.

Consider a 1d harmonic oscillator of frequency w. Consider the initial state

|¥ns(0)) = T(s) )
where |n) = \/—177' (a)"]0) is the nth excited state and T(s) = e "¢ is the dis-
placement operator.

Describe (plot it as a function of ¢ for some n,t, s > 0) the time evolution of the

probability distribution: p(q,t) = [¢ns(q,t)|* where 1, s(q,t) = (gle ™ |1b,, 5(0)).
Does it keep its shape like it does for n = 07

2. Coherent states.

Consider a quantum harmonic oscillator with frequency w. The creation and
annihilation operators af and a satisfy the algebra

[a,af] =1

and the vacuum state |0) satisfies a|0) = 0. Coherent states are eigenstates of
the annihilation operator:
ala) =ala).
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(a) Show that
|CE> —|a| /2¢ aaf |0 —|a| /2 Z « |TL

is an eigenstate of a with eigenvalue . (a is not hermitian, so its eigenvalues
need not be real.)

(b) Coherent states with different o are not orthogonal. (a is not hermitian, so
its eigenstates need not be orthogonal.) Show that | (ay|asy) |2 = e ler—o2,

(c) Compute the expectation value of the number operator n = afa in the
coherent state |a).

(d) Time evolution acts nicely on coherent states. The hamiltonian is H =
hw (aTa + %) . Show that a coherent state evolves into a coherent state with
an eigenvalue a(t):
e o) = ¢ o)

—iwt

where a(t) = e “a.

(e) Show that the coherent states can be used to resolve the identity in the form

1= [

where d?a = daydo, in terms of the real and imaginary parts of o = o +ics.
One way to do this is to relate this expression to 11 =" |n) (n|.

The following three problems form a triptych, on the subject of resolving the various
infinities involved in the quantum mechanics of a particle on the real line. There are
two such infinities: one is the fact that the real line goes on forever; this is resolved in
problem 3. The other is the fact that in between any two points there are infinitely
many points; this is resolved in problem 4. In problem 5 we resolve both to get a
finite-dimensional Hilbert space.

3. Particle on a circle.

Consider a particle which lives on a circle:



That is, its coordinate = takes values in [0, 27 R]| and we identify x ~ x + 27 R.

(a) Let’s assume that the wavefunction of the particle is periodic in z:

Y(r +2rR) = ¢Y(x) .
What set of values can its momentum (that is, eigenvalues of the operator
p = —ih0,) take?

(b) Recall that the overall phase of the state vector is not physical data. This
suggests the possibility that the wavefunction might not be periodic, but
instead might acquire a phase when we go around the circle:

b(@ + 27 R) = e#y(x)
for some fixed . In this case what values does the momentum take?

4. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the
discrete values x = na,n € Z where a is some unit of length and n is an integer.
We'll call the corresponding position eigenstates |n). The Hilbert space is still
infinite-dimensional, but at least we have in our hands a countably infinite basis.

In this problem we will determine: what is the spectrum of the momentum
operator p in this system?

(a) Consider the state
1 )
0) = — e™ |n) .
) = S )
nez

Show that |#) is an eigenstate of the translation operator T, defined by

T=Y |n+1)(n|.

nez

Why do I want to call § momentum?

(b) What range of values of 0 give different states |#)7 [Recall that n is an
integer.|

5. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice
around a circle, in the following sense. Its position can take only the discrete
values x = a, 2a, 3a, ..., Na (where, again, a is some unit of length and again we’ll
call the corresponding position eigenstates |n)). Suppose further that the particle
lives on a circle, so that the site labelled = (N + 1)a is the same as the site
labelled x = a. We can visualize this as in the figure:
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In this case, the Hilbert space has finite dimension .

Consider the following N x N matrix representation of a Hamiltonian operator
(a is a constant):

2 .10 0 0 0 —1
12 -10 0 0 0
0 12 -1 0 0 0

H=21l0 0-12 -1---0 0\ly

. . .
0000 0 2 1
10 0 0 0 - —12
N

(a) Convince yourself that this is equivalent to the following: Acting on an N-
dimensional Hilbert space with orthonormal basis {|n),n =1,..., N}, H
acts by

AHn)=2n)—|n+1)—|n—1), with [N+1)~]1)

that is, we consider the arguments of the ket to be integers modulo N.

(b) Show that H and T (where T is the ‘shift operator’ defined by T : |n)
|n 4 1)) can be simultaneously diagonalized.



Consider again the state

1 X o
16) = ﬁ;em In) .

(¢) Show that |6) is an eigenstate of T', for values of § that are consistent with
the periodicity n ~n + N.

(d) What values of 6 give different states |0)? [Recall that n is an integer.]

(e) Find the matrix elements of the unitary operator U which relates position
eigenstates |n) to momentum eigenstates |0): Uy, = (n|6).

(f) Find the spectrum of H.

Draw a picture of €(6): plot the energy eigenvalues versus the ‘momentum’

6.

(g) Show that the matrix above is an approximation to (minus) the 1-dimensional
Laplacian —92. That is, show (using Taylor’s theorem) that

a*0, f(z) = =2f(z) + (f(z + a) + f(z — a)) + O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

(h) In the expression for the Hamiltonian, to restore units, I should have written:

- h? 1

H|n>:%¥(2|n)—|n+1>—|n—1>)a with |N 4+ 1) >~ [1)
where «a is the distance between the sites, and m is the mass. Consider
the limit where a — 0, N — oo and look at the lowest-energy states (near

p = 0); show that we get the spectrum of a free particle on the line, e = %.



